The Ricci Operator and Shape Operator of Real Hypersurfaces in a Non-Flat 2-Dimensional Complex Space Form

Dong Ho Lim¹, Woon Ha Sohn², Hyunjung Song¹
¹Department of Mathematics, Hankuk University of Foreign Studies, Seoul, Republic of Korea
²Department of Mathematics, Yeungnam University, Kyongbuk, Republic of Korea
Email: dhlnys@hufs.ac.kr, mathsohn@ynu.ac.kr, hsong@hufs.ac.kr

Received November 8, 2012; revised December 15, 2012; accepted January 2, 2013

ABSTRACT

In this paper, we study a real hypersurface M in a non-flat 2-dimensional complex space form M₄(η) with η-parallel Ricci and shape operators. The characterizations of these real hypersurfaces are obtained.

Keywords: Real Hypersurface; η-Parallel Shape Operator; η-Parallel Ricci Operator; Hopf Hypersurface; Ruled Real Hypersurfaces

1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by M₄(c). As is well-known, a complete and simply connected complex space form is complex analytically isometric to a complex projective space Pn(C), a complex Euclidean space Cⁿ or a complex hyperbolic space Hⁿ(c), according to c > 0, c = 0 or c < 0.

In this paper we consider a real hypersurface M in a complex space form M₄(c), c ≠ 0. Then M has an almost contact metric structure φ, g, ξ, η induced from the Kaehler metric and complex structure J on M₄(c). The structure vector field ξ is said to be principal if Aξ = αξ is satisfied, where ξ is the shape operator of M and α = η(ξAξ). In this case, it is known that α is locally constant ([1]) and that M is called a Hopf hypersurface.

Typical examples of Hopf hypersurfaces in Pn(C) are homogeneous ones, R. Takagi [2] and M. Kimura [3] completely classified such hypersurfaces as six model spaces which are said to be A₁, A₂, B₁, B₂, C,D and E. On the other hand, real hypersurfaces in H₄(C) have been investigated by J. Berndt [4], S. Montiel and A. Romero [5] and so on. J. Berndt [4] classified all homogeneous Hopf hypersurfaces in H₄(C) as four model spaces which are said to be A₁, A₂, A₃ and B. Further, Hopf hypersurfaces with constant principal curvatures in a complex space form have been completely classified as follows:

Theorem 1.1. ([2]) Let M be a homogeneous real hypersurface of Pn(C). Then M is tube of radius r over one of the following Kaehlerian submanifolds:

(A) a hyperplane Pn−1(C), where 0 < r < π/√c;
(B) a totally geodesic P₁(C)(1 ≤ k ≤ n − 2), where 0 < r < π/√c;
(C) a hyperquadric Qn−1(C), where 0 < r < π/2√c and n ≥ 5 is odd;
(D) a complex Grassmann G₂₅C, where 0 < r < π/2√c and n = 9;
(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < π/2√c and n = 15.

Theorem 1.2. ([4]) Let M be a real hypersurface in H₄(C). Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the followings:

(A) a self-tube, that is, a horosphere;
(B) a geodesic hypersphere;
(C) a tube over a totally geodesic H₄(C)(1 ≤ k ≤ n − 1).
(B) a tube over a totally real hyperbolic space \(H^*_c(\mathbb{R}) \).

A real hypersurface of type \(A_i \) or \(A_2 \) in \(P_i(\mathbb{C}) \) or type \(A_i, A_j \) or \(A_3 \) in \(H^*_c(\mathbb{C}) \), then \(M \) is said to be of type \(A \) for simplicity. As a typical characterization of real hypersurfaces of type \(A \), in a complex space form \(M_c(\cdot,\cdot) \) was given under the condition

\[
g\left((A\phi - A\phi)X,Y\right) = 0, \tag{1.1}
\]

for any tangent vector fields \(X \) and \(Y \) on \(M \) by M. Okumura [5] for \(c > 0 \) and S. Montiel and A. Romero [6] for \(c < 0 \). Namely

Theorem 1.3. ([5,6]) Let \(M \) be a real hypersurface in \(M_n(c) \). It satisfies (1.1) on \(M \) if and only if \(M \) is locally congruent to one of the model spaces of type \(A \).

The holomorphic distribution \(T_0 \) of a real hypersurface \(M \) in \(M_n(c) \) is defined by

\[
T_0(p) = \{X \in T_p(M) | g(X,\xi)_p = 0\}. \tag{1.2}
\]

The following theorem characterizes ruled real hypersurfaces in \(M_n(c) \).

Theorem 1.4. ([7]) Let \(M \) be a real hypersurface in \(M_n(c) \). Then \(M \) is a ruled real hypersurfaces if and only if \(\phi A\phi = 0 \), or equivalently

\[
g(A\phi Y, Z) = 0, \quad \text{for any } X, Y, Z \in T_0.
\]

A \((1,1)\) type tensor field \(T \) of \(M \) is said to be \(\eta \)-parallel if

\[
g\left((\nabla_X T)Y, Z\right) = 0 \tag{1.3}
\]

for any vector fields \(X, Y \) and \(Z \) in \(T_0 \). Real hypersurfaces with \(\eta \)-parallel shape operator or Ricci operator have been studied by many authors (see [13]). Nevertheless, the classification of real hypersurfaces with \(\eta \)-parallel shape operator or Ricci operator in \(M_n(c) \) remains open up to this point. Recently, S.H. Kon and T.H. Loo ([9]) investigated the conditions \(\eta \)-parallel shape operator.

Theorem 1.5. ([9]) Let \(M \) be a real hypersurface of \(M_n(c) \). Then the shape operator \(A \) is \(\eta \)-parallel if and only if \(M \) is locally congruent to a ruled real hypersurface, or a real hypersurface of type \(A \) or \(B \).

Also, M. Kimura and S. Maeda ([10]) and Y.J. Suh ([11]) investigated the conditions \(\eta \)-parallel Ricci operator.

Theorem 1.6. ([10,11]) Let \(M \) be a real hypersurface in a complex space form \(M_n(c) \). Then the Ricci operator of \(M \) is \(\eta \)-parallel and the structure vector field \(\xi \) is principal if and only if \(M \) is locally congruent to one of the model spaces of type \(A \) or type \(B \).

As for the structure tensor field \(\phi \), shape operator \(A \) and \(\eta \)-parallel, I.-B. Kim, K. H. Kim and one of the present authors ([12]) have proved the following.

Theorem 1.7. ([12]) Let \(M \) be a real hypersurface in a complex space form \(M_n(c) \). If \(M \) has the cyclic \(\eta \)-parallel shape operator (resp. Ricci operator) and satisfies

\[
g\left((A\phi - A\phi)X,Y\right) = 0 \tag{1.4}
\]

for any \(X \) and \(Y \) in \(T_0 \), then \(M \) is locally congruent to either a real hypersurface of type \(A \) or a ruled real hypersurface (resp. \(M \) is locally congruent to a real hypersurface of type \(A \)).

The purpose of this paper is to give some characterizations of real hypersurfaces satisfying (1.4) and having the \(\eta \)-parallel shape operator or Ricci operator in \(M_n(c) \). We shall prove the following.

Theorem 1.8. Let \(M \) be a real hypersurface in a complex space form \(M_n(c) \). If \(M \) has the \(\eta \)-parallel shape operator and satisfies (1.4), then \(M \) is locally congruent to a ruled real hypersurface.

Theorem 1.9. Let \(M \) be a real hypersurface in a complex space form \(M_n(c) \). If \(M \) has the \(\eta \)-parallel Ricci operator and satisfies (1.4), then \(M \) is locally congruent to a real hypersurface of type \(A \).

All manifolds in the present paper are assumed to be connected and of class \(C^1 \) and the real hypersurfaces are supposed to be orientable.

2. Preliminaries

Let \(M \) be a real hypersurface immersed in a complex space form \(M_n(c) \), and \(N \) be a unit normal vector field of \(M \). By \(\tilde{\nabla} \) we denote the Levi-Civita connection with respect to the Fubini-Study metric tensor \(\tilde{g} \) of \(M_n(c) \). Then the Gauss and Weingarten formulas are given respectively by

\[
\tilde{\nabla}_XY = \nabla_XY + g(A\phi Y, Z)N, \tilde{\nabla}_XN = -AX
\]

for any vector fields \(X, Y \) tangent to \(M \), where \(g \) denotes the Riemannian metric tensor of \(M \) induced from \(\tilde{g} \), and \(A \) is the shape operator of \(M \) in \(M_n(c) \). For any vector field \(X \) on \(M \) we put

\[
JX = \phi X + \eta(X)N, JN = -\xi,
\]

where \(J \) is the almost complex structure of \(M_n(c) \). Then we see that \(M \) induces an almost contact metric structure \((\phi, g, \xi, \eta)\), that is,

\[
\phi^2X = -X + \eta(X)\xi, \phi\xi = 0, \eta(\xi) = 1,
\]

\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \eta(X) = g(X, \xi)
\]

for any vector fields \(X, Y \) on \(M \). Since the almost complex structure \(J \) is parallel, we can verify from the Gauss and Weingarten formulas the followings:
\[\nabla_X \xi = \phi AX, \quad (2.2) \]
\[(\nabla_X \phi) Y = \eta(Y) AX - g(AX, Y) \xi. \quad (2.3) \]

Since the ambient manifold is of constant holomorphic sectional curvature \(c \), we have the following Gauss and Codazzi equations respectively:

\[R(X, Y, Z) = \frac{c}{4} (g(Y, Z) X - g(X, Z) Y + g(\phi Y, Z) \phi X - g(\phi X, Z) \phi Y - 2g(\phi X, Y) \phi Z) \quad (2.4) \]
\[+ g(AX, Z) AX - g(AX, X) AZ, \]
\[(\nabla_X A) Y - (\nabla_Y A) X = \frac{c}{4} \{ \eta(X) \phi Y - \eta(Y) \phi X - 2g(\phi X, Y) \phi \xi \} \quad (2.5) \]

for any vector fields \(X, Y \) and \(Z \) on \(M \), where \(R \) denotes the Riemannian curvature tensor of \(M \). From (1.3), the Ricci operator \(S \) of \(M \) is expressed by

\[SX = \frac{c}{4} \{ (2n+1) \eta(X) \xi + mX \} \]
\[+ m(\nabla_X A) Y - (\nabla_Y A) Y - A(\nabla_X A) Y, \quad (2.6) \]

where \(m = \text{trace} A \) is the mean curvature of \(M \), and the covariant derivative of (2.5) is given by

\[(\nabla_X S) Y = \frac{3c}{4} \{ g(\phi AX, Y) \xi + \eta(Y) \phi AX \} + (Xm) Y \]
\[+ m(\nabla_X A) Y - (\nabla_Y A) Y - A(\nabla_X A) Y. \quad (2.7) \]

Let \(U \) be a unit vector field on \(M \) with the same length of the vector field \(-\phi \nabla_X \xi \xi \) if it does not vanish, and zero (constant function) if it vanishes. Then it is easily seen from (1.1) that

\[AU = \alpha \xi + \beta U, \quad (2.8) \]

where \(\alpha = \eta(AX) \xi \). We notice here that \(U \) is orthogonal to \(\xi \). We put

\[\Omega = \{ p \in M | \beta(p) \neq 0 \}. \quad (2.9) \]

Then \(\Omega \) is an open subset of \(M \).

3. Some Lemmas

In this section, we assume that \(\Omega \) is not empty, then there are scalar fields \(\gamma, \varepsilon, \alpha, \beta, \gamma, \delta \) and a unit vector field \(U \) and \(\phi U \) orthogonal to \(\xi \) such that

\[AU = \beta \xi + \gamma U + \varepsilon \phi U, \quad A\phi U = \varepsilon U + \delta \phi U \quad (3.1) \]

and

\[\beta = \text{trace} A = \alpha + \gamma + \delta \quad (3.2) \]

in \(M_2(c) \). We shall prove the following Lemmas.

Lemma 3.1. Let \(M \) be a real hypersurface in a complex space form \(M_2(c), c \neq 0 \). If \(M \) satisfies (1.4), then we have \(AU = \beta \xi + \gamma U, \quad A\phi U = \delta \phi U \) and \(\delta = \gamma \).

Proof. If we put \(X = Y = U \), or \(X = U \) and \(Y = \phi U \) into (1.4) and make use of (3.1), then we have

\[\varepsilon = 0 \quad \text{and} \quad \delta = \gamma. \quad (3.3) \]

Therefore, it follows that \(AU \) is expressed in terms of \(\xi \) and \(U \) only and \(A\phi U \) given by \(\phi U \). \(\square \)

It follows from (2.6), (2.8) and Lemma 3.1 that

\[S\xi = \left(\frac{c}{2} + 2\alpha \gamma - \beta^2 \right) \xi + \beta \gamma U, \]
\[SU = \beta \gamma \xi + \left(\frac{5c}{4} + \alpha \gamma - \beta^2 + \gamma^2 \right) U, \quad (3.4) \]
\[S\phi U = \left(\frac{5c}{4} + \alpha \gamma + \gamma^2 \right) \phi U. \]

Lemma 3.2. Under the assumptions of Lemma 3.1. If \(M \) has the \(\eta \)-parallel Ricci operator \(S \) then we have \(\beta U = 0 \) and \((\phi U) \beta = -\gamma^2 \).

Proof. Differentiating the second of (3.4) covariantly along vector field \(X \) in \(T_0 \), we obtain

\[(\nabla_X S) U = \left(\frac{5c}{4} + \alpha \gamma - \beta^2 + \gamma^2 \right) I - S \right] \nabla_X U + \beta \gamma \phi AX \]
\[+ X(\beta \gamma) \xi + X \left(\frac{5c}{4} + \alpha \gamma - \beta^2 + \gamma^2 \right) U. \quad (3.5) \]

Taking inner product of (3.5) with \(U \) and \(\phi U \) and making use of (3.5) and Lemma 3.1, we have

\[2\beta \gamma^2 g(\phi U, X) = X \left(\frac{5c}{4} + \alpha \gamma - \beta^2 + \gamma^2 \right) \]
\[\beta g(\nabla_U U, \phi U) = \gamma^2 g(U, X). \quad (3.6) \]

If we put \(X = U \) and \(Y = \phi U \) into (3.6) then we have

\[(\alpha + 2\gamma) U + \gamma U \alpha - 2\beta U \beta = 0 \quad (3.8) \]

and

\[2\beta \gamma^2 = (\alpha + 2\gamma) (\phi U) \gamma + \gamma (\phi U) \alpha - 2\beta (\phi U) \beta. \quad (3.9) \]

Putting \(X = U \) and \(Y = \phi U \) into (3.7), then we obtain

\[\beta g(\nabla_U U, \phi U) = \gamma^2 \quad \text{and} \quad \beta g(\nabla_U U, \phi U) = 0. \quad (3.10) \]

If we differentiate the third of (3.4) covariantly along vector field \(X \) in \(T_0 \), we obtain
\[(\nabla_x S)\phi U = \left(\frac{5c}{4} + \alpha\gamma + \gamma^2\right)I - S\nabla_x \phi U + X\left(\frac{5c}{4} + \alpha\gamma + \gamma^2\right)\phi U.\] (3.11)

If we take inner product of \(\phi U\) and using (3.4), then we have
\[X\left(\frac{5c}{4} + \alpha\gamma + \gamma^2\right)\phi U = 0.\] (3.12)

Substituting \(X = U\) and \(\phi U\) into (3.12), we obtain
\[(\alpha + 2\gamma)U\gamma + \gamma\alpha = 0\quad \text{and} \quad (\alpha + 2\gamma)(\phi U)\gamma + \gamma(\phi U)\alpha = 0.\] (3.13)

By comparing (3.8) and (3.9) with (3.13), we have \(U\beta = 0\) and \(\phi U\beta = -\gamma^2\). \(\Box\)

Lemma 3.3. Under the assumptions of Lemma 3.2, we have \(\nabla_x U = \gamma g(\phi U , X)\xi + \frac{\gamma^2}{\beta}g(U , X)\phi U\).

Proof. Since we have \(A\phi U = \gamma\phi U\) and using (3.7), we get
\[a(X) = g(\nabla_x U , \xi) = \gamma(\phi U , X)\quad \text{and} \quad c(X) = g(\nabla_x U , \phi U) = \frac{\gamma^2}{\beta}g(U , X).\] (3.14)

Thus, it follows from (3.14) that
\[\nabla_x U = \gamma g(\phi U , X)\xi + \frac{\gamma^2}{\beta}g(U , X)\phi U.\] \(\Box\)

Lemma 3.4. Under the assumptions of Lemma 3.2, we have \(\xi\alpha = \xi\beta = \xi\gamma = 0\) and \(U\alpha = U\gamma = 0\).

Proof. Differentiating the smooth function \(\alpha = g(A\xi , \xi)\) along any vector field \(X\) on \(\Omega\) and using (2.2) and (2.5) and Lemma 3.1, we have
\[X\alpha = g((\nabla_x A)\xi - 2\beta\gamma\phi U , X).\] (3.15)

Since we have \(\nabla_x (\nabla_x A)\xi = \nabla_x (\alpha\xi + \beta U) - \nabla_x \xi\), we see from the equation above that the gradient vector field \(\nabla\alpha\) of \(\alpha\) is given by
\[\nabla\alpha = \beta\nabla U + (\xi\alpha)\xi + (\xi\beta)U + (\alpha\beta - 3\beta\gamma)\phi U.\]

If we put \(X = \xi\) into Lemma 3.3, then we have
\[\nabla U = 0.\] (3.16)

Thus, the above equation is reduced to
\[\nabla\alpha = (\xi\alpha)\xi + (\xi\beta)U + (\alpha\beta - 3\beta\gamma)\phi U.\] (3.17)

Taking inner product of this equation with \(U\) and \(\phi U\) respectively, we obtain
\[U\alpha = \xi\beta \quad \text{and} \quad (\phi U)\alpha = \alpha\beta - 3\beta\gamma.\] (3.18)

If we differentiate the smooth function \(\beta = g(AU , \xi)\) along any vector field \(X\) on \(M\) and using (2.2), (2.5) and (2.8) and Lemma 3.2, we have
\[\nabla\beta = \beta\nabla U + (U\alpha)\xi + (U\beta)U + \left(\frac{c}{2} + 2(\alpha\gamma - \gamma^2)\right)\phi U.\] (3.19)

Putting \(X = U\) into Lemma 3.3, then we have
\[\nabla U = \frac{\gamma^2}{\beta}\phi U.\] (3.20)

If we substitute (3.20) into (3.19), then we obtain
\[\nabla\beta = (U\alpha)\xi + (U\beta)U + \left(\frac{c}{2} + 2\alpha\gamma - \gamma^2\right)\phi U.\] (3.21)

If we take inner product of this equation with \(\phi U\) and using \(\phi U\beta = -\gamma^2\) in Lemma 3.2, then we have
\[\alpha\gamma + \frac{c}{4} = 0.\] (3.22)

As a similar argument as the above, we can verify that the gradient vector fields of the smooth function
\(\gamma = g(AU , U) = g(A\phi U , \phi U\) is given respectively by
\[\nabla\gamma = -(A - \gamma I)\nabla U + \left(U\beta\right)\xi + (U\gamma)U + 3\beta\gamma\phi U\] (3.23)
and
\[\nabla\gamma = \left((\phi U)\gamma\phi U\right.\] (3.24)
by virtue of (2.3) and Lemma 3.2.

If we substitute (3.24) into (3.23) and make use of (3.20) and Lemma 3.1, then we obtain
\[\left(U\beta\right)\xi + (U\gamma)U + (\phi U)\gamma - 3\beta\gamma\phi U = 0.\] (3.25)

If we take inner product of this equation with \(U\) and \(\phi U\) respectively, then we have
\[U\gamma = 0 \quad \text{and} \quad (\phi U)\gamma = 3\beta\gamma.\] (3.26)

If we substitute (3.26) into (3.14) and take account of (3.21), then we have \(U\alpha = 0\). Also, if we differentiate (3.21) along any vector field \(\xi\), then we have
\[\alpha\xi\gamma + \xi\alpha\gamma = 0.\] (3.27)

Taking inner product of (3.23) with \(\xi\) and using (3.18), we get \(\xi\gamma = U\beta\). Since \(U\alpha = 0\), we see from (3.27) and the first of (3.18) that \(\xi\gamma = 0, \xi\alpha = 0\) and \(\xi\beta = 0\). \(\Box\)

4. Proofs of Theorems

Proof Theorem 1.8. If (1.4) is given in \(M\), then we see that Lemma 3.1 holds on \(M\). If we differentiate (1.3) along any vector field \(X\) in \(T_0\) and using (2.3) and (2.8), then we have
for any vector fields X, Y and Z on T_0. Putting $X = Y = Z = U$ into (4.1) and using Lemma 3.1 and 3.3, then we have

$$\beta \gamma = 0. \quad (4.2)$$

Since Ω is not empty, we have $\gamma = 0$ hold on Ω. It follows from (2.8) and Lemma 3.1 that

$$A\xi = \alpha \xi + \beta U, \quad AU = \beta \xi \quad \text{and} \quad A\phi U = 0.$$ \hspace{1cm} (4.3)

Thus M is locally congruent to real hypersurface (see [7]). □

Proof Theorem 1.9. Assume that the open set $\Omega = \{ p \in M \mid \beta (p) \neq 0 \}$ is not empty. Then we consider from Lemma 3.2 and 3.3 that $\beta (U) = -\gamma^2$ and

$c(U) = \frac{\gamma^2}{\beta}$. If we differentiate the smooth function

$\beta = g(A\xi, U)$ along vector field X on M and (2.2), (2.5) and (2.8), we have

$$X \beta = g\left(\nabla_\xi A, U + \left[\frac{c}{4\alpha} + \alpha \gamma - \gamma^2 \right] \phi U, X \right). \quad (4.4)$$

Since we have $\left(\nabla_\xi A \right) U = \nabla_\xi (\beta \xi + \gamma U) - A\nabla_\xi U$, we see from this equation above that gradient vector field $\nabla \beta$ of β is given by

$$\nabla \beta = -((A - \gamma I) \nabla_\xi U + (\xi \beta) \xi + (\xi \gamma) U$$

$$+ \beta \xi + \frac{c}{4} \alpha \gamma - \gamma^2 \phi U, \quad (4.5)$$

where I indicates the identity transformation on M. If we substitute (3.16) into (4.4) and using Lemma 3.4, then we obtain

$$\nabla \beta = \left(\beta^2 + \frac{c}{4} \alpha \gamma - \gamma^2 \right) \phi U. \quad (4.6)$$

Since we have $(\phi U) \beta = -\gamma^2$, we get

$$\beta^2 + \frac{c}{4} \alpha \gamma = 0. \quad (4.7)$$

By (4.6) and (3.22), we have $\beta = 0$ and hence it is a contradiction. Thus the set $\Omega = \{ p \in M \mid \beta (p) \neq 0 \}$ is empty, and hence M is a Hopf hypersurface. Since M is a Hopf hypersurface, we see from (2.1) and (2.8) that $(A\phi - \phi A) \xi = 0$, which together with our assumption (1.4) implies (1.1), that is $A\phi = \phi A$ on M. Thus, Theorem 1.9 shows that M is locally congruent to a real hypersurface of type A. □

5. Acknowledgements

The authors would like to express their sincere gratitude to the referee who gave them valuable suggestions and comments.

REFERENCES

