Riesz Means of Dirichlet Eigenvalues for the Sub-Laplace Operator on the Engel Group

Jingjing Xue
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, China
Email: xuejingjingsx@163.com

Received September 27, 2013; revised October 27, 2013; accepted November 5, 2013

Copyright © 2013 Jingjing Xue. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, we are concerned with the Riesz means of Dirichlet eigenvalues for the sub-Laplace operator on the Engel group and derive different inequalities for Riesz means. The Weyl-type estimates for means of eigenvalues are given.

Keywords: Engel Group; Sub-Laplace Operator; Eigenvalues; Riesz Mean

1. Introduction

The Engel group G is a Carnot group of step $r = 3$ (see [1]), its Lie algebra is generated by the left-invariant vector fields

$$X_1 = \frac{\partial}{\partial x_1} - \frac{x_2}{2} \frac{\partial}{\partial x_3} + \left(\frac{-x_1 x_2}{12} - \frac{x_3}{2} \right) \frac{\partial}{\partial w},$$

$$X_2 = \frac{\partial}{\partial x_2} + \frac{x_1}{2} \frac{\partial}{\partial x_3} + \frac{x_1^2}{12} \frac{\partial}{\partial w},$$

$$X_3 = \frac{\partial}{\partial x_3} + \frac{x_1}{2} \frac{\partial}{\partial x_3},$$

$$X_4 = \frac{\partial}{\partial w},$$

where $P = (x_1, x_2, x_3, w)$ is a point in G. It is easy to see that

$$[X_1, X_2] = X_3, [X_1, X_3] = X_4, [X_2, X_3] = 0,$$

$$[X_1, X_4] = [X_2, X_4] = 0,$$

and $[X_3, X_4] = 0$. So the Lie algebra of G is $g = V_1 \oplus V_2 \oplus V_3$, where $V_1 = \text{span} \{ X_1, X_2 \}$, $V_2 = \text{span} \{ X_3 \}$ and $V_3 = \text{span} \{ X_4 \}$. The sub-Laplace operator on G is of the form $\Delta_{X} = X_1^2 + X_2^2$.

In the paper, we investigate the Riesz means of the Dirichlet problem

$$\begin{cases}
-\Delta_{X} u = \lambda u, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega
\end{cases}$$

in the Engel group G. Here Ω is a bounded and noncharacteristics domain in G, with smooth boundary $\partial \Omega$. The existence of eigenvalues for (1.1) is from [2]. Let us by $R_\sigma(z)$ denote the Riesz means of order σ of the sequence $\{ \lambda_k \}$ of eigenvalues of (1.1).

The Riesz means of Dirichlet eigenvalues for the Laplace operator in the Euclidean space have been extensively studied (see [3-5]). In recent years, E. M. Harrell II and L. Hermi in [6] treated the Riesz means $R_\sigma(z)$ of order σ of $\{ \lambda_k \}$ on the bounded domain $\Omega \subset R^d$ and pointed out that: for $0 < \sigma \leq 2$ and $z \geq \lambda_i$,

$$R_{\sigma-1}(z) \geq \left(1 + \frac{d}{4} \right) \frac{1}{z} R_{\sigma}(z)$$

and

$$R'_{\sigma}(z) \geq \left(1 + \frac{d}{4} \right) \frac{\sigma}{z} R_{\sigma}(z),$$

and $\frac{R_{\sigma}(z)}{z^\sigma}$ is a nondecreasing function of z; for $2 < \sigma < +\infty$ and $z \geq \lambda_i$,

$$R_{\sigma-1}(z) \geq \left(1 + \frac{d}{2\sigma} \right) \frac{1}{z} R_{\sigma}(z)$$

and

$$R'_{\sigma}(z) \geq \left(\sigma + \frac{d}{2} \right) \frac{1}{z} R_{\sigma}(z).$$

In the paper, we investigate the Riesz means of the Dirichlet problem

$$\begin{cases}
-\Delta_{X} u = \lambda u, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega
\end{cases}$$
and \(R_\sigma(z) \) is a nondecreasing function of \(z \), and then the Weyl-type estimates of means of eigenvalues is derived.

Jia et al. in [7] extended (1.2), (1.3) to the Heisenberg group.

The main results of this paper are the following.

Theorem 1.1 For \(0 < \sigma \leq 2 \) and \(z \geq \lambda_1 \), we have

\[
R_{\sigma-1}(z) \geq \frac{3}{2z} R_{\sigma}(z),
\]

and \(\frac{R_\sigma(z)}{z^{\alpha}} \) is a nondecreasing function of \(z \); for

\[
2 < \sigma < +\infty \quad \text{and} \quad z \geq \lambda_1,
\]

we have

\[
R_{\sigma-1}(z) \geq \left(1 + \frac{1}{\sigma}
ight) \frac{1}{z} R_{\sigma}(z),
\]

and therefore

\[
R_\sigma(z) \geq \frac{4 z^3}{27 \lambda_j},
\]

Moreover, for all \(k \geq j \geq 1 \), we have the upper bound

\[
\lambda_{k+1} \leq \frac{3}{4} \frac{\lambda_k}{\lambda_j}.
\]

Theorem 1.2 Suppose that \(z \geq 3 \lambda_j \), then

\[
R_\sigma(z) = \frac{4 z^3}{27 \lambda_j},
\]

and therefore

\[
R_\sigma(z) \geq \frac{2 z^2}{9 \lambda_j},
\]

\[
N(z) = R_\sigma(z) \geq \frac{z^2}{3 \lambda_j},
\]

Theorem 1.3 For \(k > \frac{4 j}{3} \), we have

\[
\frac{\lambda_k}{\lambda_j} \leq \frac{9 k}{8 j}.
\]

Authors in [6] combined the Weyl-type estimates of means of eigenvalues established in [6] and the result in [8] to obtain the Weyl-type estimates of eigenvalues. But it is not easy to extend the result in [8] to the Engel group. The Weyl-type estimates of eigenvalues for (1.1) still are open questions.

This paper is arranged as follows. In Section 2 the definition of Riesz means and Lemmas are described; Section 3 is devoted to the proof of Theorem 1.1. The proof of Theorem 1.2 is appeared in Section 4. In Section 5 the proof of Theorem 1.3 is given.

2. Preliminaries

Definition 2.1 For an increasing sequence \(\{\lambda_i\}_{i=1}^\infty \) of real numbers and \(z \geq 0 \), the Riesz means \(R_{\sigma}(z) \) of order \(\sigma \geq 0 \) of \(\{\lambda_i\} \) is defined by

\[
R_{\sigma}(z) = \sum_{i=1}^{\infty} (z - \lambda_i)^{\sigma},
\]

where \((z - \lambda_i)^{\sigma} = \max\{0, z - \lambda_i\}^{\sigma} \) is the ramp function.

Similarly to Theorem 1 of [9], we immediately have

Lemma 2.2 Denoting the \(L^2 \)-normalized eigenfunctions of (1.1) by \(\{u_j\} \), let

\[
T_{u_j m} = \left| \langle X_{u_j}, u_m \rangle \right|^2
\]

for \(\alpha = 1, 2; j, m = 1, 2, \ldots \). Then for each fixed \(\alpha \), we have

\[
R_{\sigma}(z) = 2 \sum_{j, m, \lambda_j \geq \lambda_m} \frac{(z - \lambda_j)^{\sigma} - (z - \lambda_m)^{\sigma}}{\lambda_m - \lambda_j} T_{u_j m}
\]

\[
+4 \sum_{j, m, \lambda_j \geq \lambda_m} \frac{(z - \lambda_j)^{\sigma}}{\lambda_m - \lambda_j} T_{u_j m}.
\]

Lemma 2.3 ([10]) Let \(0 < x < y \) and \(\sigma \geq 0 \), then

\[
\frac{y^{\sigma} - x^{\sigma}}{y - x} \leq C_{\sigma} \left(y^{\sigma-1} + x^{\sigma-1} \right),
\]

where

\[
C_{\sigma} = \begin{cases} \sigma, & 0 \leq \sigma < 1, \\ \sigma^2, & 1 \leq \sigma \leq 2, \\ \sigma^2, & 2 \leq \sigma < +\infty. \end{cases}
\]

3. The Proof of Theorem 1.1

In this section, we prove Theorem 1.1 and two corollaries.

Proof. Let us use (2.2) and denote the first term on the right-hand side of (2.2) by \(G(\sigma, z, \alpha) \). Applying Lemma 2.3 it follows

Open Access

APM
where we denote
\[R(z) = 4C_\alpha \sum (z - \lambda_j)^{\sigma-1} T_{ajm} \]

and
\[2R(z) \leq 4C_\alpha \sum (z - \lambda_j)^{\sigma-1} \lambda_j + 4 \sum H(\sigma, z, \alpha). \] (3.3)

Since
\[\sum (z - \lambda_j)^{\sigma-1} \lambda_j = zR_{\alpha-1}(z) - R_\alpha(z), \]

we have
\[2R(z) \leq 4C_\alpha (zR_{\alpha-1}(z) - R_\alpha(z)) + 4 \sum H(\sigma, z, \alpha), \]

namely,
\[(1 + 2C_\alpha)R_\alpha(z) - 2zC_\alpha R_{\alpha-1}(z) \leq 2 \sum H(\sigma, z, \alpha). \] (3.4)

We consider three cases: 1) \(1 \leq \sigma \leq 2 \); 2) \(0 < \sigma < 1 \) and 3) \(\sigma > 2 \).

1) \(1 \leq \sigma \leq 2 \). In this case, it sees \(C_\alpha = 1 \) and
\[\frac{z - \lambda_j - C_\alpha (\lambda_q - \lambda_j)}{\lambda_q - \lambda_j} = \frac{z - \lambda_j}{\lambda_q - \lambda_j}. \]

Since \(\lambda_q > z \), it follows
\[\frac{z - \lambda_j - C_\alpha (\lambda_q - \lambda_j)}{\lambda_q - \lambda_j} < 0, \]

and therefore
\[H(\sigma, z, \alpha) < 0. \]

Substituting this into (3.4), we obtain
\[(1 + 2C_\alpha)R_\alpha(z) - 2zC_\alpha R_{\alpha-1}(z) \leq 0 \]

and
\[R_{\alpha-1}(z) \geq \frac{3}{2z} R_\alpha(z). \]

Now (1.4) is proved. Using (2.1), we have
\[\frac{1}{\sigma} \left\| R'_\sigma(z) \right\| \geq \frac{3}{2z} R_\alpha(z), \]

and (1.5) is proved. Since
\[\left(\frac{R_\sigma(z)}{z^{3/2}} \right)' \left(\frac{3\sigma}{2z^{3/2}} \right) - \left(\frac{3\sigma}{2z^{3/2}} \right)^{\sigma-1} \left(\frac{3\sigma}{2z^{3/2}} \right)^{\sigma-1} \leq 0, \]

it follows that \(\frac{R_\sigma(z)}{z^{3/2}} \) is a nondecreasing function of \(z \).

Open Access

APM
2) $0 < \sigma < 1$. Now $C_\sigma = \frac{\sigma}{2} \in \left(0, \frac{1}{2}\right)$, so $1 - C_\sigma > 0$ and
\[
\frac{z - \lambda_i - C_\sigma (\lambda_j - \lambda_i)}{\lambda_j - \lambda_i} < \frac{\lambda_j - \lambda_i - C_\sigma (\lambda_j - \lambda_i)}{\lambda_j - \lambda_i} = 1 - C_\sigma \tag{3.5}
\]
Then
\[
H(\sigma, z, \alpha) \leq (1 - C_\sigma) \sum_{j < i} T_{i,j} (z - \lambda_i)^{\sigma-1}
\]
and
\[
\sum_{\sigma > 1} H(\sigma, z, \alpha) \leq (1 - C_\sigma) \sum_{j < i} (z - \lambda_i)^{\sigma-1} \lambda_j = (1 - C_\sigma) (z R_\alpha(z) - R_\alpha(z)).
\]
Substituting this into (3.4), we obtain
\[
(1 + 2C_\sigma) R_\alpha(z) - 2zC_\sigma R_{\alpha-1}(z) - \left(2 - 2C_\sigma \right) (z R_{\alpha-1}(z) - R_\alpha(z)),
\]
namely,
\[
3R_\alpha(z) \leq 2zR_{\alpha-1}(z),
\]
and (1.4) is proved.

The remainders are discussed similarly to 1).

3) $\sigma > 2$. In this case $C_\sigma = \frac{1}{2} > 1$, so $1 - C_\sigma < 0$ and
\[
H(\sigma, z, \alpha) \leq (1 - C_\sigma) \sum_{j < i} T_{i,j} (z - \lambda_i)^{\sigma-1} < 0.
\]
Substituting this into (3.4), we have
\[
(1 + 2C_\sigma) R_\alpha(z) \leq 2zC_\sigma R_{\alpha-1}(z)
\]
and (1.6) is proved.

Noting (2.1), it implies
\[
\frac{1}{\sigma} R'_\alpha(z) \geq \left(1 + \frac{1}{\sigma}\right) \frac{1}{z} R_\alpha(z)
\]
and (1.7) is proved.

Similarly,
\[
\left(\frac{R_\alpha(z)}{z^{\sigma+1}} \right)' = \frac{R'_\alpha(z) z^{\sigma+1} - R_\alpha(z) (\sigma+1) z^\sigma}{z^{2(\sigma+1)}}
\]
\[
= \frac{z^\sigma [z R'_\alpha(z) - (\sigma+1) R_\alpha(z)]}{z^{2(\sigma+1)}} \geq 0,
\]
thus $\frac{R_\alpha(z)}{z^{\sigma+1}}$ is a nondecreasing function of z.

Corollary 3.1 For all $\sigma \geq 2$ and $z \geq (1+\sigma) \lambda_i$,
\[
\sigma^{\sigma-1} \lambda_i^{1-\sigma} \left(\frac{z}{1+\sigma} \right)^{1-\sigma} \leq R_\alpha(z) \leq L_{\sigma, z}^{cl} [Q] z^{\sigma+1},
\]
where $L_{\sigma, z}^{cl} = \frac{\Gamma(\sigma+1)}{4n^{\Gamma(\sigma+2)}}$.

Proof. 1) Noting $R_\alpha(z) = \sum_k (z_0 - \lambda_i)^{\alpha} \geq (z_0 - \lambda_i)^{\alpha}$, for any $z_0 > \lambda_i$, it follows from Theorem 1.1 that for all $z \geq z_0$,
\[
\frac{R_\alpha(z)}{z^{\sigma+1}} \geq \frac{R_\alpha(z_0)}{z_0^{\sigma+1}} \geq \frac{(z_0 - \lambda_i)^{\alpha}}{z_0^{\sigma+1}}.
\]
So
\[
R_\alpha(z) \geq (z_0 - \lambda_i)^{\alpha} \left(\frac{z}{z_0} \right)^{\sigma+1}.
\]
Since (3.7) holds for arbitrary $z_0 > \lambda_i$, it yields
\[
R_\alpha(z) \geq \max_{z_0 > \lambda_i} \left[(z_0 - \lambda_i)^{\alpha} \left(\frac{z}{z_0} \right)^{\sigma+1} \right].
\]
Due to
\[
\left(\frac{z_0 - \lambda_i}{z_0} \right)^{\sigma+1} = \frac{(z_0 - \lambda_i)^{\sigma+1} - (\sigma+1)(z_0 - \lambda_i)^{\sigma} z_0\sigma}{z_0^{2(\sigma+1)}} = \frac{(z_0 - \lambda_i)^{\sigma-1} \left[\sigma z_0 - (\sigma+1)(z_0 - \lambda_i) \right]}{z_0^{\sigma+2}}
\]
we see that when $z_0 = (\sigma+1) \lambda_i$, it gets
\[
\max_{z_0 > \lambda_i} \left[(z_0 - \lambda_i)^{\alpha} \left(\frac{z}{z_0} \right)^{\sigma+1} \right] = \sigma^\sigma \lambda_i^{1-\sigma} \left(\frac{z}{1+\sigma} \right)^{1-\sigma}.
\]
For $z \geq z_0 = (\sigma+1) \lambda_i$, we have
\[
R_\alpha(z) \geq \sigma^\sigma \lambda_i^{1-\sigma} \left(\frac{z}{1+\sigma} \right)^{1-\sigma}
\]
and the inequality in the left-hand side of (3.6) is valid.

2) By the Berezin-Lieb inequality (see [11]), we have
\[
R_\alpha(z) \rightarrow L_{\sigma, z}^{cl} [Q], z \rightarrow \infty.
\]
Notice that $\frac{R_\alpha(z)}{z^{\sigma+1}}$ is nondecreasing to z, it follows
\[
R_\alpha(z) \leq L_{\sigma, z}^{cl} [Q]
\].
and the inequality in the right-hand side of (3.6) is proved.

Corollary 3.2 1) For $1 \leq \sigma \leq 2$ and $z \geq (\sigma + 2)\lambda_i$,
$$R_{\sigma}(z) \geq \left(\frac{\sigma+1}{\sigma+2}\right)^{\sigma+1} \lambda_i^{-1} z^{\sigma+1}. \quad (3.8)$$

2) For $0 \leq \sigma < 1$ and $z \geq (\sigma + 3)\lambda_i$,
$$R_{\sigma}(z) \geq \frac{3(\sigma+2)^{3\sigma+1}}{2(\sigma+3)^{3\sigma+2}} \lambda_i^{-1} z^{\sigma+1}. \quad (3.9)$$

Proof. 1) By Corollary 3.1, we know that for $1 \leq \sigma \leq 2$ and $z \geq (\sigma + 2)\lambda_i$, it holds
$$R_{\sigma+1}(z) \geq (\sigma+1)^{\sigma+1} \lambda_i^{-1} \left(\frac{z}{\sigma+2}\right)^{\sigma+2}. \quad (3.10)$$

Using Theorem 1.1, we have
$$R_{\sigma}(z) \geq \left(1 + \frac{1}{\sigma+1}\right)^{\frac{1}{z}} R_{\sigma+1}(z), \text{ for } 1 \leq \sigma \leq 2. \quad (3.11)$$

Combining (3.10) and (3.11), it follows
$$R_{\sigma}(z) \geq \left(1 + \frac{1}{\sigma+1}\right)^{\frac{1}{z}} (\sigma+1)^{\sigma+1} \lambda_i^{-1} \left(\frac{z}{\sigma+2}\right)^{\sigma+2}$$
$$= \left(\frac{\sigma+1}{\sigma+2}\right)^{\sigma+1} \lambda_i^{-1} z^{\sigma+1}$$

and (3.8) is proved.

2) By Corollary 3.1, it shows that for $0 \leq \sigma < 1$ and $z \geq (\sigma + 3)\lambda_i$, it holds
$$R_{\sigma+2}(z) \geq (\sigma+2)^{3\sigma+1} \lambda_i^{-1} \left(\frac{z}{\sigma+3}\right)^{3\sigma+3}. \quad (3.12)$$

From Theorem 1.1, we see that for $0 \leq \sigma < 1$,
$$R_{\sigma}(z) \geq \frac{3}{2z} R_{\sigma+2}(z), \text{ for } 0 \leq \sigma < 1. \quad (3.13)$$

In the light of (3.12) and (3.13), it obtains
$$R_{\sigma}(z) \geq \frac{9}{4z^2} R_{\sigma+2}(z) \geq \frac{9}{4z^2} (\sigma+2)^{3\sigma+2} \lambda_i^{-1} \left(\frac{z}{\sigma+3}\right)^{3\sigma+3}$$
$$= \frac{3(\sigma+2)^{3\sigma+1}}{2(\sigma+3)^{3\sigma+2}} \lambda_i^{-1} z^{\sigma+1}.$$

Noting that
$$\frac{3(\sigma+2)}{2(\sigma+3)} = \frac{3}{2} \left(1 - \frac{1}{\sigma+3}\right) \geq 1, \text{ for } 0 \leq \sigma < 1,$$ we have
$$R_{\sigma}(z) \geq \frac{3(\sigma+2)^{\sigma+1}}{2(\sigma+3)^{\sigma+2}} \lambda_i^{-1} z^{\sigma+1},$$
and (3.9) is proved.

Remark 3.3 Specially, we have
$$R_{\sigma}(z) \geq \frac{3}{2z} R_{\sigma}(z) \geq \frac{2}{9} \lambda_i^{-1} z^{\sigma+1}, \quad (3.14)$$
$$N(z) = R_{\sigma}(z) \geq \frac{3}{2z} R_{\sigma}(z) \geq \frac{9}{4z^2} R_{\sigma}(z) \geq \frac{z}{3\lambda_i}. \quad (3.15)$$

4. Proof of Theorem 1.2

Denote
$$\overline{\lambda}_j = \frac{1}{N} \sum_{i=1}^{N} \lambda_i \quad \text{and} \quad \overline{\lambda}_j = \frac{1}{N} \sum_{i=1}^{N} \lambda_i^2,$$

and let $\text{ind}(z)$ be the greatest integer i such that $\lambda_i \leq z$.

Let $\text{ind}(z) = i$, it implies that $\lambda_i \leq z$ and $\lambda_{i+1} > z$, so
$$R_{\sigma}(z) = \sum_{k} (z - \lambda_k)^2$$
$$= (z - \lambda_1)^2 + (z - \lambda_2)^2 + \cdots + (z - \lambda_J)^2$$
$$= i z^2 - 2iz(\lambda_1 + \lambda_2 + \cdots + \lambda_j + \lambda_{j+1} + \lambda_{j+2} + \cdots + \lambda_J)$$
$$= i z^2 - 2iz \overline{\lambda}_j + \lambda_{j+1} + \lambda_{j+2} + \cdots + \lambda_J.$$

(4.1)

For any integer j and $z \geq \lambda_j$, it implies $\text{ind}(z) \geq j$, and
$$R_{\sigma}(z) \geq Q(z, j) := j \left(z^2 - 2z \overline{\lambda}_j + \lambda_j^2 \right).$$

Using Theorem 1.1, we have that for $z \geq \lambda_j$,
$$R_{\sigma}(z) \geq \frac{Q(z, j)}{z_j} \quad \text{or}$$
$$R_{\sigma}(z) \geq Q(z, j) \left(\frac{z}{z_j} \right)^{j}. \quad (4.2)$$

By the Cauchy-Schwarz inequality, it follows
$$\overline{\lambda}_j^2 \leq \lambda_j^2$$

and
$$Q(z, j) = j \left(z^2 - 2z \overline{\lambda}_j + \lambda_j^2 \right)$$
$$= j \left[z^2 - 2z \overline{\lambda}_j + \overline{\lambda}_j^2 + \lambda_j^2 - \overline{\lambda}_j^2 \right]$$
$$= j \left[(z - \overline{\lambda}_j)^2 + \lambda_j^2 - \overline{\lambda}_j^2 \right] \geq j \left(z - \overline{\lambda}_j^2 \right)^2.$$

(4.3)
Proof of Theorem 1.2 1) Substituting $z_j = 3\lambda_j$ into (4.2) and noticing (4.3), we have

$$R_2(z) \geq j(z_j - 3\lambda_j)^2 \frac{z_j^3}{z_j^3} = \frac{4jz^3}{27\lambda_j}$$

and (1.8) is proved.

2) We take (1.8) into (3.14) to obtain

$$R_k(z) \geq \frac{3}{2z} \frac{4jz^3}{9\lambda_j} = \frac{2jz^3}{9\lambda_j}$$

and (1.9) is proved.

3) Combining (1.8) and (3.15), it implies

$$N(z) = R_k(z) \geq \frac{9}{4z^2} \frac{4jz^3}{27\lambda_j} = \frac{jz}{3\lambda_j}$$

and (1.10) is proved.

4) If $\lambda_{k+1} \leq 3\lambda_j$, then (1.11) is clearly valid; if $\lambda_{k+1} > 3\lambda_j$, then (1.10) shows by letting $z \to \lambda_{k+1}$ that

$$\frac{\lambda_{k+1}}{\lambda_j} \leq \frac{3k}{j}.$$

So (1.11) is proved and Theorem 1.2 is proved. □

Corollary 4.1 We have

$$\lambda_{k+1} \leq 3\lambda_k$$

and

$$\lambda_{k+1} \leq 3k\lambda_k.$$ (4.4)

5. Proof of Theorem 1.3

We first recall the following definition before proving Theorem 1.3.

Definition 5.1 If $f(z)$ is superlinear in z as $z \to \infty$, then its Legendre transform is defined by

$$L[f](w) = \sup_z \{|wz - f(z)|\}. \quad (5.1)$$

Remark 5.2 If $f(z) \geq g(z)$ for all z, then $L[f](w) \leq L[g](w)$ for all w; Since the maximizing value of z in (5.1) is a nondecreasing function of w, it follows that for w sufficiently large, the maximizing z exceeds $z_j = 3\lambda_j$.

Proof of Theorem 1.3 From (1.9), we have

$$L[R_k](w) \preceq L \left[\frac{2jz^2}{9\lambda_j} \right](w). \quad (5.2)$$

Now let us calculate $L[R_k](w)$. Since

$$R_k(z) = \sum \{z - \lambda_k\},$$

is piecewise linear function of z, it implies that the maximizing value of z in the Legendre transform of R_k is attained at one of the critical values.

In fact if $\lambda_k < z \leq \lambda_{k+1}$, then

$$L[R_k](w) = \sup_z \{|wz - R_k(z)|\} = \sup_z \{|wz - \sum \{z - \lambda_k\}\} = \sup_z \{|(w-k)z + \lambda_1 + \lambda_2 + \cdots + \lambda_k\}.$$ Noting that the maximizing value of z is a non-decreasing function of w, we see $w-k \geq 0$, therefore the critical value $z_* = \lambda_{k+1}$.

It is easy to check $k = [w]$ and

$$L[R_k](w) = \sup_z \{|(w-k)z + \lambda_1 + \lambda_2 + \cdots + \lambda_k\} = \left(w - [w] \right) \lambda_{[w]+1} + [w] \frac{\lambda_1 + \lambda_2 + \cdots + \lambda_{[w]}}{[w]}.$$ (5.3)

Next we calculate $L \left[\frac{2jz^2}{9\lambda_j} \right](w)$. Noting

$$L \left[\frac{2jz^2}{9\lambda_j} \right](w) = \sup_z \left\{ wz - \frac{2jz^2}{9\lambda_j} \right\}$$

and letting

$$f(z) = wz - \frac{2jz^2}{9\lambda_j},$$

we know $f'(z) = w - \frac{4jz}{9\lambda_j}$. By $f'(z) = 0$, it solves

$$z_* = \frac{9w\lambda_j}{4j}. \quad (5.4)$$

Therefore

$$L \left[\frac{2jz^2}{9\lambda_j} \right](w) = \sup_z \left\{ wz - \frac{2jz^2}{9\lambda_j} \right\} = \frac{9w\lambda_j}{4j} - \frac{2j}{9\lambda_j} \left(\frac{9w\lambda_j}{4j} \right)^2 = \frac{9\lambda_j}{8j} w^2.$$ (5.5)

Taking (5.3) and (5.5) into (5.2), we have

$$\left(w - [w] \right) \lambda_{[w]+1} + [w] \frac{\lambda_1 + \lambda_2 + \cdots + \lambda_{[w]}}{[w]} = \frac{9\lambda_j}{8j} w^2.$$ (5.6)

By (5.4), it has
From Theorem 1.2, \(z_i \geq 3\lambda_j \), so \(w \geq \frac{4j}{9\lambda_j} \cdot 3\lambda_j = \frac{4j}{3} \).

Then it follows that if \(w \) is restricted to the value \(w \geq \frac{4j}{3} \), then \((5.6)\) is valid.

Meanwhile, for any \(w \), we can always find an integer \(k \) such that \(k-1 \leq w < k \) and

\[
[w] = k - 1.
\]

If \(k > \frac{4j}{3} \) and \(w \) approaches to \(k \) from below, then we obtain from \((5.5)\) that

\[
\lambda_1 + \lambda_2 + \cdots + \lambda_k = \lambda_k + (k-1)\overline{\lambda_{k-1}} \leq \frac{9\lambda_j}{8j} k^2.
\]

Therefore

\[
\frac{\overline{\lambda_1}}{\lambda_1} \leq \frac{9k}{8j}.
\]

and Theorem 1.3 is proved. \(\square \)

Remark 5.3 If we let \(j = 1 \), then

\[
\frac{\overline{\lambda_1}}{\lambda_1} \leq \frac{9}{8} k.
\] (5.7)

We point out that (5.7) is sharper than (4.4). In fact, we get from (4.4) that

\[
\sum_{j=0}^{k-1} \overline{\lambda_1} \leq 3\sum_{j=0}^{k-1} \overline{j} = \frac{3k(k-1)}{2} \leq \frac{3}{2} k^2
\]

and

\[
\frac{\overline{\lambda_k}}{\lambda_1} \leq \frac{3}{2} k.
\]

But \(\frac{9k}{8} < \frac{3k}{2} \) is always valid, so (5.7) is sharper than (4.4).

REFERENCES

