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ABSTRACT 

In this paper we consider Weinstein operator. We define and study the continuous Gabor transform associated with this 
operator. We prove a Plancherel formula, an inversion formula and a weak uncertainty principle for it. As applications, 
we obtain analogous of Heisenberg’s inequality for the generalized continuous Gabor transform. At the end we give the 
practical real inversion formula for the generalized continuous Gabor transform. 
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1. Introduction 

We consider the Weinstein operator defined on  
 0,d    by :  
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where d  is the Laplacian for the d-first variables and 

  the Bessel operator for the last variable, given by  
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For , the operator   is the Laplace-Beltrami 
operator on the Riemanian space  0,d  
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(cf. [1]). 
The Weinstein operator 

2L

 has several applications 
in pure and applied Mathematics especially in Fluid Me- 
chanics (cf. [3]). 

The harmonic analysis associated with the Weinstein 
operator is studied by Ben Nahia and Ben Salem (cf. 
[1,2]). In particular the authors have introduced and 
studied the generalized Fourier transform associated with 
the Weinstein operator. This transform is called the 
Weinstein transform. In this work we are interested to the 
Gabor transform associated with Weinstein operator.  

Time-Frequency analysis plays a central role in signal 
analysis. Since years ago, it has been recognized that the 
global Fourier transform of a long time signal has a little 
practical value to method is preferred to the classical 
Fourier method, whenever the time dependence of the 

analyzed signal is of the same importance as its fre- 
quency dependence.  

However, there exist strict limits to the maximal Time- 
Frequency resolution of this transform, similar to Heisen- 
berg’s uncertainty principles in the Fourier analysis.  

In fact, Dennis Gabor [4] was the first to introduce the 
Gabor transform, in which he uses translations and modu- 
lations of a single Gaussian to represent one dimensional 
signal. Other names for this transform used in literature, 
are: short time Fourier transform, Weyl-Heisenberg trans- 
form, windowed Fourier transform.  

In this paper, we are interested a generalized Gabor 
transform associated for the Weinstein transform. More 
precisely, we give here general reconstruction formulas 
and we give many applications. In the classical case the 
Gabor transform is very fundamental and has many ap- 
plications to Mathematical Sciences. 

The paper is organized as follows. In Section 2, we re- 
call the main results about the harmonic analysis related to 
the Weinstein operator. In Section 3, we introduce the 
analogue of the continuous Gabor transform associated 
with the Weinstein operator and we give some harmonic 
properties for it (Plancheral formula,   inverse formula, 
weak uncertainty for it). The Section 4 is devoted to prove 
the analogous of Heisenberg’s inequality for the general- 
ized continuous Gabor transform. In Section 5 using the 
kernel reproducing theory given by Saitoh [5] we study the 
problem of approximative concentration. In the last section 
we give a practical real inversion formulas and extremal 
function for the Weinstein-Gabor transform.  

2. Preliminaries 

In order to confirm the basic and standard notations we 
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 briefly overview the Weinstein operator and related har- 
monic analysis. Main references are [1,2]. 

1, 1, for all , .dx y x y 
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The Weinstein kernel  is given by  
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where  is the normalized Bessel function. 
The Weinstein kernel satisfies the following properties: 

1) For all , we have  
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where   is the measure on  given by  1d 
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The Weinstein transform is given for f in 1 1dL


  
by  
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Some basic properties of this transform are the fol- 
lowing: 

 1 1dL


 ,  1) For f in 

     1 11 .ddW LL
f f
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 1d 
   we have  2) For f in 
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Proposition 1. 1) The Weinstein transform W  is a 
topological isomorphism from  onto itself and 
for all f in  1d 

 

 

,  

      1 1

2 2
d dd d Wf x x f  .    

 
  

  (12) 

 W2) In particular, the Weinstein transform f f   
can be uniquely extended to an isometric isomorphism 
from  2 1dL  

The generalized translation operator 
 onto itself.  

x , 1dx 
 , as- 

sociated with the operator   is defined by  
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where .  1df C        d , d dx y x y      such that  

By using the Weinstein kernel, we can also define a 
generalized translation. For a function  2 1df L

 
1dy 

 y

  
and  the generalized translation 

 
f  is de- 

fined by the following relation:  

   W y f x x      , Wy f x

0t 

.        (13) 

For example, for , we see that  

    2 22 t x yt
y e x e

    2 , .i ty x         (14) 

By using the generalized translation, we define the 
generalized convolution product f g

 1 1dL


 

   d .

 of functions 
 as follows:  ,f g

   1 1,d x df g x f y y 


   g y y

 1 1d 
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This convolution is commutative and associative and 
satisfies the following propositions:  
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Proposition 3. Let . Then  ,f g
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   .W
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longs to , and in this case we have  

 W Wf g f g
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An immediate consequence of Proposition 3 and the 
Plancherel formula that will be used in the next section is 
the following.  

Proposition 4 Let f and g be in . Then, we 
have  
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where both sides are finite or infinite.  

3. The Continuous Weinstein Gabor 
Transform 

Notations. We denote by: 
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1 1d d 
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Definition 1. For any function g in  and 
any 

 , we define the modulation of g by v as: 

 2
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          (19) 

1dy where  y ,  , are the Weinstein translation 
operators given by (13). 

 2 1dL


 , we have  Remark 1. For g in 

   2 12 1 .dd LL
g g

 


 

,

 

gWe consider the family y
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Definition 2. Let g be in . For a function f 
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 we define its continuous Weinstein Gabor 
transform by  

 1 ,, : d ,dg yf y f x g x x  


       (20) 

which can also be written in the form  

   , :g f y f g y    

   

          (21) 

h x h xwhere  
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Theorem 1. (   inversion formula).  
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For proof this theorem we need the following Lem-
mas.  

Lemma 1. Let g be as above. For any positive integer 
n define the two functions  
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for 1dx 
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Now, using Proposition 3 and hypothesis on g we see 
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that g g 


ity and Parsev
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                         (37) 

 
and the norm 

 
 

  

   1 1s d s dH H 
 

2
,f f f

 
 , is a Hilbert 

space.  

Proposition 10. Let g be a function in  
 

   2 1 1 ,d dL L 
  

     and 1d 
 . The integral trans-  
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form  .,g  , is a bounded linear operator from  

 1s dH 
  , o  s in  , int  2 1dL


 , and we have  

       1 12 1., .d s ddg L H
f g f      

L      

Proof. We proceed as [6] we obtain the result.  
Definition 3. Let g be a function in  

L L  > 0 , 1d 
  and  

s efine the 
f  1s dH


 product:  

 2 1  1 . Let rd d
 

 
 

 . We d ilbert space  , 1r s dH


  as the H
 with the inner subspace o

       2 1., ,

.

dL
  

  

rm associated to the inner product is defined by:  

 
, 1

1

, = , ., ,

,

r s s d g gH H

s d

f h r f h f h

f h H



















 

The no

    1 2 1, .s d dL 
   

 , : .r s gH H
f r f


 

 proceed   
Proposi . L  a function

L L 
  

22 2
f

We  as [6] we prove the following results.
tion 11 et g be  in  

 2 1  1d d 
  . For 1

2
s    , the Hilbert  

 r sH   admits the following reproducing 

 

d

space 
ke

, 1d 

rnel:  

     

    
1

2 2

d
, .dgP x y 



, ,x y

1r g
s

   

  



 

4. Let g be 

L L 

 

 

Theorem a function in  

 

 2 1  1d d
 

  
  . Let 1

2

d
s    . 

1) Fo   2 1L


 for any 0r  , the 
infin

r any h in d  and 
itum  

       2 1

2
inf .,s d ds d gH Lf H

r f h f
 

   
  

  
  (38) 

is

1
1

2 
   

 attained by a unique function ,r hf   given by  

      1, , ddr h r  ,f x h y Q x y y
         (39) 

e  



wher

   

      

    
 1

,

2

2 2

, ,

, ,
d .

1
d

r r s

s

Q x y Q x y

g x y

r g







   
 

  






 


 


   (40) 

2) Let , 0r   2 1dL


  such that    and ,h h  in 

 2 1 .dL
h h

  





 

Then  

 1, , .
2

s dr h r h H
f f

r 






  


 

3) Let > 0r . If f is in  1s dH


  and  .,g fh 
Then  

 . 

 1

2

, s 0.s dr hf f r
     0 a

H 
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