Permanence and Globally Asymptotic Stability of Cooperative System Incorporating Harvesting

Fengying Wei, Cuiying Li
College of Mathematics and Computer Science, Fuzhou University, Fuzhou
Email: weifengying@fzu.edu.cn

Received August 5, 2013; revised September 6, 2013; accepted September 28, 2013

ABSTRACT
The stability of a kind of cooperative models incorporating harvesting is considered in this paper. By analyzing the characteristic roots of the models and constructing suitable Lyapunov functions, we prove that nonnegative equilibrium points of the models are globally asymptotically stable. Further, the corresponding nonautonomous cooperative models have a unique asymptotically periodic solution, which is uniformly asymptotically stable. An example is given to illustrate the effectiveness of our results.

Keywords: Cooperative System; Equilibrium; Stability; Asymptotically Periodic Solution

1. Introduction
Permanence, stability and periodic solution for Lotka-Volterra models had been extensively investigated by many authors (see [1-8] and the references therein). Jorge Rebaza [1] had discussed the dynamic behaviors of predator-prey model with harvesting and refuge

\[
\begin{align*}
\dot{x} &= x(1-x) - \frac{a(1-m)xy}{1+c(1-m)x} - H(x), \\
\dot{y} &= y\left(-d + \frac{b(1-m)x}{1+c(1-m)x}\right),
\end{align*}
\]

where \(H(x) \) was a continuous threshold policy harvesting function. Motivated by Jorge’s work, we consider the following cooperative system incorporating harvesting

\[
\begin{align*}
\dot{x} &= x\left(r_1 - b_1 x - \frac{a_1 x}{y + k_1}\right) - Eqx, \\
\dot{y} &= y\left(r_2 - b_2 y - \frac{a_2 y}{x + k_2}\right),
\end{align*}
\]

Definition 2 [2] If there are positive constants \(m, M > 0 \) such that each positive solution \((x(t), y(t)) \) of system (2) satisfies

\[
0 < m \leq \liminf_{t \to +\infty} x(t), \\
0 < m \leq \liminf_{t \to +\infty} y(t) \\
\leq \limsup_{t \to +\infty} x(t) \leq M, \\
\leq \limsup_{t \to +\infty} y(t) \leq M.
\]

Then system (2) is persistent. If the system is not persistent, then system (2) is called non-persistent.

Lemma 1 If \(r_i > Eq, k_1b_1 > a_1, k_2b_2 > a_2 \), then system (2) is persistent.

Proof. By the first equation of (2) and the comparison theorem, we get

\[
\dot{x}(t) \leq x\left[r_1 - b_1 x - Eq\right],
\]

it implies that

\[
\limsup_{t \to +\infty} x(t) \leq \frac{r_1 - Eq}{b_1} = A.
\]
For any \(\varepsilon > 0 \), there exists a \(T_1 > 0 \), as \(t > T_1 \), it then follows
\[
x(t) \leq A + \varepsilon.
\]

Similarly, we have \(\limsup_{t \to \infty} y(t) \leq \frac{r_2}{b_2} = B \). By the discussion above, for any \(\varepsilon > 0 \), there exists a \(T_2 > T_1 \), as \(t > T_2 \), it yields that \(y(t) \leq B + \varepsilon \).

On the other hand, we have
\[
\liminf_{t \to \infty} x(t) \geq \frac{(r_1 - b_1 x - Eq - a_1(A + \varepsilon))}{k_1},
\]
\[
\liminf_{t \to \infty} y(t) \geq \frac{r_2 - b_2 y - a_2(B + \varepsilon)}{k_2}.
\]

By the comparison theorem, and letting \(\varepsilon \to 0 \), one gets that
\[
\lim_{t \to \infty} x(t) = \frac{(r_1 - Eq)(k_1 b_1 - a_1)}{b_1 k_1} = C,
\]
\[
\lim_{t \to \infty} y(t) = \frac{r_2 (k_2 - a_2)}{b_2 k_2} = D.
\]

By Definition 2, system (2) is persistent. \(\square \)

3. Equilibrium Points and Stability

If \(r_1 > Eq \), then the equilibrium points of (2) are
\[
H_0 = (0, 0),
\]
\[
H_1 = \left(0, \frac{r_1 k_2}{a_2 + k_2 b_2}\right),
\]
\[
H_2 = \left(\frac{r_1 - Eq}{a_2 + k_2 b_1}, 0\right),
\]
\[
H_3 = (x^*, y^*),
\]
where
\[
x^* = \frac{-\left(k_1 P - F\right) + \sqrt{(k_1 P - F)^2 + 4PQM}}{2P},
\]
\[
y^* = \frac{r_2 \left(x^* + k_1\right)}{b_2 x^* + a_2 + k_2 b_2}.
\]
\[
P = r_1 b_1 + k_2 b_2 + a_2 b_2,
\]
\[
Q = r_1 - Eq,
\]
\[
F = r_1 Q + b_1 k_2 Q - k_1 a_2 b_1 - a_1 a_2,
\]
\[
M = r_2 k_2 + k_2 b_2 + a_2 k_1.
\]

The general Jacobian matrix of (2) is given by
\[
J = \begin{pmatrix}
 r_1 - Eq - 2a_1 x + \frac{2a_1}{y+k_1} + \frac{a_2 x^2}{(y+k_1)^2} & r_2 - 2b_2 y - \frac{2a_2 y}{x+k_2} \\
 \frac{a_2 y^2}{(x+k_2)^2} & \frac{a_2 y^2}{(x+k_2)^2}
\end{pmatrix}.
\]

The characteristic equation of system (2) at \(H_0 \) is
\[
(\lambda - r_1 + Eq)(\lambda - r_2) = 0,
\]
this immediately indicates that \(H_0 \) is always unstable.

The characteristic equation of system (2) at \(H_1 \) is
\[
(\lambda - r_1 + Eq)(\lambda + r_2) = 0,
\]
by the condition \(r_1 > Eq \), one then gets that \(H_1 \) is a saddle point.

The characteristic equation of system (2) at \(H_2 \) is
\[
(\lambda + r_1 - Eq)(\lambda - r_2) = 0,
\]
we derive that \(H_2 \) is a saddle point.

The characteristic equation of system (2) at \(H_3 \) takes the form
\[
\lambda^2 + \left(b_1 x^* + \frac{a_1 x^*}{y^* + k_1} + b_2 y^* + \frac{a_2 y^*}{x^* + k_2}\right) \lambda
\]
\[
+ \left(b_1 x^* + \frac{a_1 x^*}{y^* + k_1} \right) \left(b_2 y^* + \frac{a_2 y^*}{x^* + k_2}\right)
\]
\[
- \frac{a_2 a_2 \left(x^* y^*\right)^2}{\left(y^* + k_1\right)^2 \left(x^* + k_2\right)^2} = 0,
\]
it is easy to check that \(\lambda_1 + \lambda_2 < 0 \), \(\lambda_1 \lambda_2 > 0 \), then \(\lambda_1 < 0 \), \(\lambda_2 < 0 \), thus \(H_3 \) is locally asymptotically stable.

Theorem 1 If \(k_1 b_1 > a_1 \), \(k_2 b_2 > a_2 \),
\[
\frac{b_1 + a_1}{y^* + k_1} > \frac{Ba_1}{2(C + k_1)(x^* + k_2)} + \frac{a_2}{2(D + k_1)(y^* + k_1)},
\]
\[
\frac{b_2 + a_2}{x^* + k_2} > \frac{Ba_2}{2(C + k_1)(x^* + k_2)} + \frac{Aa_1}{2(D + k_1)(y^* + k_1)},
\]
then the positive equilibrium point \(H_3 \) of system (2) is globally asymptotically stable, where \(A, B, C, D \) can be found in Lemma 1.

Proof. Define a Lyapunov function
\[
V(x, y) = x - x^* - x^* \ln \frac{x}{x^*} + y - y^* - y^* \ln \frac{y}{y^*},
\]
it then yields that
\[
\dot{V}(x,y) = (x - x^*)(r_i - b_i x - \frac{a_i x}{y + k_i} - E q) + (y - y^*)(r_i - b_i - \frac{a_i y}{x + k_i}) + a_i x (x - x^*)(y - y^*) + a_i y (x - x^*)(y - y^*) \]

\[
= (x - x^*)^2 \left[-b_i - \frac{a_i}{y + k_i} \right] + a_i x (x - x^*)(y - y^*) + a_i y (x - x^*)(y - y^*) + \frac{A a_i}{2(D + k_i)(y + k_i)} (y - y^*)^2 + \frac{B a_2}{2(C + k_i)(x + k_i)} \]

by the conditions of theorem 1, thus, \(\dot{V}(x,y) < 0 \). The positive equilibrium point \(H_2 \) of system (2) is globally asymptotically stable. □

4. Existence and Uniqueness of Solutions

Next, we will discuss a nonautonomous system

\[
\begin{align*}
\dot{x} &= x \left(r_i(t) - b_i(t)x - \frac{a_i(t)x}{y + k_i(t)} - E(t)q(t)x \right), \\
\dot{y} &= y \left(r_i(t) - b_i(t)y - \frac{a_i(t)y}{x + k_i(t)} \right),
\end{align*}
\]

(4)

where \(r_i(t), a_i(t), b_i(t), k_i(t) (i = 1, 2), E(t), q(t) \) are positive continuous bounded asymptotically periodic functions with period \(T \). The initial data of (4) is given by

\[
x(0) > 0, y(0) > 0.
\]

(5)

The solution of (4) with initial data (5) is denoted by \(X(t) = X(t, t_0, X(0)) \), \(X(0) = (x(0), y(0)) \), \(t > t_0 \in R \). For a continuous function \(f(t) \) defined on \(R \), define

\[
f'_i = \inf_{t \in R_i} f(t) > 0, f'^* = \sup_{t \in R} f(t) < +\infty.
\]

Definition 3 [2] If there exists a \(B > 0 \), for any \(t_0 \geq 0 \), \(X(0) = (x(0), y(0)) \), there exists a \(T = T(t_0, X(0)) > 0 \)

such that \(|X(t)| \leq B \) for \(t \geq t_0 + T \), then the solution \(X(t) \) is called ultimately bounded.

Let us consider the following asymptotically periodic system

\[
\dot{x}(t) = f(t,x(t))
\]

(6)

where \(x \in R^n, f : R \times C([\tau, 0], R^n) \rightarrow R^n \). Set

\[
x_i(\tau) = x(t + \tau), x = \sum_{i=1}^n |x_{i0}|, \|\phi\| = \sup_{-\tau \leq t \leq 0} \|\phi(t)\|, \]

\[
C_H = \{ \phi \in C([\tau, 0], R^n), \|\phi\| < H \},
\]

\[
S_H = \{ x \in R^n, |x| < H \}.
\]

In order to discuss the existence and uniqueness of asymptotically periodic solution of system (6), we can consider the adjoint system

\[
\dot{x}(t) = f(t,x(t)), \dot{y}(t) = f(t,y(t)).
\]

(7)

Lemma 2 If

\[
(r_i - Eq^*)k_i b_i' > a_i^* (r_i - E'q^*)
\]

and

\[
r_i^2 k_i^2 b_i^2 > a_i^2 r_i^2, \quad r_i > E'q_i^1,
\]

then the solution of system (6) is ultimately boundedness.

Proof. By the first equation of system (4) and the comparison theorem, one gets that

\[
\dot{x}(t) \leq x \left(r_i^* - b_i^* x - E'q_i^* \right),
\]

it then implies that

\[
\limsup_{t \to +\infty} x(t) \leq \frac{r_i^* - E'q_i^*}{b_i^*} := M_i > 0.
\]

Similarly, we have

\[
\limsup_{t \to +\infty} y(t) \leq \frac{r_i^2}{b_i^2} := M_2 > 0.
\]

By the same discussion, one thus gets that

\[
\dot{x}(t) \geq x \left(r_i^1 - b_i^1 x - E^*q_i^* - \frac{a_i^* (M_i + \varepsilon)}{k_i^1} \right),
\]

\[
\dot{y}(t) \geq y \left(r_i^1 - b_i^2 y - \frac{a_i^* (M_2 + \varepsilon)}{k_i^2} \right).
\]

Letting \(\varepsilon \to 0 \), we have

\[
\liminf_{t \to +\infty} x(t) \geq \frac{(r_i^1 - E^*q_i^*)k_i b_i' - a_i^* (r_i^* - E'q_i^*)}{b_i^* k_i^1} := m_i > 0,
\]

\[
\liminf_{t \to +\infty} y(t) \geq \frac{(r_i^1 - E^*q_i^*)k_i b_i' - a_i^* (r_i^* - E'q_i^*)}{b_i^* k_i^2} := m_2 > 0.
\]
\[
\liminf_{t \to \infty} y(t) \geq \frac{r_1'k_1'b_1' - a_2'r_2}{b_2'k_2'b_2'} = m_2 > 0.
\]

By the Definition 3, the solution of system (4) is ultimately bounded. □

Lemma 3 [2] If \(V(t, x, y) \in C(R_+ \times S_+ \times S_+, R_+ \) satisfies the following conditions:

1) \(a(x, y, t) \leq b(x, y) \) for \(a(r) \) and \(b(r) \) are continuously positively increasing functions;

2) \(V(t, x_1, y_1) - V(t, x_2, y_2) \leq l\{x_1 - x_2 + |y_1 - y_2|\} \), where \(l > 0 \) is a constant;

3) there exists a continuous non-increasing function \(P(s) \), such that for \(s > 0 \), \(P(s) > s \). And as \(\theta \in [-\tau, 0] \),

\[
P(V(t, \theta(0), \phi(0))) > V(t + \theta, \phi(\theta), \phi(\theta)),
\]

it then follows that

\[
\dot{V}(t, \phi(0), \phi(0)) \leq -\delta V(t, \phi(0), \phi(0)),
\]

where \(\delta > 0 \) is a constant; furthermore, system (6) has a solution \(\xi(t) \) for \(t \geq t_0 \) and satisfies \(\|\xi\| \leq H \).

Then system (6) has a unique asymptotically periodic solution, which is uniformly asymptotically stable.

Theorem 2 If conditions

\[
b_1' + \frac{a_1'}{M_2 + k_1'} > \frac{a_2'M_2}{(m_1 + k_1')^2}
\]

and

\[
b_2' + \frac{a_2'}{M_1 + k_2'} > \frac{a_2'M_1}{(m_2 + k_2')^2}
\]

hold, the conditions of Lemma 2 are satisfied, then system (4) has a unique asymptotically periodic solution, which is uniformly asymptotically stable.

Proof. By Lemma 2, the solutions of system (4) is ultimately bounded. We consider the adjoint system

\[
\begin{align*}
\dot{x} &= x\left(r_1(t) - b_1(t)\frac{x}{y + k_1(t)} - E(t)q(t)x\right), \\
\dot{y} &= y\left(r_2(t) - b_2(t)y - \frac{a_2(t)y}{x + k_2(t)}\right), \\
\dot{u} &= u\left(r_1(t) - b_1(t)u - \frac{a_1(t)u}{v + k_1(t)}\right) - E(t)q(t)u, \\
\dot{v} &= v\left(r_2(t) - b_2(t)v - \frac{a_2(t)v}{u + k_2(t)}\right),
\end{align*}
\]

(8)

Let \(x^* = \ln x, y^* = \ln y, u^* = \ln u, v^* = \ln v \)

and \((x, y, u, v)\) be the solution of (8). By the fact

\[
|x-u| = \exp x^* - \exp u^* = \exp \eta x^* - \exp u^* = \eta|x^* - u^*|,
\]

\[
|y-v| = \exp y^* - \exp v^* = \exp \xi y^* - \exp v^* = \xi|y^* - v^*|,
\]

where \(\eta \) lies between \(x \) and \(u \), \(\xi \) lies between \(y \) and \(v \), it then follows

\[
m_1|x^* - u^*| \leq |x-u| \leq M_1|x^* - u^*|,
\]

\[
m_2|y^* - v^*| \leq |y-v| \leq M_2|y^* - v^*|.
\]

Define Lyapunov function \(W(t) = |x^* - u^*| + |y^* - v^*| \), taking

\[
a(r) = b(r) = |x^* - u^*| + |y^* - v^*|,
\]

By using the inequality \(\|a| - |b| \leq |a - b| \), it is easy to check that 1) and 2) of Lemma 3 are valid. Computing the derivative of \(W(t) \) along the solution of system (8), by (9) and \(m_1 \leq x, u \leq M_1, m_2 \leq y, v \leq M_2 \), we get that

\[
\dot{W}(t) = \frac{x - u}{x} \text{sign}|x-u| + \frac{y - v}{y} \text{sign}|y-v|
\]

\[
\leq -\left[b_1(t) + \frac{a_1(t)}{y+k_1(t)}\right]|x-u|
\]

\[
+ \frac{a_1(t)u}{V+k_1(t)}\frac{|y-v|}{[y+k_1(t)]}|y-v|
\]

\[
- \left[b_2(t) + \frac{a_2(t)}{x+k_2(t)}\right]|y-v|
\]

\[
+ \frac{a_2(t)v}{[u+k_2(t)]}\frac{|x-u|}{[x+k_2(t)]}|x-u|
\]

\[
\leq -\left[b_1' + \frac{a_1'}{M_2 + k_1'}\right]|x-u| + \frac{a_1'M_1}{(m_1 + k_1')^2}|y-v|
\]

\[
\leq -\left[b_2' + \frac{a_2'}{M_1 + k_2'}\right]|y-v| + \frac{a_2'M_2}{(m_2 + k_2')^2}|x-u|
\]

\[
\leq -\left[b_1' + \frac{a_1'}{M_2 + k_1'} - \frac{a_2'M_2}{(m_1 + k_1')^2}\right]m_1|x^* - u^*|
\]

\[
\leq -\left[b_2' + \frac{a_2'}{M_1 + k_2'} - \frac{a_1'M_1}{(m_2 + k_2')^2}\right]m_2|y^* - v^*|
\]

\[
= -Q_1|x^* - u^*| - Q_2|y^* - v^*|,
\]

taking \(\delta = \min \{Q_1, Q_2\} > 0 \), it yields \(\dot{W}(t) \leq -\delta W(t) \), then, system (4) has a unique positive asymptotically periodic solution, which is uniformly asymptotically stable. □

Copyright © 2013 SciRes.
5. Examples and Numerical Simulations

Now, let us consider a autonomous cooperative system incorporating harvesting

\[
\begin{align*}
\dot{x} &= x \left(3 - x - \frac{0.2x}{y+1}\right) - x, \\
\dot{y} &= y \left(2 - y - \frac{0.5y}{x+1}\right),
\end{align*}
\]

(10)

it is easy to check that

\[
A = 2, \quad B = 2, \quad C = 1.6, \quad D = 1, \quad P = 3.2, \quad Q = 2, \quad F = 5.4 ,
\]

\[
M = 3.5, \quad x^* = 1.8622, \quad y^* = 1.7026 ,
\]

\[
b_1 + \frac{a_1}{y^* + k_1} = 1.0740, \quad b_2 + \frac{a_2}{x^* + k_2} = 1.1747 ,
\]

\[
\frac{B a_2}{2(C+k_2)(x^* + k_2)} + \frac{A a_1}{2(D+k_1)(y^* + k_1)} = 0.1042 ,
\]

the conditions of Theorem 1 are valid, then the positive equilibrium point \(H_3 = (1.8622, 1.7026)\) of system (2) is globally asymptotically stable in Figures 1 and 2.

6. Conclusions

By analyzing the characteristic roots of a kind of cooperative models (2) incorporating harvesting, the stability of positive equilibrium point \(H_3\) to model (2) is obtained by constructing a suitable Lyapunov function. Our results have shown that the harvesting coefficient \(Eq\) affects the stability and the existence of equilibrium point to model (2).

The related non-autonomous asymptotically periodic cooperative model (4) has been discussed later. Under some conditions, which also depend on model parameters (see Theorem 2), model (4) has a unique asymptotically periodic solution \(x(t), y(t)\), which is uniformly asymptotically stable. Example model (10) shows the effectiveness of our results.

7. Acknowledgements

Our work is supported by Natural Science Foundation of China (11201075), the Natural Science Foundation of Fujian Province of China (2010J01005).

REFERENCES

http://dx.doi.org/10.1007/s12190-010-0460-1