A φ_x- and Open C^*_D-Filters Process of Compactifications and Any Hausdorff Compactification

Huynetzen J. Wu1, Wan-Hong Wu2

1Department of Mathematics, Texas A \& M University-Kingsville, Kingsville, USA
2University of Texas at San Antonio, One UTSA Circle, San Antonio, USA

Email: huyetzen.wu@tamuk.edu, dd1273@yahoo.com

Received February 23, 2012; revised March 15, 2012; accepted March 22, 2012

ABSTRACT

By means of a characterization of compact spaces in terms of open C^*_D-filters induced by a $D \subseteq C^*(Y)$, a φ_x- and open C^*_D-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a dense subspace of (Y^w, \mathcal{J}_B) or (Y^w, \mathcal{J}_B), where $Y^w = Y_E \cup Y_S$, $Y^w = Y_E \cup Y_T$, $Y_E = \{N|N$ is a φ_x-filter, $x \in Y\}$, $Y_S = \{F|F$ is an open C^*_D-filter that does not converge in $Y\}$, $Y_T = \{\tilde{A}|\tilde{A}$ is a basic open C^*_D-filter that does not converge in $Y\}$, \mathcal{J}_B is the topology induced by the base $\mathcal{B} = \{U^*|U$ is open in $Y, U \neq \phi\}$ and $U^* = \{F \in Y^w+(Y^w) \cup F\}$. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X can be obtained from a $D \subseteq C^*(X)$ by the similar process in Sec. 3.

Keywords: Net; Open Filter; Open C^*_D-Filter Base; Basic Open C^*_D-Filter; Open C^*_D-Filter; φ-Filter; φ_x-Filter; Tychonoff Space; Normal T_1-Space; Compact Space; Compactifications; Stone-Cech Compactification; Wallman Compactification

1. Introduction

Throughout this paper, $[T]^{-\alpha}$ denotes the collection of all finite subsets of the set T. For the other notations and terminologies in General Topology which are not explicitly defined in this paper, the readers will be referred to the Ref. [1].

For an arbitrary topological space Y, let $C^*(Y)$ be the set of bounded real-valued continuous functions on Y, $D \subseteq C^*(Y)$. It is shown in Sec. 2 that there exists a unique $r_t \in \text{Cl}(r(Y))$ for each $r \in D$ such that for any $H \in [D]^{-\alpha}$, $\varepsilon > 0$, $\bigcap_{t \in H} f^{-1}((r_t - \varepsilon, r_t + \varepsilon)) \neq \phi$. Let $V_{t} = \bigcap_{t \in H} f^{-1}((r_t - \varepsilon, r_t + \varepsilon)) \neq \phi$ for any $H \in [D]^{-\alpha}$, $\varepsilon > 0$. V_{t} is called an open C^*_D-filter base. An open filter E_{x} on Y containing an open C^*_D-filter base V_{t} is called an open C^*_D-filter. An open filter A_{y} on Y generated by an open C^*_D-filter base V_{t} is called a basic open C^*_D-filter. By a characterization of compact spaces in Sec. 2 and the φ_x- and open C^*_D-filters process of compactifications in Sec. 3, Y can be embedded as a dense subspace of (Y^w, \mathcal{J}_B) or (Y^w, \mathcal{J}_B), where $Y^w = Y_E \cup Y_S$, $Y^w = Y_E \cup Y_T$, $Y_E = \{N|N$ is a φ_x-filter, $x \in Y\}$, $Y_S = \{F|F$ is an open C^*_D-filter that does not converge in $Y\}$, $Y_T = \{\tilde{A}|\tilde{A}$ is a basic open C^*_D-filter that does not converge in $Y\}$, \mathcal{J}_B is the topology induced by the base $\mathcal{B} = \{U^*|U \neq \phi, U$ is open in $Y\}$ and $U^* = \{F \in Y^w+(Y^w) \cup F\}$. Furthermore an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X can be obtained from a $D \subseteq C^*(X)$ by the similar process in Sec. 3.

2. Open C^*_D-Filters and a Characterization of Compact Spaces

Let Y, $C^*(Y)$ and D be the sets that are defined in Sec. 1.

Theorem 2.1 Let F be a filter on a topological space Y. For each $f \in D$, there exists a $r_t \in \text{Cl}(f(Y))$ such that $f^{-1}((r_t - \varepsilon, r_t + \varepsilon)) \cup F \neq \phi$ for any $F \in F$ and any $\varepsilon > 0$. (See Thm 2.1 in the Ref. [2, p. 1164].)

Proof. If the conclusion is not true, then there is an $f \in D$ such that for each $r_t \in \text{Cl}(f(Y))$, there exist an $F_t \in F$ and an $\varepsilon_t > 0$ such that $f^{-1}((r_t - \varepsilon_t, r_t + \varepsilon_t)) \cap F = \phi$. Since $\text{Cl}(f(Y))$ is compact and $\text{Cl}(f(Y)) \subseteq \bigcup\{(r_t - \varepsilon_t, r_t + \varepsilon_t)|r_t \in \text{Cl}(f(Y))\}$, there exist r_1, \ldots, r_n in $\text{Cl}(f(Y))$ such that $Y = f^{-1}(\text{Cl}(f(Y))) = \bigcup\{f^{-1}((r_t - \varepsilon_t, r_t + \varepsilon_t))|r_t \in \text{Cl}(f(Y))\}$, but $\bigcap_{t=1}^{n} f^{-1}((r_t - \varepsilon_t, r_t + \varepsilon_t)) = \phi$, contradicting that $\phi \neq F$. □

Corollary 2.2 Let Q be an open ultrafilter on Y. For
each \(f \in D \), there exists a unique \(r_f \in \text{Cl}(f(Y)) \) such that (1) for any \(H \in [D]^\omega \), any \(\varepsilon > 0 \), \(\cap_{\varepsilon \in H} f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \neq \emptyset \) if \(S \subseteq T \) and (2) for any \(H \in [D]^\omega \), any \(\varepsilon > 0 \), \(\cap_{\varepsilon \in H} f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \neq \phi \) (See Cor. 2.2 in the Ref. [2, p. 1164]).

Therefore, for a given open ultrafilter \(Q \), \(Q \) contains a unique open filter base \(V = \{ \cap_{\varepsilon \in H} f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \} \) \(\cap_{\varepsilon \in H} f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \neq \emptyset \) for any \(H \in [D]^\omega \), \(\varepsilon > 0 \), \(\cap_{\varepsilon \in H} f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \neq \phi \) (See Cor. 2.2 in the Ref. [2, p. 1164]).

Proof. 1) \(\Rightarrow \) 2) is obvious by Lemma 2.8 1) above and Thm. 12.17 (a) in the Ref. [1, p. 81]. For \(\Rightarrow \) 1), Let \(\{x_i\} \) be a D-net in \(Y \), let \(F = \{O\} \) is open, and \(\{x_i\} \) is eventually in \(O \). Clearly, \(F \) is an open filter. For each \(f \in D \), let \(t_r = \lim f(x_i) \), then \(\{x_i\} \) is eventually in \(f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \) for any \(\varepsilon > 0 \), i.e., for each \(f \in D \), any \(\varepsilon > 0 \), \(f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \) \(\subseteq \mathcal{F} \), so \(F \) is an open \(C^*_p \)-filter. 2) implies that \(F \) converges to a point \(x \). Thus, for any open nhood \(U \) of \(x \), \(U \in \mathcal{F} \); i.e., \(\{x_i\} \) is eventually in \(U \). So \(\{x_i\} \) converges to \(x \). \(\square \)

Corollary 2.10. If every open \(C^*_p \)-filter \(E \) on \(Y \) converges in \(Y \), then \(Y \) is compact.

3. An Open \(C^*_p \)-Filter Process of Compactification

For each \(x \in Y \), let \(N_x = \{\{x_i\} \cup O \} \) is open, \(x \in O \). \(N_x \) is a \(\sigma \)-filter (See 12E in the Ref. [1, p. 83] for its definition and convergence) with \(O = N_x \). For each \(x \in Y \), \(N_x \) is called a \(\sigma \)-filter. Let \(Y = N_x \), \(\mathcal{F} = \{N_x\} \) is a \(\sigma \)-filter, \(x \in Y \), \(Y_x = \mathcal{E} \) is an open \(\mathcal{C}^*_p \)-filter that does not converge in \(Y \). \(Y_x = \mathcal{E} \cup S_y \) and \(Y_x \) is a basic open \(\mathcal{C}^*_p \)-filter that does not converge in \(Y \), \(Y_x = \mathcal{E} \cup S_y \) and \(Y_x \) is a basic open \(\mathcal{C}^*_p \)-filter that does not converge in \(Y \).

Lemma 3.11. For each \(F \in Y_x^w \) (or \(Y_x^w \)), there is a unique \(\{x_i\} \subseteq \text{Cl}(f(Y)) \) for each \(f \in D \) such that \(f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \subseteq V \), \(x \in F \) for all \(\varepsilon > 0 \).

Proof. If \(F = N_x \) for an \(x \in Y \), then for each \(f \in D \), \(f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \subseteq V \subseteq N_x \) for all \(\varepsilon > 0 \), where \(t_r = \lim f(x_i) \). If \(F = \emptyset \), then there is an open \(F \)-filter base \(V \), as the \(x \) in \(F \) defined in Section 1, such that for each \(f \in D \), \(f^{-1}((t_r - \varepsilon, r_t + \varepsilon)) \subseteq V \subseteq \emptyset \) for all \(\varepsilon > 0 \). The uniqueness of \(t_r \) for each \(f \in D \) follows from Cor. 2.2. \(\square \)

Definition 3.12. For any open set \(U \) \(\neq \emptyset \) in \(Y \), define \(U^* = \{f \in Y_x^w \cup Y_x^w | f \subseteq U \} \).

Lemma 3.13. 1) For any open set \(U \subseteq Y \), \(U \neq \emptyset \Rightarrow U^* \neq \emptyset \).

"Proof. 1) If \(U \neq \emptyset \), pick an \(x \in U \), then \(U \subseteq N_x \Rightarrow U = U^* \); i.e., \(U \neq \emptyset \); if \(U \neq \emptyset \), pick a \(f \in U \), then \(U \subseteq U^* \)."

2) \(\Rightarrow \) 1) is obvious from Def. 3.12. \(\square \)

Lemma 3.14. For any two nonempty open sets \(S \) and \(T \) in \(Y \), \(S \subseteq T \) iff \(S^* \subseteq T^* \) and (2) \(S \cap T^* = S^* \cap T^* \) if \(S \subseteq T \).

"Proof. 1) \(\Rightarrow \) 2) By (1), \(S \cap T^* = S^* \cap T^* \Rightarrow S^* \subseteq T^* \). For \(S \subseteq T \), there is a \(y \in (S - T) \Rightarrow y \in N_y \in \mathcal{C}^*_p \Rightarrow S^* \subseteq T^* \). By 1) above, \(S \cap T^* \subseteq S^* \cap T^* \). If \(S^* \subseteq T^* \), then \(S \subseteq T^* \subseteq T^* \); i.e., \(S \subseteq T^* \).

3) By the definition of the \(C^*_p \)-filter process, \(S \subseteq T \). \(\square \)

Proposition 3.15. \(B = \{U^*U \neq \emptyset \text{ is an open set in } Y \} \) is a base for \(Y_x^w \) (or \(Y_x^w \)).

"Proof. (a) In Thm. 5.3 in the Ref. [1, p. 38]: For each \(f \in Y_x^w \) (or \(Y_x^w \)), pick a \(O \in F \). Then \(O \neq \emptyset \), \(f \in O \) and \(O^* \in B \). Thus \(Y_x^w \) (or \(Y_x^w \)) = \{U^*U \in B \}.

(b) If \(f \in S^* \cap T^* \), then \(S \subseteq T \subseteq T^* \), then \(S \cap T \subseteq F \); i.e., \(S \subseteq T \). \(\square \)
≠ S ∩ T ∈ ℱ, (S ∩ T)* ∈ ℋ and ℱ ∈ (S ∩ T)* ⊆ S ∩ T* ∈ ℋ. □

Equip Y^w (or Y^w) with the topology induced by ℋ. For each f in D, define f"* (or Y^w) → ℜ by f"*(ℱ) = r_0 if f"*(t(e, t, e) + ε) ⊆ V, otherwise f"*(ℱ) = r_0 for all ε > 0. By Lemma 3.11, for each f in D, f"* is well-defined and f"*(Y^w) (or f"*(Y^w) ⊆ Cl(f (Y))) is finite. f"* is a bounded real-valued function on Y^w (or Y^w) such that f"*(x) = f(x) for all x ∈ Y.

Proposition 3.16 For each f in D, let t ∈ Cl(f (Y)). For any δ, ε with 0 < δ < ε < 1, [f"*(1(δ, 1 + δ)])^* ⊆ f"*(1(ε, 1 + ε)).

Proof. 1) If f"*(1(δ, 1 + δ))]^* then f"*(1(δ, 1 + δ)) ⊆ ℱ. If f"*(ℱ) = e, then f"*(1(ε, 1 + ε)) ⊆ ℱ for all ε > 0. Since (1(δ, 1 + δ)) ⊆ (1(ε, 1 + ε)), f"*(ℱ) = e, i.e., F ∈ f"*(1(ε, 1 + ε)), hence f"*(ℱ) ⊆ (1(ε, 1 + ε)). Since f"*(1(ε, 1 + ε)) ⊆ ℱ for all ε > 0, this implies f"*(ℱ) = e for all ε > 0. Hence f"*(ℱ) = e for all ℱ in T, i.e., F ∈ f"*(1(ε, 1 + ε)).

Proposition 3.17 For each f in D, f"* is a bounded real-valued continuous function on Y^w (or Y^w).

Proof. For any f"* ∈ Y^w (or Y^w), let f"*(ℱ) = t. We show that for any ε > 0, there is a U * ∈ ℋ such that f"* ∈ U* ⊆ f"*(1(ε, 1 + ε)). Let U = f"*(1(ε, 2 + ε)) = f"*(1(ε, 2 + ε)). Since f"*(1(ε, 2 + ε)) ⊆ ℱ for all ε > 0, this implies f"*(ℱ) = e for all ℱ in T, i.e., F ∈ f"*(1(ε, 2 + ε)). Pick by Prop. 3.16 1), F ∈ U* ⊆ f"*(1(ε, 2 + ε)). Thus f"* is continuous on Y^w (or Y^w).

Lemma 18 Let k: Y → Y^w (or Y^w) be defined by k(x) = N_k. Then k is well-defined, one-one and k(U) = U for all nonempty open set U in Y and all U ∈ ℋ, i.e., k is continuous; 2) f"* ◦ k = f for all f in D; 3) k(Y) is dense in Y^w (or Y^w).

Proof. 1) For any x, y in Y, x = y implies k(x) = k(y). So k(x) = k(y). 2) k(U) = U for all nonempty open set U in Y and all U ∈ ℋ, i.e., k(U) = U for all nonempty open set U in Y, U ∈ ℋ, i.e., k is continuous.

Theorem 3.20 (Y^w, k) is a compactification of Y.

Proof. Case 1: If L_k converges to a point p in Y, let U be any open set in Y such that k(p) ∈ U in ℋ. By Lemma 3.18 1), p ∈ U = k(U), thus U ∈ ℋ, i.e., U ∈ ℋ_1. This implies that L_k converges to k(p) in Y^w. Case 2: If L_k does not converge in Y then L_k ∈ Y^w. For any U ∈ ℋ such that L_k ∈ U, U ∈ ℋ and therefore U ∈ ℋ_1. This shows that L_k converges to L_k in Y^w. By Cor. 2.10, Y^w is compact and by Lemma 3.18 3), (Y^w, k) is a compactification of Y.

Lemma 20 For any open set U in L_k = A_k, U ∈ ℋ_1.

Proof. If U ∈ ℋ_1, then there exist a H ∈ D^w, an ε > 0 such that E = (∩ H^w)ε(t_e, t_e + ε) ∈ V, and E ⊆ U. By Lemma 3.14 and Prop. 3.16 2) that F = (∩ H^w)ε(t_e, t_e + ε) ⊆ E^w ⊆ U* and F ∈ ℋ_1. Thus U = E^w.

Theorem 3.22 (Y^w, k) is a compactification of Y.

Proof. Case 1: If L_k = A_k converges to a point p in Y, let U be any open set in Y such that k(p) ∈ U, Lemma 3.18 1) implies that p ∈ U, thus U = L_k = A_k, and L_k does not converge in Y then L_k = A_k ∈ Y^w. For any U* + B such that A_k ∈ U* + B and L_k ∈ L_k and therefore U* ∈ ℋ_1. This shows that E^w converges to E^w in Y^w. By Cor. 2.10, Y^w is compact and by Lemma 3.18 3), (Y^w, k) is a compactification of Y.

4. An Arbitrary Hausdorff Compactification of a Tychonoff Space

For an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X, let D = {f|f is h o f, f ∈ D = C(Z)}. Then D ⊆ C^*(X), D separates points of X and the topology on X is the weak topology induced by D. For each x ∈ X, let V_x as the V_x defined in Section 2, be the open C^*_X-filter base at x induced by D. Obviously, we can easily get Lemma 4.21 as follows:

Lemma 4.21 G_0 = V_{x} [x ∈ X] is a base for the topology on X and for each x ∈ X, V_x is an open nhood base at x.
Let $X^W = \{ \hat{A} \mid \hat{A} \text{ is a basic open } C^*_p \text{-filter on } X \}$. For each $\hat{A} \in X^W$, let V_λ, as the V_λ defined in Sec. 1, be the open $C^*_p \text{-filter base that generates } \hat{A}$. If \hat{A} converges to an $x \in X$, then for each $f \in D$, $x \in Cl(f^{-1}(t_\lambda - d, t_\lambda + e)) \subseteq f^\ast\circ I^{-1}(t_\lambda - d, t_\lambda + e) \subseteq f^\ast((t_\lambda - d, t_\lambda + e))$ for all $\lambda > 0$.

Proof. For any open set $U \subset X$, define $U^* \mathrel{\overset{\text{def}}{=} } \{ \hat{A} \in X^W \mid U \circ I^{-1}(t_\lambda - d, t_\lambda + e) \}

The following. For any two empty sets S and T in X, 1) $S \subset \mathcal{I}$ if $S \circ I^{-1}(t_\lambda - d, t_\lambda + e)$, and 2) $(S \cap T)^* = S^* \cap T^*$ if $S \cap T \neq \phi$.

For any $f \in D$, let $t \in \mathcal{I}(f(X))$. For any δ, e with $0 < \delta < e$, 1) $[f^\ast((t_\lambda - \delta, t_\lambda + \epsilon))]^* \subseteq f^\ast((t_\lambda - \delta, t_\lambda + \epsilon))$, 2) $f^\ast((t_\lambda - \delta, t_\lambda + \epsilon)) \subseteq f^\ast((t_\lambda - \delta, t_\lambda + \epsilon))$.

For any $f \in D$, f^\ast is a bounded real-valued continuous function on X^W.

For each basic open $C^*_p \text{-filter } \hat{A} \in X^W$, let V_λ, as the V_λ defined in Sec. 1, be the open $C^*_p \text{-filter base that generates } \hat{A}$. Since $h^{-1}: h(X) \rightarrow X$ is one-one, $f^\ast \circ h$ and $h(X)$ is dense in Z, so $h^{-1}(\mathcal{I}(f(X))) = f^{-1}(t_\lambda - d, t_\lambda + e) \subseteq f^{-1}(t_\lambda - d, t_\lambda + e)$.

Proof. For any open set $U \subset X$, let V_λ, as the V_λ defined in Sec. 1, be the open $C^*_p \text{-filter base that generates } \hat{A}$. Since $h^{-1}: h(X) \rightarrow X$ is one-one, $f^\ast \circ h$ and $h(X)$ is dense in Z, so $h^{-1}(\mathcal{I}(f(X))) = f^{-1}(t_\lambda - d, t_\lambda + e) \subseteq f^{-1}(t_\lambda - d, t_\lambda + e)$.

For any open $C^*_p \text{-filter } \hat{E}_* \text{ on } X^W$, let $V_\lambda^* = \{ t_\lambda \mid \mathcal{I}(t_\lambda - d, t_\lambda + e) \}$.

The topology on X^W is the weak topology induced by D^\ast.

For each $\hat{A} \in X^W$, let V_λ, as the V_λ defined in Sec. 1, be the open $C^*_p \text{-filter base that generates } \hat{A}$, and let $U \subset B$ such that $\hat{A} \in U^*$, then $U \in \hat{A}$. So there exist a $H \in \{ \mathcal{I} \}^{>0}$, an $e > 0$ such that $\mathcal{I}(f(X)) \subseteq f^{-1}(t_\lambda - d, t_\lambda + e) \subseteq f^{-1}(t_\lambda - d, t_\lambda + e)$.

For any open $C^*_p \text{-filter } \hat{E}_* \text{ on } X^W$, let $V_\lambda^* = \{ t_\lambda \mid \mathcal{I}(t_\lambda - d, t_\lambda + e) \}$.

The topology on X^W is the weak topology induced by D^\ast.

For each $\hat{A} \in X^W$, let V_λ, as the V_λ defined in Sec. 1, be the open $C^*_p \text{-filter base that generates } \hat{A}$, and let $U \subset B$ such that $\hat{A} \in U^*$, then $U \in \hat{A}$. So there exist a $H \in \{ \mathcal{I} \}^{>0}$, an $e > 0$ such that $\mathcal{I}(f(X)) \subseteq f^{-1}(t_\lambda - d, t_\lambda + e) \subseteq f^{-1}(t_\lambda - d, t_\lambda + e)$.

For any open $C^*_p \text{-filter } \hat{E}_* \text{ on } X^W$, let $V_\lambda^* = \{ t_\lambda \mid \mathcal{I}(t_\lambda - d, t_\lambda + e) \}$.

The topology on X^W is the weak topology induced by D^\ast.
Since \(f^* = z \). Hence, \(\mathcal{H} \) is a well-defined open topology induced by \(f^* \) iff (d): \(\{ \cap_{c \in H} \mathcal{F}^{-1}(\cap_{s \in H} f^{-1}(f(z) - e, f(z) + e)) \neq \emptyset \} \) is a well-defined open \(C^*_0 \)-filter base on \(X \). Let \(A_x \) be the basic open \(C^*_0 \)-filter on \(X \) generated by \(V_x \). If \(z_0 \) is the \(w \)-point in \(Z \) induced by \(A_x \). Then \(\mathcal{F}(z_0) = \mathcal{F}(z) = f^*(A_x) \) for all \(f \in \mathcal{D} \) and \(f^* \in \mathcal{D}^* \). This implies that \(z = z_0 \) in \(Z \). So, for any \(z \in Z \), there is a unique \(A_x \) in \(X^W \) such that \(\mathcal{H}(A_x) = z \). Hence, \(\mathcal{H} \) is well-defined, one-one and onto.

Theorem 5.27 \((X^W, k)\) is homeomorphic to \((Z, h)\) under the mapping \(\mathcal{H} \) such that \(\mathcal{H}(k(x)) = h(x) \).

Proof. Since the topologies on \(Z \) and \(X^W \) are the weak topologies induced by \(\mathcal{D} \) and \(\mathcal{D}^* \), respectively, to show the continuity of \(\mathcal{H} \), it is enough to show that for any \(f \in \mathcal{D} \) (or \(f^* \in \mathcal{D}^* \)), any \(\varepsilon > 0 \), \(\mathcal{H}^{-1}(f^{-1}((t_r - \varepsilon, t_r + \varepsilon))) = f\mathcal{F}^{-1}((t_r - \varepsilon, t_r + \varepsilon)) \neq \emptyset \) for any \(H \in \mathcal{D}^{-\varepsilon} \). For each \(A_x \) in \(X^W \), let \(V_x = \{ \cap_{s \in H} \mathcal{F}^{-1}((s_t - \varepsilon, s_t + \varepsilon)) \cap_{c \in H} \mathcal{F}^{-1}((s_t - \varepsilon, s_t + \varepsilon)) \neq \emptyset \} \) be the open \(C^*_0 \)-filter base on \(X \) that generates \(A_x \). Let \(z_0 \) be the \(w \)-point in \(Z \) induced by \(A_x \), then \(\mathcal{F}(z_0) = \mathcal{F}(z) = f^*(A_x) \). Thus (a): \([A_x \in \mathcal{F}^{-1}((t_r - \varepsilon, t_r + \varepsilon))] \iff (b): [\mathcal{F}(z_0) = \mathcal{F}(z) = \mathcal{F}(A_x) = s_t \in (t_r - \varepsilon, t_r + \varepsilon)] \). Since \(\mathcal{H}(A_x) = z_0 \), so (b) iff (c): \([\mathcal{H}(A_x) = z_0 \in \mathcal{F}^{-1}((t_r - \varepsilon, t_r + \varepsilon))] \) and (c) iff (d): \([A_x \in \mathcal{H}^{-1}(\mathcal{F}^{-1}((t_r - \varepsilon, t_r + \varepsilon)))) \]. So, \(\mathcal{H} \) is continuous. Since \(\mathcal{H} \) is one-one, onto and \(Z, X^W \) are compact Hausdorff, by Theorem 17.14 in the Ref. [1, p. 123], \(\mathcal{H} \) is a homeomorphism. For that \(\mathcal{H}(k(x)) = h(x) \) is obvious from the definitions of \(k \) and \(h \). □

Corollary 5.28 Let \((\beta X, h)\) be the Stone-Čech compactification of a Tychonoff space \(X \), \(D = \{ f \in C(\beta X) \} \) and \(\mathcal{H}_p: X^W \to \beta X \) is defined similarly to \(\mathcal{H} \) as above. Then \((\beta X, h)\) is homeomorphic to \((X^W, k)\) such that \(\mathcal{H}_p(k(x)) = h(x) \).

Corollary 5.29 Let \((\gamma X, h)\) be the Wallman compactification of a normal \(T_1 \)-space \(X \), \(\mathcal{D} = \{ f \in C(\gamma X) \} \) and \(\mathcal{H}_p: X^W \to \gamma X \) is defined similarly to \(\mathcal{H} \) as above. Then \((\gamma X, h)\) is homeomorphic to \((X^W, k)\) such that \(\mathcal{H}_p(k(x)) = h(x) \).

REFERENCES

