G-Design of Complete Multipartite Graph Where G Is Five Points-Six Edges

Chengyang Gu, Wei Zhou
School of Mathematical Sciences, Huaiyin Normal University, Huai’an, China
Email: gey1964@sina.com, gey@hytc.edu.cn

Received March 3, 2012; revised April 27, 2012; accepted May 5, 2012

ABSTRACT
In this paper, we construct G-designs of complete multipartite graph, where G is five points-six edges.

Keywords: Complete Multipartite Graph; Graph Design; Latin Square

1. Introduction
Let K_n be a complete graph with n vertices, and G be a simple graph with no isolated vertex. A G-design (or G-decomposition) is a pair (X, B), where X is the vertex set of K_n and B is a collection of subgraphs of K_n, called blocks, such that each block is isomorphic to G and any edge of K_n occurs in exactly a blocks of B. For simplicity, such a G-design is denoted by $GGD(v)$. Obviously, the necessary conditions for the existence of a $G-GD(v)$ are

\[\begin{align*}
 v & \geq \left| V(G) \right| \\
 v(v-1) & \equiv 0 \mod 2 \left| E(G) \right|,
\end{align*} \]

\[v - 1 \equiv 0 \mod d \]

where d is the greatest common divisor of the degrees of the vertices in $V(G)$.

Let K_{n_1,n_2,\ldots,n_k} be a complete multipartite graph with vertex set $X = \bigcup_{i=1}^{k} X_i$, where these X_i are disjoint and $|X_i| = n_i$, $1 \leq i \leq k$. For a given graph G, a holey G-design, denoted by (X, G, \mathcal{B}), where X is the vertex set of K_{n_1,n_2,\ldots,n_k}, $G = \{X_1, X_2, \ldots, X_m\}$ (X called hole) and \mathcal{B} is a collection of subgraphs of K_{n_1,n_2,\ldots,n_k} called blocks, such that each block is isomorphic to G and any edge of K_{n_1,n_2,\ldots,n_k} occurs in exactly a blocks of \mathcal{B}. When the multipartite graph has k_i partite of size n_i, $1 \leq i \leq r$, the holey G-design is denoted by $G-HD(n_1^{n_1} n_2^{n_2} \cdots n_r^{n_r})$.

When $n_1 = n_2 = \cdots = n_k = n$, the holey G-design is denoted by $G-HD(n^n)$ (also known as G-decomposition of complete multipartite graph $K_n(t)$).

On the G-design of existence has a lot of research. Let k be the vertex number of G, When $k \leq 4$, J. C. Bermond proved that condition (1) is also sufficient in [1]; When $k = 5$, J. C. Bermond gives a complete solution in [2]. When $G = S_6$, P_2 and C_k, K. Ushio investigated the existence of G-design of complete multipartite graph in [3].

2. Fundamental Theorem and Some Direct Construction
Let G be a simple graph with five points-six edges (see Graph 1). G is denoted by (a, b, c)-(d, e, f).

The lexicographic product $G_1 \otimes G_2$ of the graphs G_1 and G_2 is the graph with vertex set $V(G_1) \times V(G_2)$ and an edge joining (u_1, u_2) to (v_1, v_2) if and only if either u_1 is adjacent to v_1 in G_1 or $u_1 = v_1$ and u_2 and v_2 are adjacent in G_2. We are only concered with a particular kind of lexicographic product, $G \times K_n$ (K_n be a empty graph with n vertices). Observe that

\[K_n(t) = K_n(t) \otimes K_1. \]

Lemma 2.1. If there exists a $G-HD(l^n)$, then there exists a $G-HD((lt)^n)$ for any integer l.

Proof. Let $V(K_n) = \{1, 2, \ldots, l\}$. Take any $l \times l$ latin square and consider each element in the form (α, β, γ) where α denotes the row, β the column and γ the entry, with $1 \leq \alpha, \beta, \gamma \leq l$. We can construct l^2 graphs G.
Let K be a subset of positive integers. A pairwise balanced design (PBD(v, K)) of order v with block sizes from K is a pair $(\mathcal{Y}, \mathscr{B})$, where \mathcal{Y} is a finite set (the point set) of cardinality v and \mathscr{B} is a family of subsets (blocks) of \mathcal{Y} which satisfy the properties:

1. If $B \in \mathscr{B}$, then $|B| \in K$.
2. Every pair of distinct elements of \mathcal{Y} occurs in exactly a blocks of \mathscr{B}.

Let K be a set of positive integers and

$$B(K) = \left\{ v \in N \mid \exists \text{PBD}(v, K) \right\},$$

then $B(K)$ is the PBD-closure of K.

Lemma 2.2 [5] If $K = \{3, 4, 5, 6, 8\}$, then

$$B(K) = \{ n \in N \mid n \geq 3 \}.$$

Lemma 2.3 [5] If $K = \{3, 4, 6\}$, then

$$B(K) = \{ v \in N \mid n > 3, n \equiv 0, 1 \text{(mod 3)} \}.$$

Lemma 2.4 [5] If $K = \{5, 9, 13, 17, 29, 33\}$, then

$$B(K) = \{ v \in N \mid n > 4, n \equiv 1 \text{(mod 4)} \}.$$

Lemma 2.5 If there exists a G-HD(ℓ) where $k \in \{3, 4, 5, 6, 8\}$, then there exists a G-HD(ℓ) where $n \geq 3$.

Proof. Let X be an element set and Z_i be a modulo t residual additive group. For $K = \{3, 4, 5, 6, 8\}$, take $Y = X \times Z_t$ by applying Lemma 2.2, we assume that (X, \mathcal{A}) be a $KBD(n, k)$. In the A, we take a block A, for $|A| = k \in K$, as there exists a G-HD(ℓ), let $A \times Z_t$ be the vertex set of G-HD(ℓ) and block set be \mathcal{B}_A, a $\mathcal{B} = \cup \mathcal{B}_A (A \in \mathcal{A})$, so (Y, \mathcal{B}) be a G-HD(n).

Similar to the proof of Lemma 2.5, We have the following conclusions.

Lemma 2.6 If there exists a G-HD(ℓ) for $k \in \{3, 4, 6\}$, then there exists a G-HD(ℓ) for $n = 0, 1 \text{ (mod 3)}$ and $n > 3$.

Lemma 2.7 If there exists a G-HD(ℓ) for $k \in \{5, 9, 13, 17, 29, 33\}$, then there exists a G-HD(ℓ) for $n \equiv 1 \text{ (mod 4)}$ and $n > 4$.

Lemma 2.8 [2] For $n \equiv 1, 9 \text{ (mod 12)}$, there exists a $(n, G, 1)$-GD.

Lemma 2.9 There exists a G-HD(2^9).

Proof. Take $X = \{a, b, c, d, e, f\}$ and $G = \{\{a, b\}, \{c, d\}, \{e, f\}\}$, we list vertex set and blocks below

$$\mathcal{B} : \{(a, b, f) - (f, c, b)(c, a, e) - (e, c, d)\}$$

Lemma 2.10 There exists a G-HD(2^6).

Proof. Take $X = \{0, 1, 2, 3\}$, and $G = \{\{0, 1\}, \{2, 3\}\}$, we list vertex set and blocks below

$$\mathcal{B} : \{(3, 0, 1) - (1, 2, 4) + 2 \mod 4\}$$

Lemma 2.11 There exists a G-HD(2^6).

Proof. Take $X = \{0, 5, 1, 6, 2, 7, 3, 8, 4, 9\}$, and $G = \{\{0, 1\}, \{2, 3\}\}$, we list vertex set and blocks below

$$\mathcal{B} : \{(1, i, 3, 3, 1) - (i, 4, i, 3, 1)\}$$
For \(t \equiv 0 \pmod{6} \) and \(n \geq 3 \):
1) \(t \equiv 0 \pmod{6} \) and \(n \equiv 0, 1 \pmod{3} \),
2) \(t \equiv 0 \pmod{6} \), \(t \not\equiv 0 \pmod{3} \) and \(n \equiv 1 \pmod{4} \),
3) \(t \equiv 0 \pmod{6} \), \(t \not\equiv 0 \pmod{3} \) and \(n \equiv 1 \pmod{9} \).

Proof. Necessary conditions are obviously, we prove the sufficient conditions.

1) For \(t \equiv 0 \pmod{6} \) and \(n \geq 3 \), by applying Lemma 2.17 and 2.5.,

\[\text{Lemma 2.16 There exists a } G\text{-HD}(3^{2k}) \]

2) For \(t \equiv 0 \pmod{2} \), \(t \not\equiv 0 \pmod{3} \) and \(n \equiv 0, 1 \pmod{3} \) by applying Lemma 2.9, 2.10, 2.11 and 2.12.

3) For \(t \equiv 0 \pmod{3} \), \(t \not\equiv 0 \pmod{2} \) and \(n \equiv 1 \pmod{4} \) by applying Lemma 2.12, 2.14, 2.15, 2.16, 2.18 and 2.7.

4) For \(t \equiv 0 \pmod{2} \), \(t \not\equiv 0 \pmod{3} \) and \(n \equiv 1, 9 \pmod{12} \), by applying Lemma 2.1 and 2.8.

3. **G-Designs of Complete Multipartite Graph**

Theorem 3.1 The necessary conditions for the existence of a \(G\text{-HD}(t^n) \) are sufficient for the following \(n \) and \(t \):

- 1) \(t \equiv 0 \pmod{6} \) and \(n \geq 3 \);
- 2) \(t \equiv 0 \pmod{6} \), \(t \not\equiv 0 \pmod{3} \) and \(n \equiv 0, 1 \pmod{3} \),
- 3) \(t \equiv 0 \pmod{6} \), \(t \not\equiv 0 \pmod{3} \) and \(n \equiv 1 \pmod{4} \),
- 4) \(t \equiv 0 \pmod{6} \), \(t \not\equiv 0 \pmod{3} \) and \(n \equiv 1, 9 \pmod{12} \),

REFERENCES

