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ABSTRACT 

Hyperbolic Coxeter polytopes are defined precisely by combinatorial type. Polytopes in hyperbolic n-space with n + p 
faces that have the combinatorial type of a pyramid over a product of simplices were classified by Tumarkin for small p. 
In this article we generalise Tumarkin’s methods and find the remaining hyperbolic Coxeter pyramids. 
 
Keywords: Hyperbolic; Coxeter; Polytope; Pyramid 

1. Introduction 

The polytopes in n dimensions that have  faces are 
referred to collectively as the simplices of the geometric 
space they inhabit. A simplex may always be thought of 
as a pyramid, although every face may be considered to 
be the “base” of the pyramid. In this article we consider 
only Coxeter polytopes, which are precisely those that 
are the fundamental domains of reflection groups. The 
Coxeter simplices are well known in Euclidean, Spheri-
cal and Hyperbolic space. These lists illustrate an impor-
tant distinction that separates Hyperbolic space from the 
first two spaces in this list, namely that there is an upper 
bound on the dimension above which there are no sim-
plices. 

1n 

This distinction is much stronger than the example il-
lustrates. The proof due to Vinberg that there are no 
co-compact hyperbolic reflection groups for  is 
principally a combinatorial proof demonstrating that there 
are no hyperbolic Coxeter polytopes for large enough 
dimension (c.f. [1]). 

30n 

The bounded hyperbolic Coxeter simplices were clas-
sified by Lannér [2] in 1950. The non-compact hyper-
bolic Coxeter simplices can be enumerated using similar 
methods to Lannér. These have been well studied (c.f. 
[3-6]). 

Let  be a Coxeter polytope in hyperbolic space P
nH  with  faces. For  complete lists of 

hyperbolic Coxeter polytopes have been published by 
Tumarkin:  in [7]; and  in [8]. These lists 
are complete, and contain in their number many exam-
ples of hyperbolic Coxeter polytopes with the combina-
torial type of a pyramid. Tumarkin’s technique made use 
of the Gale diagram (c.f. [9]) which has quantitatively 
different characteristics when it describes a pyramid, as 
compared to other configurations. This distinction led to 

pyramids being classified using separate methods origi-
nally due to Vinberg.  

n p

2p 

1p 

3p 

In this article we generalise Tumarkin’s classification 
of Hyperbolic Coxeter pyramids in terms of the Coxeter 
diagram, and then find all remaining examples of such 
polytopes using simple combinatorial arguments. The 
relevant background about Coxeter diagrams and the 
polytopes they represent is presented in Section 2. In 
Section 3 we generalise the appropriate results of Tu-
markin, and complete the classification of hyperbolic 
Coxeter polytopes whose combinatorial type is a pyramid 
over a product of simplices. 

2. Coxeter Diagrams  

An acute-angled polytope is called a Coxeter polytope if 
all the dihedral angles at the intersections of pairs of 
faces are integer submultiples of  (or zero). A com-
plete presentation of an acute-angled polytope is given 
by a Gram matrix. Denote by i  the codimension one 
hyperplane containing the ith face of the polytope. A 
Gram matrix 

π



ijG g  is a symmetric matrix with en-
tries: 

   
 

  

1, if

cos π , if , π

1, if , 0

cosh , , if and  do not intersect

i j

ij
i j

i j i j

i j

n n
g





         

    

 

where  ,i j    is the minimum hyperbolic distance 
between the two hyperplanes which contain the two 
faces.  

A Coxeter diagram is an edge-labelled graph which 
represents almost all of the same information about the 
combinatorial structure of a Coxeter polytope. Each ver-
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tex of a Coxeter diagram corresponds to a face, and the 
labels for the edges are as presented in Table 1. 

An edge corresponding to a dihedral angle of π m  is 
said to be of weight m. The number of vertices in a 
Coxeter diagram is called the order of the diagram. A 
connected Coxeter diagram is called elliptic (respectively 
parabolic) if the corresponding Gram matrix is positive 
definite (respectively semidefinite and degenerate). A 
Coxeter diagram that consists only of elliptic (respec-
tively parabolic) connected components is called elliptic 
(respectively parabolic). The rank of a Coxeter diagram 
is equal to the rank of the Gram matrix. The Gram matrix 
of a disconnected Coxeter diagram can be transformed 
into a block diagonal matrix via permutations of the rows 
and the same permutations of the columns. Therefore the 
rank of a disconnected Coxeter diagram is the sum of the 
ranks of its connected components. The rank of a con-
nected elliptic diagram is equal to its order, while the 
rank of a connected parabolic diagram is one less than its 
order. Complete lists of connected elliptic and parabolic 
Coxeter diagrams can be found in [10].  

The vertices of the Coxeter polytope P can be read 
from the Coxeter diagram. Let J denote the set of vertices 
of the Coxeter diagram, and IS  the subdiagram corre-
sponding to a subset I J . We say that such a subset 
determines a face of the Coxeter polytope if the intersec-
tion of the faces in I is a face of P. We recall the follow-
ing proposition (in this form) from [8], originally proven 
in [1] as Theorems 3.1 and 3.2. 

Proposition 2.1. ([8], Proposition 1) 
1) A subset I J  determines a face of the polytope 

P (apart from an infinitely distant vertex) if and only if 
the subdiagram IS  is elliptic. In this case the codimen-
sion of the corresponding face is the number of elements 
in I; 

2) A subset I J  determines an infinitely distant 
vertex if and only if the subdiagram IS  is not elliptic 
and there is a subset I   such that  and I I  J  IS   
is parabolic of rank . 1n 

We can see from this proposition that if the order of a 
Coxeter diagram which determines a face of  is greater 
than  it must correspond to an infinitely distant vertex, 
conversely if the order of a diagram which determines a 
face is less than  it must be elliptic. 

P
n

n
 

Table 1. The edges of a Coxeter diagram. 

Type of edge: Corresponds to: 

Comprised of m − 2 lines, or  
labeled m 

A dihedral angle π m  

A single thick line A “cusp”, or a dihedral angle zero

A dashed line Two divergent faces 

No line A dihedral angle π 2  

A connected Coxeter diagram all of whose proper 
subdiagrams are elliptic, and the whole diagram is not 
elliptic or parabolic, is called a Lannér diagram. These 
correspond to the bounded hyperbolic simplices. A con-
nected Coxeter diagram all of whose proper subdiagrams 
are elliptic or connected parabolic, and the whole dia-
gram is neither elliptic nor parabolic, is called a quasi- 
Lannér diagram. These correspond to the unbounded 
hyperbolic simplices of finite volume. Complete lists of 
Lannér and quasi-Lannér diagrams can be found in [10].  

3. Pyramids 

The following two lemmas are straightforward generali-
sations of Tumarkin’s results.  

The first lemma was proven for p = 2 by Tumarkin [7]. 
This result was based on Vinberg’s general construction 
of unbounded Coxeter polytopes of finite volume which 
constructed hyperbolic Coxeter pyramids with n + 2 
faces ([1], Chapter 2, §7). Tumarkin then proved the re-
sult again for p = 3. The following Lemma 3.2 is a gen-
eralization of Tumarkin’s Lemma 11 from [8]. 

Lemma 3.1. If a hyperbolic Coxeter -polytope  
of finite volume is a pyramid with  faces, then it 
is a pyramid over a product of  simplices.  

n
p

P
n 

p
Proof. Suppose that P is a pyramid over some poly-

tope P . Then P  is the base of the pyramid above 
which is the apex A. P  is bounded by  vertexes, 
each of which is connected to A by an edge of P. All of 
the faces of P excluding  meet at A, and hence it is 
the confluence of 

k

P
n p


1   faces. When 1p   the 

polytope is a simplex, which is a pyramid over one sim-
plex (of dimension n − 1). For  we see that 1p 

1n p n  

h

, and so the Coxeter diagram of a vertex is 
of order greater than . We see from Proposition 2.1 
that this forces A to be an infinitely distant vertex. For a 
sufficiently small horosphere h centred at A, the intersec-
tion  is covered by a reflection group. The fun-
damental domain of this reflection group is a Euclidean 
Coxeter polytope, which is of the same combinatorial 
type as P (c.f. [8]). 

n

P

The geometry of a horosphere is equivalent to that of a 
Euclidean subspace of dimension  in Hyperbolic 
n-space. The hyperbolic Coxeter polytope P is the fun-
damental domain of a reflection group, which restricts to 
a Euclidean reflection group which covers the horosphere. 
Therefore, 

1n 

h P  is a bounded Euclidean Coxeter n − 1- 
polytope with 1n p   faces. The number of faces in 
the product of  Euclidean simplices of dimension l is m
l m , and we solve the following equation. 

 1 1n p n m.      
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The proof of this lemma is like that of Lemma 4 in [7]. 
Lemma 3.2. Let P be a hyperbolic Coxeter pyramid 

over a product of p simplices for  and 1p    be a 
Coxeter diagram of P. Then   satisfies the following 
three conditions: 

1)  is a union of p quasi-Lannér diagrams . The 
intersection of the i  is a unique node .  and 

 for i  are not adjacent; 



v

iL
\L vL

L

v i

\jL j
2) Each diagram  is parabolic. Any other sub-

diagram of  is elliptic; 
\i v

i

3) For any p vertices   such that 
 a diagram   is either elliptic 

or connected parabolic. 

L
1 2, , , nv v v 

 1 2\ , , , nv v v\i iv L v

Any Coxeter diagram satisfying these conditions de-
termines a hyperbolic Coxeter pyramid over a product of 
p simplices. 

Proof. Let A be the apex of the pyramid P over a 
product of p simplices and  the node of v   corre-
sponding to the face opposite A. By Proposition 2.1 as A 
is an infinitely distant vertex the Coxeter diagram \ v  
is parabolic of rank . The number of faces in the 
product of  simplices of dimension l  is l

1n 
m m , so 

the order of the Coxeter diagram is . For  
the Coxeter diagram is parabolic and has  connected 
components which will be denoted i , , all 
of which are by definition not adjacent. Note that all the 
subdiagrams of a connected parabolic Coxeter diagram 
are elliptic. 

1n p 
p

S 1,

1p 

 ,i p

  is the Coxeter diagram of a convex polytope of fi-
nite volume, and is therefore connected. Hence all of the 
connected components i  of  are connected to v 
by an edge, and  is the union of all of the i i

S \ v
 L S v  , 

i

intersecting in the common node v . All other proper sub-
diagrams of i  determine a face of P, and so are elliptic 
or parabolic. The smallest parabolic diagram is of order 
two, so the maximum order of a proper subdiagram of an 

i  is  and hence for  it must be elliptic. 
We see that, by definition, each of the  are quasi- 
Lannér. 

L

1L n p 1p 
L

Any vertex of P except A corresponds to a subdiagram 
 such that none of the vertices i  co-

incide with v. If  then the order of the resulting 
diagram is less than , and by Proposition 2.1 it deter-
mines a face of codimension , i.e. it does not 
determine a vertex. If  then the order of the dia-
gram is greater than n and the diagram must be parabolic, 
and at least one i  remains without any vertices re-
moved. This is a connected component of a parabolic 
diagram and is therefore parabolic, but it contains a 
parabolic diagram as a proper subdiagram. Hence 

 1 2\ , , , kv v v   v
k p

n

L

0k p 
pk 

k p  
and at least one  must be removed from each . i i

Suppose that a Coxeter diagram  of order 
v L

 n p  
satisfies the three conditions of the lemma. Then  

 by Lemma 5.1 in [1]. By an argument identi-

cal to that in part 2 of the proof of Lemma 4 in [7] the 
Coxeter diagram 

det 0 

  determines a Coxeter polytope P in 
nH .  
The polytope P is clearly a pyramid over the face v. 

Then by Lemma 3.1 it is a pyramid over a product of P 
simplices. ∎ 

These Lemmas provide a precise description of the 
combinatorial structure of the Coxeter diagram of a hy-
perbolic Coxeter pyramid. Recall that the hyperbolic 
pyramids with 2n   and  faces have been classi-
fied by Tumarkin ([7] and [8] respectively) and therefore 
we need only concern ourselves with . We now 
make use of the above results to find the remaining hy-
perbolic Coxeter pyramids. 

3n 

3p 

Lemma 3.3. Let  be a hyperbolic pyramid 
with 

nP H
n p  faces, then 4p  . 

Proof. Let   be the Coxeter diagram of P. Choose 

iv  ,  1,i ,

D

p , which separates  such that the 
connected component containing v consists of v and at 
least one vertex from each of the quasi-Lannér diagrams 

i . The degree of v in the diagram  is not less than 
p, and by Lemma 3.2 part (3) the diagram is either ellip-
tic or parabolic. By inspection of the elliptic and para-
bolic Coxeter diagrams the maximum degree of a vertex 
is equal to four, which is realised uniquely in the para-
bolic graph . ∎ 



ivL \

4

Note that the placement of the parabolic graph 4  
constrains the labelling of the edges connecting the ver-
tex v to the rest of the graph such that they must all be of 
weight 3. 

D

Corollary 3.4. Let  be a hyperbolic pyramid 
with 

nP H
4n   faces, then 5n  . 

Proof. Let   be the Coxeter diagram of P. Then   
contains a particular 4  as a subgraph, and the vertex 
of degree four is the base of the pyramid. For P to have 
finite volume, it is necessary that any parabolic subgraph 
of 

D

  must be a component of a parabolic graph of rank 
1n   ([1], Proposition 4.2). Therefore . 1 4n  

Assume that P has finite volume, and that . 
Then 4  is a connected component of 

5n 
D      , a 

parabolic graph of rank 1n  , and the graph 4  
contains a parabolic graph of rank . Therefore the 
connected components of  are all parabolic subdia-
grams of the quasi-Lannér diagrams i . However, by 
Lemma 3.2 part 2, each of the  contain only one 
parabolic subdiagram, namely , so  is elliptic. 
Hence 

\ D  
5n 

L

iL
v



\Li 
5n  . 

Proposition 3.5. A hyperbolic pyramid P with 4n   
faces has a Coxeter diagram which is among those given 
in Figure 2. 

Proof. By Corollary 3.4, hyperbolic pyramids with 
4n   faces exist in 5H  only. Therefore we have nine 

vertices, distributed between four quasi-Lannér diagrams 
which share a common vertex v. The smallest quasi- 
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Lannér diagram is a family, each member of which is of 
rank 2 and has three vertices. Hence each of the four 
quasi-Lannér diagrams must be from this family, the 
members of which are shown in Figure 1.  

We know that every edge connecting  to another 
vertex has weight 3. Therefore the common vertex be-
tween all four quasi-Lannér diagrams must be the filled 
vertex in Figure 1 and the two labels  and l  must be 
either 2 or 3. We can see that there are only two quasi- 
Lannér diagrams with this restriction.  

v

k

 

 

Figure 1. The Coxeter diagrams of the quasi-Lannér dia-
grams of rank 2 which have the following restrictions: 

, , 2 k l   1 1
+ < 1

k l
. 

 

 

Figure 2. Coxeter diagrams of hyperbolic pyramids with 9 
faces in H5. 

There are five ways to assemble these into a complete 
Coxeter diagram of a hyperbolic pyramid, and those are 
presented in Figure 2. ∎ 

All together, we have proven the following. 
Theorem 3.6. Let  be a Coxeter polytope in P nH  

with Coxeter diagram   of order  for . The 
combinatorial type of P is a hyperbolic pyramid over a 
product of p simplices if and only if it is one of the fol-
lowing: 

n p 1p 

1) 2p  : among the list in Theorem 2 of [7]; 
2) 3p  : among the list in §4 of [8]; 
3) 4p  : when   corresponds to a diagram in Fig-

ure 2, and this list is complete. 
Remark 3.7. The two diagrams in Figure 2 with rota-

tional symmetry of order four were among the root sys-
tems listed in Table 5.1 of [11]. 
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