Primes in Arithmetic Progressions to Moduli with a Large Power Factor

Ruting Guo
Network Center, Shandong University, Jinan, China
Email: rtguo@sdu.edu.cn

Received July 8, 2013; revised September 9, 2013; accepted October 6, 2013

ABSTRACT

Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by high-powers of a given integer and showed that for integer $a \geq 2$ and real number $A > 0$. There is a $B = B(A) > 0$ such that

$$\sum_{d \leq x^{\frac{1}{2}L^{-1}Q^{-1}}} \max_{y \leq x^{\frac{1}{2}L^{-1}Q^{-1}}} \left| \pi(y; qd, r) - \frac{\text{Li}(y)}{\phi(qd)} \right| \ll \frac{x}{\phi(q)L^4},$$

holds uniformly for moduli $q \leq x^3 \exp\left(- \left(\log \log x\right)^3\right)$ that are powers of a. In this paper we are able to improve his result.

Keywords: Primes; Arithmetic Progressions; Riemann Hypothesis

1. Introduction and Main Results

Let p denote a prime number. For integer a, q with $(a, q) = 1$, we introduce

$$\pi(x; q, a) = \sum_{\substack{p \leq x \mod q}} 1$$

to count the number of primes in the arithmetic progression $a \mod q$ not exceeding x. For fixed q, we have

$$\pi(x; q, a) \sim \frac{1}{\phi(q)} \pi(x)$$

as x tends to infinity. However the most important thing in this context is the range uniformity for the moduli q in terms of x. The Siegel-Walfisz Theorem, see for example [1], shows that this estimate is true only if $q \leq L^4$, where and throughout this paper we denote $\log x$ by L. The Generalized Riemann Hypothesis for Dirichlet L-functions could give a much better result: non-trivial estimate holds for $q \leq x^2 L^{-2}$. Unfortunately the Generalized Riemann Hypothesis has withstood the attack of several generations of researchers and it is still out of reach. However number theorists still want to live a better life without the Generalized Riemann Hypothesis.

Therefore they try to find a satisfactory substitute. In this direction the famous Bombieri-Vinogradov theorem [2, 3], states that

Theorem A. For any $A > 0$ there exists a constant $B = B(A) > 0$ such that

$$\sum_{q \leq y^2} \max_{y \leq \frac{q}{2}} \left| \pi(y; q, a) - \frac{\text{Li}(y)}{\phi(q)} \right| \ll yL^{-A},$$

where $\phi(q)$ is the Euler totient function, $Q = x^2 L^{-2}$, and $\text{Li}(y) = \int_{2}^{y} \frac{du}{\log u}$.

Recently in order to study the arithmetic functions on shifted primes, Elliott [4] studied the distribution of primes in arithmetic progressions whose moduli can be divisible by high-powers of a given integer. More precisely, he showed that

Theorem B. Let a be an integer, $a \geq 2$. If $A > 0$, then there is a $B = B(A) > 0$ such that

$$\sum_{d \leq x^{\frac{1}{2}L^{-1}Q^{-1}}} \max_{y \leq x^{\frac{1}{2}L^{-1}Q^{-1}}} \left| \pi(y; qd, r) - \frac{\text{Li}(y)}{\phi(qd)} \right| \ll \frac{x}{\phi(q)L^4}.$$
holds uniformly for moduli \(q \leq x^3 \exp \left(-\log \log x \right)^3 \) that are powers of \(a \).

When \(q = 1 \), his result recovers the Bombieri-Vinogradov theorem. And obviously his result gives a deep insight into the distribution of primes in arithmetic progressions.

The most important thing Elliott concerned in [4] is that in Theorem B the parameter \(q \) may reach a fixed power of \(x \). However we want to pursue the widest uniformity in \(q \) by using some new techniques established in the study of Waring-Goldbach problems.

We shall prove the following result.

Theorem 1.1. Let \(a \) be an integer, \(a \geq 2 \). If \(A > 0 \), then there is a \(B = B(A) > 0 \) such that

\[
\sum_{d \leq x^{\delta}q^{1/2} \leq n \atop (d,q)=1} \max_{y \leq x} \max_{(y,qd)=1} \left| \pi \left(x; qd, r \right) - \frac{L_i(y)}{\phi(qd)} \right| \ll \frac{x}{\phi(q)L^4},
\]

holds uniformly for moduli \(q \leq x^3 \exp \left(-\log \log x \right)^3 \) that are powers of \(a \).

When \(d = 1 \) and \(a \) an odd prime, our result gives that for these particular moduli \(q \) with the form \(q = p^n, (n = 1,2,3,\ldots) \)

\[
\pi \left(x; q, r \right) = \left\lfloor 1 + O \left(L^{-4} \right) \right\rfloor \frac{L_i(x)}{\phi(q)},
\]

holds uniformly for moduli \(q \leq x^3 \exp \left(-\log \log x \right)^3 \) and \(d \) be prime in these special progressions.

Then the special case of our result shows that the least prime \(P_{\min} (q, r) \) in these special progressions \(n \equiv r \pmod{q} \) satisfies

\[
P_{\min} (q, r) \ll q^{5/12}. \]

This result improves a former result given by Barban, Linnik and Tshudakov [5],

\[
P_{\min} (q, r) \ll q^{9/12},
\]

where \(q = p^n, (n = 1,2,3,\ldots) \).

If we focus our attention on the least prime in arithmetic progressions with special moduli, we can prove the following result.

Theorem 1.2. Let \(a \) be an integer, \(a \geq 2 \). If \(A > 0 \), then there is a \(B = B(A) > 0 \) such that

\[
\sum_{d \leq x^{\delta}q^{1/2} \leq n \atop (d,q)=1} \max_{y \leq x} \max_{(y,qd)=1} \left| \pi \left(x; qd, r \right) - \frac{L_i(y)}{\phi(qd)} \right| \ll \frac{x}{\phi(q)L^4},
\]

holds uniformly for moduli \(q \leq x^{3} \exp \left(-\log \log x \right)^3 \) that are powers of \(a \).

Then our result shows that the least prime \(P_{\min} (q, r) \) in these special progressions \(n \equiv r \pmod{q} \) satisfies

\[
P_{\min} (q, r) \ll q^{12/5}. \]

It should be remarked that the Generalized Riemann Hypothesis for Dirichlet L-functions would allow \(qd \leq x^4L^{1-1} \) with no further restriction upon the nature of \(q \). Therefore our Theorems 1.1 and 1.2 can be compared with the result under the Generalized Riemann Hypothesis.

2. Preliminary Reduction

Let \(\Lambda(n) \) denote von Mangoldt’s function, and for mutually prime integers \(w \) and \(r \), let

\[
\psi(y;w,r) = \sum_{n \equiv r \pmod{w}} \Lambda(n).
\]

For \(2 \leq w \leq x^{3/4} \) and an integer \(q \geq 1 \), define

\[
G(w) = \sum_{d \leq w} \max_{(y,qd)=1} \left| \psi \left(y; qd, r \right) - \frac{1}{\phi(d)} \psi \left(y; q, r \right) \right|.
\]

Then

Lemma 2.1. For any \(K > 0, 1/4 < \delta \leq 1/2 \), we have

\[
G \left(x^\delta q^{-1} L^{-K} \right) \ll \left(\exp \left(\frac{1}{2} \left(\log \log x \right)^3 \right) \right) \log x
\]

\[
+ \tau(q) x^{\delta} \left(\log x \right)^6 - K.
\]

uniformly for positive integers \(q \leq x^\delta \exp \left(-\left(\log \log x \right)^3 \right), x \geq 3 \) where \(\theta = 2/5 \), if \(9/20 < \delta \leq 1/2 \) and \(\theta = 5/12 \), if \(1/4 < \delta \leq 9/20 \). Here \(\tau(q) = \sum_{\nu|q} 1 \).

For Dirichlet characters \(\chi \) and real \(y > 0 \) define

\[
\psi(y, \chi) = \sum_{n \equiv r \pmod{q}} \chi(n) \Lambda(n)
\]

Lemma 2.2. Let \(\psi(y, \chi) \) defined as in (2). Then

\[
\sum_{d \leq Q \pmod{D}} \max_{y \leq x} \left| \psi(y, \chi) \right| \ll \left(x + x^\delta Q^2 D + x^{4/5} QD^{1/2} \right) L^4,
\]

holds uniformly for all integers \(D \geq 1 \) and real numbers \(x \geq 2, Q \geq 1 \).

Lemma 2.3. Let \(\psi(y, \chi) \) defined as in (2). Then

\[
\sum_{d \leq Q \pmod{D}} \max_{y \leq x} \left| \psi(y, \chi) \right| \ll \left(x + x^{1/20} Q^2 D \right) L^4.
\]

holds uniformly for all integers \(D \geq 1 \) and real numbers \(x \geq 2, Q \geq 1 \). Here the inner sum is taken over all primitive Dirichlet characters \(\pmod{D} \).

3. Proof of Lemma 2.2

Let

\[
X^{2/3} < Y \leq X
\]
and M_1, \ldots, M_{10} be positive real numbers such that
\[Y \leq M_1 \cdots M_{10} \leq X \quad \text{and} \quad 2M_6, \ldots, 2M_{10} \leq X^{\frac{1}{2}}. \tag{5} \]

For $j = 1, \ldots, 10$ define
\[a_j(m) = \begin{cases} \log m, & \text{if } j = 1, \\ 1, & \text{if } j = 2, \ldots, 5, \\ \mu(m), & \text{if } j = 6, \ldots, 10, \end{cases} \tag{6} \]
where $\mu(n)$ is the Möbius function. Then we define the functions
\[f_j(s, \chi) = \sum_{m=1} a_j(m) \chi(m) m^{-s}, \]
and
\[F(s, \chi) = f_1(s, \chi) \cdots f_{10}(s, \chi), \tag{7} \]
where χ is a Dirichlet character, s a complex variable.

Lemma 3.1. Let $F(s, \chi)$ be as in (7), and $A \geq 1$ arbitrary. Then for any $1 \leq R \leq X^{1/4}$ and $0 < T \ll X^A$,
\[
\frac{1}{R} \sum_{r=R^{(mod\,r)}} \left| \sum_{r=R^{(mod\,r)}} \int_{-R/2}^{R/2} \left| F \left(\frac{1}{2} + it, \chi \right) \right| dt \right| \leq \left(\frac{T^2}{2} + \frac{R^2}{d^2} X^{3/2} + X^2 \right) \log^2 X, \tag{8}
\]
where $c > 0$ is an absolute constant independent of A, but the constant implied in \ll depends on A.

Proof of Lemma 3.1. This lemma with $d = 1$ was established in [6], and in this general form [7]. We mention that in general the exponent 3/10 to X in the second term on the right-hand side is the best possible on considering the lack of sixth power mean value of Dirichlet L-functions.

Now we complete the proof of Lemma 2.2.

Proof of Lemma 2.2. In (5), we take
\[Y = \frac{2}{7}, \quad X = x. \]

Define $a_j(m), f_j(s, \chi)$ and $F(s, \chi)$ as above. To go further, we first recall Heath-Brown’s identity [8], which states that for any $n < 2x^{\frac{3}{4}}$ with $z \geq 1$ and $k \geq 1$,
\[\Lambda(n) = \sum_{j=1}^{k} (1)^{-j} \left(\sum_{n_1 \cdots n_j = n} \mu(n_1) \cdots \mu(n_j) \right) \cdot \left(\sum_{n_{j+1} \cdots n_z} \log(n_{j+1}) \cdots \log(n_z) \right). \]

Then for $2Y = x^{\frac{3}{2}} < y \leq X = x,$
\[\psi(y, \chi) \quad \text{is a linear combination of } O(L^3) \text{ terms, each of which is of the form} \]
\[\mathcal{S}(\mathbb{M}) := \sum_{m_1 \cdots m_{10}} a_1(m_1) \chi(m_1) \cdots a_{10}(m_{10}) \chi(m_{10}), \]
where \mathbb{M} denotes the vector $(M_1, M_2, \ldots, M_{10})$ with M_j as in (5). Obviously some of the intervals \mathbb{M} may contain only integer 1. By using Perron’s summation formula with $T = y$ (see Proposition 5.5 in [1]), and then shifting the contour to the left, we have
\[
\mathcal{S}(\mathbb{M}) = \frac{1}{2\pi i} \int_{y=1}^{y=1} F(s, \chi) \frac{y^{s} - (y/2)^{s}}{s} ds + O(L^2)
= \frac{1}{2\pi i} \int_{y=1}^{y=1} \left[\left(\frac{y}{2}\right)^{s} + \int_{y=1/2}^{y=1} \frac{d}{dx} \right] + O(L^2).
\]

On using the trivial estimate
\[F(\sigma \pm iy, \chi) \ll |f_1(\sigma \pm iy, \chi)| \cdots |f_{10}(\sigma \pm iy, \chi)| \ll \left(M_1 \cdots M_{10} \cdots M_{10} \right. \ll \chi^{1/4} L, \]
the integral on the two horizontal segments above can be estimated as
\[
\ll \max_{|\sigma| \leq \frac{1}{2} - \frac{1}{z+1/4}} |F(\sigma \pm iy, \chi)| y^{\sigma} - \frac{1}{2} \ll \chi^{1/4} L. \]

Then we have
\[
\mathcal{S}(\mathbb{M}) = \frac{1}{2\pi i} \int_{y=1}^{y=1} F\left(\frac{1}{2} + it, \chi \right) \frac{y^{it} - (y/2)^{it}}{1 + it} dt + O\left(\chi^{10} L \right)
= \left(\frac{1}{2\pi i} \int_{y=1}^{y=1} F\left(\frac{1}{2} + it, \chi \right) \frac{dt}{|t|+1} \right) + \chi^{10} L
\]
Noting that $F(s, \chi)$ does not depend on Y, we have
\[\max_{2Y \leq x \leq x} |\psi(y, \chi)| \ll L^{10} \frac{1}{x} \int_{y=1}^{y=1} \left| F\left(\frac{1}{2} + it, \chi \right) \right| dt + \frac{1}{x} \chi^{10} L. \]

On the other hand we have
\[\max_{2Y \leq x \leq x} |\psi(y, \chi)| \ll Y. \tag{10} \]

From (9) and (10), we have
\[\sum_{d \leq Q \chi \left(mod \, D_1 \right)} \sum_{y \leq x} \max_{2Y \leq x \leq x} |\psi(y, \chi)| \ll \sum_{d \leq Q \chi \left(mod \, D_1 \right)} \sum_{y \leq x} \max_{2Y \leq x \leq x} |\psi(y, \chi)| + \sum_{d \leq Q \chi \left(mod \, D_1 \right)} \sum_{y \leq x} \max_{2Y \leq x \leq x} |\psi(y, \chi)|
\ll L^{10} x^{1/2} \sum_{d \leq Q \chi \left(mod \, D_1 \right)} \int_{y=1}^{y=1} \left| F\left(\frac{1}{2} + it, \chi \right) \right| dt + \frac{1}{x} \chi^{10} L. \]

Copyright © 2013 SciRes.
Further let $q = Dd$ and then we obtain
\[
\sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \max_{y \leq x} \left| \mathcal{V}(y, \gamma) \right| \leq L x^2 \max_{0 \leq \gamma \leq T} \frac{1}{T+1} \left| \sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \int_{-2\pi T}^{2\pi T} F \left(\frac{1}{2} + it, \gamma \right) dt \right| + O^2 D x^2.
\]
From Lemma 3.1, we have
\[
\sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \max_{y \leq x} \left| \mathcal{V}(y, \gamma) \right| \leq L x^2 \max_{0 \leq \gamma \leq T} \frac{1}{T+1} \left| \sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \int_{-2\pi T}^{2\pi T} F \left(\frac{1}{2} + it, \gamma \right) dt \right| + O^2 D x^2
\]
\[
\approx L x^2 \left(\frac{(OD)^2}{D} + \frac{OD}{D^2} (T+1) \frac{1}{2} x^\frac{3}{2} + \frac{1}{2} x^2 (T+1)^{\frac{1}{2}} \right) + O^2 D x^2
\]
\[
\approx \left(x + x^\frac{3}{2} Q D + x^2 Q D^2 \right) L^2.
\]
This completes the proof of Lemma 2.2.

4. Proof of Lemma 2.3

Firstly we recall one result of Choi and Kumchev [9] about mean value of Dirichlet polynomials. Let $m \geq 1, r \geq 1$, and $Q \geq r$, Let $\mathcal{H}(m, r, Q)$ denote the set of character $\chi = \xi \psi$ modulo mq, where ξ is a character modulo m and ψ is a primitive character modulo q with $r \leq q \leq Q$, $\eta \| q$ and $(q, m) = 1$. Then the result of Choi and Kumchev states as follows.

Lemma 4.1. Let $m \geq 1, r \geq 1, T \geq 2, N \geq 2$, and $\mathcal{H}(m, r, Q)$ be a set of characters as described as above, Then
\[
\sum_{\chi \in \mathcal{H}(m, r, Q)} \int_{-T}^{T} \sum_{N = \chi \equiv \gamma \chi} \Lambda(n) \chi(n) n^{-s} \, dt \ll \left(N + HN^{\frac{11}{20}} \right) L^2,
\]
where c is an absolute constant, $H = mr^{-1}Q^2T$ and $L = \log HN$. Now we complete the proof of Lemma 2.3.

Proof of Lemma 2.3. Let $Y = x^2$ and $X = x$. We define
\[
F(s, \gamma) = \sum_{\gamma \in \mathcal{H}(m, r, Q)} \Lambda(n) \chi(n) n^{-s}.
\]
If y satisfies
\[
Y < y \leq X,
\]
we apply Perron’s summation formula with $T = y$ (see Proposition 5.5 in [1]), and then obtain
\[
\psi(y, \gamma) = \frac{1}{2\pi i} \int_{b-\gamma}^{b+\gamma} F(s, \gamma) \frac{y^n}{s} \, ds + O \left(yx^{-1} L^2 \right)
\]
\[
= \frac{1}{2\pi i} \int_{b-\gamma}^{b+\gamma} F(s, \gamma) \frac{y^n}{s} \, ds + O \left(\frac{1}{x^2} L^2 \right),
\]
where $0 < b < L^{-1}$. If we let $b \to 0$, we have
\[
\psi(y, \gamma) \ll \int_{-\gamma}^{\gamma} F(it, \gamma) \frac{1}{|t|^4} \, dt + O \left(yx^{-1} L^2 \right).
\]
Noting that $F(s, \gamma)$ does not depend on y, we have
\[
\max_{y \leq x} \left| \psi(y, \gamma) \right| \ll \int_{-\gamma}^{\gamma} F(it, \gamma) \frac{1}{|t|^4} \, dt + O \left(x^2 L^2 \right). \tag{12}
\]
On the other hand we have
\[
\max_{y \geq 2Y} \left| \psi(y, \gamma) \right| \ll Y = x^2. \tag{13}
\]
From (12) and (13), we have
\[
\sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \max_{y \leq x} \left| \psi(y, \gamma) \right| \ll \sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \max_{y \leq x} \left| \psi(y, \gamma) \right| + \sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \geq 2Y} \max_{y \leq x} \left| \psi(y, \gamma) \right|
\]
\[
\ll \sum_{d \equiv Q (\text{mod } D)} \int_{-\gamma}^{\gamma} F(it, \gamma) \frac{1}{|t|^4} \, dt + O^2 D x^2 L^2.
\]
Further let $q = Dd$ and then we obtain
\[
\sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \max_{y \leq x} \left| \psi(y, \gamma) \right| \ll \max_{0 \leq \gamma \leq T} \frac{1}{T+1} \sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \int_{-2\pi T}^{2\pi T} F(it, \gamma) \, dt + O^2 D x^2 L^2.
\]
Lemma 4.1 with $m = 1$ gives that
\[
\sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \int_{-\gamma}^{\gamma} F(it, \gamma) \frac{1}{|t|^4} \, dt \ll \left(x + \frac{R^2 T}{D} \frac{11}{30} \right) L^2. \tag{14}
\]
From (14), we have
\[
\sum_{d \equiv Q (\text{mod } D)} \sum_{\gamma \leq T} \max_{y \leq x} \left| \psi(y, \gamma) \right| \ll \max_{0 \leq \gamma \leq T} \frac{1}{T+1} \left(x + \frac{R^2 T}{D} \frac{11}{30} \right) L^2 + O^2 D x^2 L^2
\]
\[
\ll L^2 \left(\frac{(OD)^2}{D} x^{\frac{11}{30}} + x(T+1)^{-1} \right) + O^2 D x^2 L^2
\]
\[
\ll \left(x + x^{\frac{11}{30}} Q D \right) L^2.
\]
This completes the proof of Lemma 2.3.
5. Proof of Lemma 2.1

We partition the moduli qd as qd, d_2, where the prime factor of d_2 not exceed L^k and those of d_1 do not. If $\omega(n)$ denotes the number of distinct prime divisors of the integer n, and $t = 2K \log \log x / \log \log \log x$, with estimate $\psi(x; q, r) \ll x/\phi(q)$, for $1/4 < \delta \leq 1/2$, we have

$$
\sum_{d \leq \sqrt{x}} \psi(x; q, d) \ll \frac{x}{\phi(q)} \sum_{d \leq \sqrt{x}} \phi(d) \sum_{d_2 \leq x} \frac{1}{d_2}.
$$

Noting that $\phi(n)$ is not principal. We denote $\phi(d)$ but $\psi(x; q, r) \ll x/\phi(q)$, induce $\psi(x; q, d_2)$ is also $\psi(x; q, d_2) \ll x/\phi(q)$. We collect together those moduli with a fixed $\psi(x; q, d_2)$ is also $\psi(x; q, d_2) \ll x/\phi(q)$. Moreover the corresponding sum, taken over those d_2 for which d_2 is divisible by the v^m power of some prime, $v \geq 8$, is

$$
\ll \frac{x}{\phi(q)} \sum_{d \leq \sqrt{x}} \phi(d_2) \sum_{p \leq \sqrt{x}} \phi(p^m) \sum_{m \geq \log \log x} \frac{1}{m!}.
$$

Hence $\ll \psi(x; q, d_2) \ll x/\phi(q)$, too.

We denote $\exp(\frac{1}{2} \log \log x)$ by Δ. Arguing similarly for $\phi(d)^{-1} \psi(x; q, r)$, we have

$$
\sum_{d \leq \sqrt{x}} \max_{d \leq \Delta} \max_{y \leq \Delta} \left| \psi(y; q, d, r) - \frac{1}{\phi(d)} \psi(y; q, r) \right| \ll \frac{x}{\phi(q) \Delta^2}.
$$

We collect together those moduli qd with a fixed value of d_1 not exceeding Δ and set $D = qd_1$. Noting that $\psi(y; q, r) = \sum_{n \leq y} \Lambda(n) + O(\log y d_2)$, we see from the orthogonality of Dirichlet characters that

$$
\psi(y; qd_1, r) - \frac{1}{\phi(d_2)} \psi(y; q, r) \ll \frac{1}{\phi(d_2)} \left| \psi(y; qd_1, r) - \psi(y; q, r) \right| \ll \psi(y; qd_2, \Delta) \ll \frac{1}{\phi(q)} \psi(y; q, d_2) \ll x/\phi(q).
$$

For a fixed value of $D(qd_1, \Delta)$, we collect together those terms involving the characters χ induced by a particular primitive character $\chi^*(\log D, \rho)$, where $D \mid D$ and $\rho \mid d_2$. Since χ and χ^* differ on at most the integers n for which $(n, D, \rho) = 1$ but $(n, D_2) > 1$,

$$
\psi(y, \chi) = \psi(y, \chi^*) + O(\log D dy).
$$

Interchanging summations,

$$
\ll \sum_{d_2 \leq L^K} \sum_{v^m \leq D} \max_{y \leq \Delta} \left| \sum_{d \equiv (\log D, \rho) \pmod{D}} \frac{1}{\phi(d)} \psi(y, \chi) \right| \ll \frac{1}{\phi(D_2)} \psi(y, \chi).
$$

Here $\rho \leq L^K D^{-1} x^{1/2}$, and the innermost bounding sum is $\ll \phi(D_2)^{-1} x \log x$. We cover the range of ρ with adjoining intervals $U < \rho < 2U$, subject to $L^K \leq U < L^K D^{-1} x^{1/2}$. When $\delta = 1/2$, by Lemma 2.2 a typical interval contributes

$$
\ll \frac{x}{U + x^2 U D^4 + x^5 D^8} \log x \log \log x.
$$

Since $D^{1/2} \leq D^{1/2} \leq (qd_1)^{1/2} \leq x^{1/5} \exp(-\frac{1}{4} \log \log x)$, the whole sum over ρ is

$$
\ll D^{-1} x (\log x)^{5/2} \log \log x.
$$

Arguing similarly for $\delta = 9/20$, by Lemma 2.3 the whole sum over ρ is also $\ll D^{-1} x (\log x)^{5/2} \log \log x$. Noting that
\[
\sum_{d_1 \leq A} \frac{\tau(D)}{D} \ll \tau(q) q^{-1} \sum_{d_1 \leq A} \frac{\tau(d_1)}{d_1} \\
= \tau(q) q^{-1} \prod_{p \leq A} \left(1 + \frac{\tau(p) + \tau(p^2)}{p^2} + \cdots \right) \\
= \tau(q) q^{-1} \prod_{p \leq A} \left(1 - \frac{1}{p}\right)^{-2} \ll \tau(q) q^{-1} (\log \Delta)^2 \\
= \tau(q) q^{-1} (\log \log q)^\xi.
\]

This completes the proof of Lemma 2.1.

6. Zeros of Dirichlet L-Functions

Lemma 4.1. Let \(L(s, \chi), s = \sigma + it, \) denote an L-function formed with a Dirichlet character \(\chi \mod q, q \geq 3, h = \prod p^k \). With \(\ell = \log(q(\ell + 3)), \)

\[
\theta^{-1} = 4.10^{-4} \left(\log h + (\log 2) \right)^{3/4}.
\]

Then there can be at most one non-principal character \(\chi \mod q \) for which the corresponding L-function has a zero in the region \(\sigma > 1 - \theta \). Moreover such a character would be real and the zero would be real and simple.

Proof of Lemma 4.1. This is Theorem 2 of Iwaniec [10].

Lemma 4.2. Let \(\chi_i \mod D_i, i = 1, 2 \) be distinct primitive real characters. There is a positive real \(c_1 \) so that at most one of the functions \(L(s, \chi) \) formed with these characters can vanish on the line segment

\[
1 - c_1 (\log D_1 D_2)^{-1} \leq \sigma \leq 1, \quad t = 0.
\]

Proof of Lemma 4.2. This is result of Landau, which can be found at Satz 6.4. p. 127, of Prachar [11].

Lemma 4.3. For any modulus \(D, 0 < \alpha \leq 1, T \geq 0, \) let \(N(\alpha, T, D) \) denote the number of zeros, counted with multiplicity, of all functions \(L(s, \chi) \) formed with a character \(\chi \mod D \), that lie in the rectangle \(\alpha \leq \text{Re} s \leq 1, |\text{Im} s| \leq T \). Then we have

\[
N(\alpha, T, D) \ll (DT)^{4(1-\alpha)},
\]

uniformly for \(0 \leq \alpha \leq 1, T \geq 2 \).

Proof of Lemma 4.3. This is Theorem of Heath-Brown [12], on p. 249.

7. Proof of Theorems 1.1 and 1.2

We shall first provide a version of the theorem with \(\psi(y; q, d, r) \) in place of \(\pi(y; q, d, r) \). After Lemma 2.1 it will suffice to establish the bound

\[
G(\Delta) \ll x \left(\phi(q)(\log x)^\xi \right)^{-1},
\]

for any fixed positive \(A \).

We employ the representation

\[
\sum_{n \leq y} \psi^{*}(n) \Phi(n) = E_{y} \gamma - \sum_{\rho \in \xi} \frac{\gamma^{\rho}}{\rho} + O \left(\frac{(\log Dy)^{2}}{T} + \frac{y^{1/4} \log Dy}{T} \right),
\]

valid for all characters \(\chi \mod D \), where \(y \geq T \geq 2 \); \(E_{y} \) is 1 if \(\chi \) is principal, zero otherwise; \(\rho = \beta + iy \) runs through all the zeros of \(L(s, \chi) \) in the rectangle \(0 \leq \text{Re} s < 1, |\text{Im} s| \leq T \) with a half disc \(|1 - \beta| < c_{1}(\log D)^{-1} > 0, \text{Re} s \geq 0 \) removed. This representation is a slightly modified version of that given in Satz 4.6, pp. 232-234 of Prachar [11].

Since \(L(s, \chi) \) has \(\ll \log DT \) zeros in the strip \(0 \leq \text{Re} s < 1, T \leq |\text{Im} s| \leq T + 1 \), cf. Prachar [11], Satz 3.3, p. 220,

\[
\sum_{\rho \in \xi} \frac{\gamma^{\rho}}{\rho} \ll y^{1/2} \left(\log 2D + \sum_{m \leq T} \sum_{m < \text{Im} z \leq m + 1} \frac{1}{|\rho|} \right) \\
\ll y^{1/2} (\log Dy) \sum_{m \leq T} \frac{1}{m-1} \ll y^{1/2} (\log Dy)^{2},
\]

and at the expense of raising \(y^{1/4} \log Dy \) to \(y^{1/2} (\log Dy)^{2} \) we may confine the zeros \(\rho \) to the half-plane \(\text{Re} s > 1/2 \).

From the orthogonality of Dirichlet characters

\[
\phi(D)\psi(y; D, r) = \gamma \\
= \sum_{\chi \mod D} \overline{\chi}(r) \sum_{n \leq y} \chi(n) \Lambda(n) - E_{y} \gamma \\
\ll \sum_{\chi \mod D} \sum_{\nu \neq \rho} \frac{\gamma^{\nu}}{\nu} + \left(\frac{y}{T} + y^{1/2} \right) (\log Dy)^{2},
\]

where it is understood that the \(\rho (= \beta + iy) \) are the zeros of the L-function formed with the character \(\chi \) of the outer summation.

We replace \(\gamma \) by \(z \) and average over the interval \(y \leq z \leq y + w \) with \(w = y(\log y)^{-2/3} \) to obtain

\[
\frac{1}{w} \int_{y}^{y+w} (\phi(D)\psi(z; D, r) - z) \, dz \\
\ll \frac{w}{y} \sum_{\chi \mod D} \sum_{n \leq y} \frac{\gamma^{\nu}}{\nu} \left(\frac{y}{T} + y^{1/2} \right) (\log Dy)^{2}.
\]

Replacing \(z \) in the integrand by \(y \) introduces an error of

\[
\ll w + \phi(D) \sum_{\chi \mod D} \log y \ll w + \phi(D) \left(\frac{w}{D} + 1 \right) \log y,
\]

and we may remove the integral averaging:
\[\phi(D)\psi(y;D,r) - y \ll (\log y)^{4\beta} \sum_{\xi} \sum_{|\beta|^2} \frac{y^\beta}{|\beta|^2} \]

\[+ \left(\frac{y}{T} + \frac{y}{\sqrt{2}} \right) D(\log y)^2 + \frac{y}{(\log y)^{\frac{1}{12}}} \]

This bound will be satisfactory for \(y > x(\log x)^{-\frac{1}{2}} \).

Otherwise, we shall employ the crude bound
\[\psi(y;D,r) - \frac{y}{\phi(D)} \ll \frac{x(x(\log x)^{-\frac{1}{2}}}{D} + 1, \]

which is valid for all positive \(y \). With these bounds
\[R_D = \max_{y \leq x} \psi(y;D,r) - \frac{y}{\phi(D)} \ll \sum_{\xi} \sum_{\beta_{12} / \gamma \in \mathbb{Z}} \frac{x^\beta (\log x)^{1/2}}{\beta + iy} \]

\[+ \left(\frac{x}{T} + \frac{x}{\sqrt{2}} \right) D(\log x)^2 + \frac{x}{(\log x)^{1/12}} \]

holds uniformly for \(2 \leq T \leq x(\log x)^{-\frac{1}{2}}, D \leq x^{3/4} \). We set \(T = x^{1/2} \).

The double-sum does not exceed
\[4 \sum_{1 \leq \delta x T} 2^{-\delta x} \sum_{\xi} \sum_{\beta_{12} / \gamma \in \mathbb{Z}} \frac{x^\beta}{\beta + iy} \]
\[= -4 \sum_{1 \leq \delta x T} 2^{-\delta x} \int_{y/2}^{1/\delta} x^\beta dN(u, \tau, D) \]

where \(1-\theta \) is the largest value of \(\beta \) taken over all the zeros \(\beta + iy \) in the rectangle
\[0 < Re(s) < 1, \lim(s) \leq 2T. \]

Supposing for the moment that \(D = qd \) and that there is no zero that is exceptional in the sense of Lemma 4.1, then we may take
\[\theta = c \left(\log d + (\log 2q(T + 3) \log 2q(T + 3) \right)^{1/2} \]

In view of Lemma 4.3, typically
\[\int_{y/2}^{1/\delta} x^\beta dN(u, \tau, D) \]
\[= -x^\beta N(u, \tau, D) \int_{y/2}^{1/\delta} N(u, \tau, D) x^\beta \log x \, dx \]

\[\ll x^{1/2} N(1/2, \tau, D) + c \int_{y/2}^{1/\delta} N(u, \tau, D) x^\beta \log x \, dx \]

with restriction \(q \leq x^{5/12} \Delta^{-2} \), we have
\[D^{12/5} \leq x(\log x)^{1/2}, \]

then the integral is
\[\ll x(\log x)^{-1/2} \] uniformly for \(r \leq 2T \) and \(d \leq \Delta \). Moreover, \(N(1/2, \tau, D) \ll D(\tau + 2) \log D(\tau + 2) \), Prachar [11], Satz 3.3, p. 220, as earlier. Altogether
\[R_{qd} \ll x(\log x)^{-3/12} \]

with the same uniformity in \(d \).

If there is an exceptional zero \((mod qd) \), for which \(\beta > 1 - C_1 (2 \log 4a\Delta)^{-1} \), and the corresponding function \(L(s, \chi) \) is attached to a real character induced by a primitive character \(\chi' (mod D') \), then \(D' \) is a divisor of some \(4ad \) with \(d \leq \Delta \), and an application of Lemma 4.2 shows that there is no further L-function formed with a real character \((mod D), D \leq 4a\Delta \), that has a real zero on the line-segment
\[1 - C_1 (2 \log 4a\Delta)^{-1} \leq \Re(s) < 1, \Im(s) = 0 \]

unless that character is also induced by \(\chi' (mod D') \). In particular, \(D \) will be divisible by \(D' \). For those moduli \(qd \) for which \(4ad \) is not a multiple of \(D' \) we may choose the same \(\theta \) as before and recover the above estimate for \(R_{qd} \).

Hence
\[\sum_{d \leq \Delta} \max_{y \leq x} \left\| \psi(y;qd,r) - \frac{y}{\phi(qd)} \right\| \ll \sum_{d \leq \Delta} \frac{1}{\phi(qd)} \ll \frac{x}{(\log x)^{1/12}}, \]

where " indicates that the moduli are not divisible by the (possibly non-existent) modulus \(D' \).

A theorem of Siegel shows that for any \(\epsilon > 0 \) there is a positive constant \(c(\epsilon) \) so that an L-function formed with a real character \((mod D) \) has no zero on the line-segment
\[1 - c(\epsilon) D^{-\epsilon} \leq \Re(s) < 1, \Im(s) = 0 \; \text{cf. Prachar [11], Satz 8.2, p.144. Unless} \]

\[D' \geq c(\epsilon)(\log x)^{1/2} \]

this again allows the argument to proceed. We may therefore assume that \(D' > (\log x)^{1/2} \) and remove the restriction " from the above summation over \(d \) at an expense of
\[\ll \sum_{4ad = \theta (mod D')} \frac{x \log x}{qd} \ll \frac{x(\log x)^{1/2}}{q D'} \ll \frac{x}{q(\log x)^{1/2}} \]

A modified version of this argument delivers the bound
\[\max_{y \leq x} \left\| \psi(y;qd,r) - \frac{y}{\phi(q)} \right\| \ll \frac{x}{\phi(q)(\log x)^{3/12}} \]

and in this case there is no exceptional zero.

By subtraction we see that
\[G(\Delta) \ll x(\phi(q)(\log x)^{1/2})^{-1} \]

indeed holds for every fixed \(A > 0 \).

Since \(\tau(q) \ll \log q \), an application of Lemma 2.1 shows that with \(B = A + 6 \),

Copyright © 2013 SciRes.
\[
\sum_{qd \leq x^\delta} \max_{y \leq x} \left| \psi(y; qd, r) - \frac{y}{\phi(qd)} \right| \leq \frac{x}{\phi(q)} \left(\log x \right)^{\frac{\delta}{1 - \delta - \epsilon}},
\]

uniformly for moduli \(q \leq x^\delta \exp\left(-\left(\log \log x\right)^3\right) \) that are powers of \(a \) where \(\theta = 2/5 \), if \(\delta = 1/2 \) and \(\theta = 5/12 \), if \(\delta = 9/20 \).

Replacing \(\psi(y; qd, r) \) in this bound by
\[
\theta(y; qd, r) = \sum_{\text{prime } p \leq x(qd)} \log p
\]
introduces an error
\[
\ll \sum_{qd \leq x^{\frac{2}{3}}} \sum_{\text{prime } p \leq x} \log p \leq x^{\frac{2}{3}} \ll xq^{-1} \left(\log x \right)^{-\delta - 6},
\]
the congruence condition \(p^m \equiv r \pmod{qd} \) having been ignored.

Employing the Brun-Titchmarsh bound
\[
\pi(y; D, r) \ll y \left(\phi(D) \log y \right)^{-1},
\]
valid uniformly for \(1 \leq D \leq y^{1/4}, (r, D) = 1 \). We see that the contribution to the sum in the theorem that arises from maxima that occur in the range \(0 < y \leq y_0 = x \left(\log x \right)^{-2} \) is
\[
\ll \sum_{d \leq x^{\frac{2}{3}}} y_0 \left(\phi(qd) \log y_0 \right)^{-1} \ll y_0 \phi(q)^{-1}
\]
\[
\ll x \left(\phi(q)(\log x)^{-1} \right)^{-1}.
\]

We may therefore confine our attention to maxima over the range \(y_0 \leq y \leq x \).

Integration by parts shows that
\[
\max_{y_0 \leq y \leq x} \left| \psi(y; D, r) - \frac{y}{\phi(D)} \right| \ll \left| \pi(y_0; D, r) - \frac{Li(y)}{\phi(D)} \right| + \frac{1}{\log x} \max_{y_0 \leq y \leq x} \left| \theta(y; D, r) - \frac{y}{\phi(D)} \right|.
\]

The theorems hold with \(B = A + 6 \).

8. Acknowledgements

This work is supported by IIFSDU (Grant No. 2012JC020). The author would like to thank to Professor Jianya Liu and Guangshi Lü for their encouragements.

REFERENCES