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ABSTRACT 
We present a complete interpretation theory in the following sense: we observe that each measuring device re- 
presents a concept set (such as the set of locations) while the measurement activity associates the measured object 
with an appropriate member from the concepts set. In that sense, the measurement process is the only interpre- 
tation of reality. In this article, we deal with the evolution of this interpreting measuring device for a 2-D Hilbert 
space. It is shown that nonlinear recursive maps give rise to a unique projective operator accompanied with the 
collapse ability and consequently to a measuring device. Our formalism can be easily interpreted as a single 
brain signal. 
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1. Introduction 
This paper follows other papers that assume a philosophical view that all we experienced or analyzed is an 
interpretation of reality rather than reviling some objective truth. For example, a pattern such as the one that 
appears in Figure 1 has two interpretations: the letter B or the number 13. Clearly giving some meaning to that 
vague pattern is only a brain interpretation [1,2]. In other papers, we proposed some mathematical formalism to 
understand the way we interpret reality. We used quantum ideas in the following manner: using the fact that 
many brain activities correspond with feedback loops (see for example ref. [3]) which are mostly associated with 
nonlinearity [3]. We refer this induced nonlinearity with a selective surrounding that simulates the brain activity 
through the nonlinearity of the recursive maps. We showed that nonlinear maps in the regular regime [4] can 
serve as a selective tool that filters only unique projective operators in which the observer can interpret reality. 
In this paper, we will show that nonlinear maps, now defined in the chaotic regime, give rise to the collapse 
phenomena. We note that although this collapse is defined with direct relation to the usual quantum collapse 
theories [5,6] it can also be understood purely in a mathematical sense. Therefore our interpretation theory does 
not necessarily define our theory as a part of quantum mechanics. Labelfont = bf. 

The aim of this paper is to establish a complete interpretation theory. By integrating between the chaotic and 
the regular maps, we show the complete theory showing the evolution of a measuring device, namely, the final 
unique projective operator with the collapse ability. We derive our formalism for a 2-D Hilbert space that can be 
easily interpreted as a single brain signal [7,8]. 

2. Review—Single Parameter Complementary Maps 
2.1. The Regular Complementary Maps 

The set of complementary maps that is responsible for the measuring device evolution is defined as: 
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Figure 1. An example of the brain interpretation: This vague pattern can have interpretations: The letter B or the 
number 13. 
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where   is a regular map function that determine the iteration of the ρ -parameter ( ρ  stand for “ ρ  
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With R  the strength parameter that defines the iteration type.  

2.2. Review—The Chaotic Complementary Maps 
The set of complementary maps that is responsible for the collapse are defined as [4]: 
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where X  is a chaotic map function that determine the iteration of the χ -parameter ( χ  stand for the Greek 
word áoχ ς ). 

In general if we observe each complementary map’s parameters such as ρ  and ρ  each map of the two can 
evolve independently provided that the initial variables are independently selected. Otherwise, when the initial 
conditions are coordinated such that 0 0 1ρ ρ+ =  or 0 0 1χ χ+ =  the maps are considered to be initially unitary 
correlated. Nevertheless, In our model we impose no correlation between the chaotic and regular maps as 
defined in equations (1) and (3). It can be shown, that in a pure mathematical sense, an initially unitary corre- 
lated coefficients, namely, 0 0 1ρ ρ+ =  or 0 0 1χ χ+ = , conserves coherence during the maps iterations’ that is 

1
1

n n

n n

n
ρ ρ
χ χ

= − 
∀  = − 

. However, although the regular maps coherence last forever, chaotic maps suffer from cohe- 

rence violation due to the “butterfly effect”, that is, high sensitivity to an accumulative small random errors [4].  

3. States Representation 
3.1. Review—The Regular States Definition as a Concept Generator 

Various models and in particular the various Spin-Glass-Models [9] associate brain activity with interacting 
spins models. In general we adapt the approach that an electrical “pulse” existence or absence is associated with 
a 2-D Hilbert space, such as the spin model, refers to the 1  and ∅ , respectively. 

Assume the initial states: 

0 0 0 00 1 0 1
ρ ρ

ρ ρ ρ ρ= + ∅ = − + ∅;                    (4) 

where the initial maps 0ρ  and 0ρ  are unitary correlated meaning that 0 0 1ρ ρ+ = . 
We assume that the states interact with an external surrounding that modifies the states coefficients in ac- 

cording to the recursive-complementary maps to generate the iterating states: 
1 1n n n nn n

ρ ρ
ρ ρ ρ ρ= + ∅ = − + ∅;                     (5) 

with the recursive maps of Equation (1). 
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3.2. Review—Concept Generation [4] 
Recursive maps such as the logistic map have the tendency of reaching constant values, provided that they are 
not in the chaotic regimes. If the maps reach the single values ρ∞  and ρ∞  we obtain that any initial basis of 
states terminates at the unique basis: 

1 1n n
ρ ρ

ρ ρ ρ ρ∞ ∞ ∞ ∞→ ∞ = + ∅ →∞ = − + ∅;                 (6) 

This final basis of state defines the observer unique measuring device. 
We demonstrate the toy model formalism with the logistic formula where 

( ) ( )1 11 ; 1 1 .n n n n n nR Rρ ρ ρ ρ ρ ρ+ += − = − −                         (7) 

If < 3R  the maps converge into the single values 1R
R

ρ∞
−

=  and 1
R

ρ∞ = . Consequently we obtain states  

that except for the 0,1nρ = -values, always converge into the defined basis of states: 

1 1 1 11 ; 1R R

R R
R R R R
− −

∞ = + ∅ ∞ = − + ∅                    (8) 

This basis of states defines a specific measuring device that can be related to a concept. However, in practice 
a real interpretation corresponds with a collapse mechanism. Indeed it was shown that chaotic maps generate the 
collapse as to be reviewed now. 

3.3. Review—Chaotic Maps as the Collapse Generator [4] 
The iterated states induced by the chaotic maps are: 

1 ; 1 .n n n nn n
χ χ

χ χ χ χ= + ∅ = − + ∅                     (9) 

We parameterize the maps as follows  

( ) ( )cos ; sin ,n n n nθ χ θ χ= =                             (10) 

to obtain 
cos 1 sin ; cos sin 1 .n n n nn n

χ χ
θ θ θ θ= + ∅ = − ∅ +                  (11) 

3.4. The Stationary States Representation 
From Equation (9) we can compose the states: 

( ) ( )1 1i i
2 2n nn n n n

χ χχ χ χ χ
− = + + = − ;                     (12) 

or 
i ie en n

n nχ χ

θ θ−+ = + − = −;                             (13) 

where 

( ) ( )1 11 i 1 i
2 2

+ = − ∅ − = + ∅;                         (14) 

These states are regarded as stationary since the maps iterations are reflected only through a global phases 
ie nθ± . 
We can now generate new states by means of superposition:  

2 2i i i i* *e e e e 1n n n n
n nA B B A A Bθ θ θ θφ φ− −= + + − = − + + − + =; ;            (15) 

where A  and B  are any arbitrary complex coefficients.  

3.5. Projecting Operators with Respect to Measuring Devices 
In our formalism the essence of the measuring device collapse phenomena is defined by the chaotic maps and it 
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is represented by the stationary based maps basis +  and − . All other states in the 2-D space are re- 
presented by the states nφ , nφ  which possess an arbitrary superposition coefficients A  and B .  

In according to standard quantum mechanics, the two bases + , −  and nφ , nφ  are associated with 
the projective operators: 

The stationary projective operator  

P̂ λ λ± + −= + + + − −                                  (16) 

and 
The φ  projective operator 

ˆ
n n n nPφ φ φλ φ φ λ φ φ= + +                               (17) 

The projecting operator P̂φ  presented in the stationary basis ±  becomes: 
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               (18) 

The projective operator P̂φ  as originally presented in the φ -basis (Equation (17)) is a mathematical ex- 
pression composed of the linear combination of φ  and φ -corresponding projective operators. An operator of 
the P̂φ -type describes a measuring device that measures the φ -states (Equation (15)) with a complete 
certainty. However, it is incapable of describing a device that detects other bases. Indeed, when the same 
operator P̂φ  is presented in the stationary basis ±  (Equation (18)), we obtained an interference term, ˆ IPφ , 
which is no longer composed of the linear combination of projective operators. States mixing such as − +  
as appeared in the interference term causes the whole expression to become inappropriate in describing a mea- 
suring device. 

Although the interference part causes the expression of Equation (18) to be inappropriate in describing a 
measuring device, the first term ˆ DPφ  can certainly present a measuring device provided it is accompanied with 
statistical characteristics. The measurement reading φλ  indicates the possibility that the device can detect the  

nφ  state. Indeed for our state— i ie en n
n A Bθ θφ −= + + − —we obtain that the expressions 2A  and 2B  

that accompany the states n+  and n−  can be interpreted as the probabilities of detecting the appropriate  

states in agreement with the Born interpretation. Detecting the other eigenvalue φλ   also provides the ap- 
propriate stationary states probabilities. 

To summarize: The projective operator P̂φ  presented in the stationary basis is composed of two parts: The 
interference term, ˆ IPφ , that violates the possibility of identifying the operator with a measuring device and the 
diagonal part, ˆ DPφ  which in according to the Born interpretation can be associated with a measuring device. It 
will be shown that in the chaotic regime by randomizing the maps phase, the interference term will vanish, on 
the average, leaving us with an appropriate expression for a measuring device.  

3.6. Phase Randomization-Numeric Calculation 
The first step in transforming the P̂φ -projective-operator into a measuring device is to eliminate the interference 
terms. 

This common angle nθ  suggests that the maps states n  and n  describe a single vector with the co- 
ordinates x  and y . This vector rotates during the iterations in according to the values of nθ . On the 
contrary, an uncorrelated n  and n -vectors would possess two independent angles xnθ  and ynθ , as fol- 
lows:  

sin cos .n n n nχ χθ χ θ χ≡ ≡;                             (19) 
In a numeric analysis we processed the logistic maps that were subject to a coherent initial condition  

( )0 0 1χ χ+ = . At each iteration we calculated the angles 0nχθ θ+  and 0nχθ θ+  according to Equation (19)  
and we plotted a correlation graph of 0nχθ θ+  verses 0nχθ θ+ . The results are demonstrated in Figure 2.  

For 3.4R =  (left side) the case for which the maps are in the regular regime and therefore coherent for all  
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Figure 2. Numeric data for the graphs nχθ  verses nχθ  applied for the logistic maps with , 0 0 0.7ρ χ =  and 

, 0 0 0.3ρ χ = . On the left, the strength parameter is in the regular regime— .3 4R = . The straight line demonstrates the 

correlation relation =n nρ ρθ θ . On the left: The strength parameters is in the chaotic regime ( )4R = : The discorre- 
lation between the angles is represented by the point-filled-squares. 
 
n , we obtained the straight line   n nn ρ ρθ θ∀ =  . The right graph shows the relations for 3.7R = . The dis-co- 
rrelation between the angles is represented by the point-filled-squares. Labelfont = bf.  

Clearly, during the iterations and long after the coherence time, the phase nθ  exhibit a random behavior. 
Going back to the projecting operator as defined in Equation (17), calculating the time average of the 

projective operator, we obtain:  
2 2ˆ

n
P A Bφ φ φλ λ= + + + − −



                             (20) 

We note that the eigenvalues φλ  that are associated with the measurement readings are defined to be 
independent of the index n . Otherwise, we will obtain different readings for the same stationary state. 

In conclusion, all the measuring environment effects which is reflected through the chaotic maps, provides us 
with the ability of formulating a mathematical frame to analyze the collapse phenomenon where in the present 
section we demonstrated our formalism by numerical means. In the following part we show that the phase 
randomization can be obtained with the Lyapunov exponent [8]. We note that although quantum collapse is 
discussed in refs [10-13], our formalism can be applied in classical systems. 

4. Maps Integration, the Complete Evolution of a Concept 
The chaotic and regular maps control the concept determination. During the coherence time which is determined 
by the chaotic maps, the regular maps cause the basis of states to stabilized at a single set. Long after the co- 
herence time, deep in the chaotic stage the selected projective operator becomes a collapsing tool. 

The composed states are  
i i i i

, ,e e ; e en n n n
n n n nn nθ θ θ θ

ρ χ ρ χ
ρ ρ ρ ρ− −= + + − = − + + −           (21) 

where the ρ -variable iterates in according to the regular R generating function while the phases θ  is de- 
termined by the chaotic X  function. 

We assume that the states converge into a final basis in the coherent time period. Thus for < ct t  we have the 
final regular basis: 

i i i i
, ,

e e ; e en n n n
n n

θ θ θ θ
ρ χ ρ χ

φ ρ ρ φ ρ ρ− −
∞ ∞ ∞ ∞= + + − = − + + −       (22) 

Equation (22) has the similar form of Equation (15) with A ρ∞→  and B ρ∞→ . Thus following the  
formalism we derived earlier we obtain that in according to eq. 20 the final projective operator is:   

ˆ
n

Pφ φ φρ λ ρ λ∞ ∞= + + + − −


                          (23) 

Now, not only that we have a single selected projective operator, the mathematical expression can have an 
interpretation of a collapse mechanism. To be more specific, a measurement of any state can provide the values  



Y. G. ROTH 

OPEN ACCESS                                                                                        APM 

58 

φλ  or φλ   that are associates with the φ ′  states with the probabilities ρ∞  and ρ∞ , respectively.  

5. Brain Activity in Terms of the Nonlinear-Maps 
Until now, we showed that the evolution of the non-linear recursive maps corresponded with an exclusive se- 
lection of preferable bases that span the Hilbert space. Each basis is associated with a measuring device for 
which, through measurements, the observer experiences and interprets the physical word. 

The purpose of this part is to associate the brain activity with this 2-D model model.  
Let us first briefly describe the brain activity by means of its electrical pulses: The brain is composed of nerve 

cells referred as neurons. All neurons in the brain are electrically excitable, maintaining voltage gradients across 
their membranes. Changes in the cross-membrane voltage can alter the function of voltage-dependent ion chan- 
nels. If the voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action po- 
tential or simply a signal, is generated. The signal travels along the cell’s axon, and when it arrives to a junction 
it activates synaptic connections with other cells. We associate this brain activity with the nonlinear recursive 
maps where the sequential synapses activity is identified with the maps-parameter n . 

In our model, the absence or excitation of a single is identified with the states ∅  and 1 , respectively.  
Describing the brain activity by means of a 2-D Hilbert space was introduced long ago with the spin-glass- 

models [9]. However, these spin glass models consist of a spin interaction Hamiltonian that determines the brain 
activity time evolution while our approach consists of a discrete time evolution determined by the non-linear re- 
cursive maps. 

In our formalism, the transition between the ground and the excited states corresponds with the recursive re- 
gular and chaotic maps where the regular map is responsible for the concept definition while the chaotic maps 
enforce any measurement to fall between one of the measuring device concepts. Here we demonstrated our 
formalism for a single bite but we are convinced that it can be generalized to a multi-dimensional system.   
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