Uniformly Stable Positive Monotonic Solution of a Nonlocal Cauchy Problem

A. M. A. El-Sayed¹, E. M. Hamdallah¹, Kh. W. Elkadeky²
¹Faculty of Science, Alexandria University, Alexandria, Egypt
²Faculty of Science, Garyounis University, Benghazi, Libya
Email: {amasayed, emanhamdalla}@hotmail.com, k-welkadeky@yahoo.com

Received October 9, 2011; revised December 7, 2011; accepted December 30, 2011

ABSTRACT
In this paper, we study the existence of a uniformly stable positive monotonic solution for the nonlocal Cauchy problem

\[x'(t) = f(t, x(t)), t \in [0, T] \quad \text{with the nonlocal condition} \quad \sum_{j=1}^{m} b_j x(\eta_j) = x_i, \quad \text{where} \quad \eta_j \in (0, a) \subset [0, T]. \]

Keywords: Nonlocal Cauchy Problem; Local and Global Existence Nondecreasing Positive Solution; Continuous Dependence; Lyapunov Uniformly Stability

1. Introduction
Problems with non-local conditions have been extensively studied by several authors in the last two decades. The reader is referred to (see [1-14] and [15-18]) and references therein.

Here we are concerned with the nonlocal Cauchy problem

\[x'(t) = f(t, x(t)), t \in [0, T], \]
\[\sum_{j=1}^{m} b_j x(\eta_j) = x_i, \quad \eta_j \in (0, a) \subset [0, T], \quad \text{and} \quad \left(\sum_{j=1}^{m} b_j \right) \neq 0. \]

Let \(X \) be the class of all continuous functions defined on \([0, T], T < \infty \) with the norm \(\| x \| = \sup_{t \in [0, T]} | x(t) |, x \in X. \)

Let \(Y \) be the class of all continuous functions defined on \([\tau_0, T], T < \infty \) with the equivalent norm \(\| x \| = \sup_{t \in [\tau_0, T]} e^{|x(t)|} | x(t) |, x \in Y, \)

where \(\tau_0 = \max \{ \eta_j, j = 1, 2, \ldots, m \} \), and \(N \) is positive arbitrary.

Here we firstly study, in \(X \), the local existence of the solution of the problem (1)-(2) and the continuous dependence of the parameter \(x \), will be proved.

Secondly, we study, in \(Y \), the global existence and Lyapunov uniform stability of the solution of the problem (1)-(2).

2. Integral Equation Representation
Consider the nonlocal Cauchy problem (1)-(2). Let \(f: [0, T] \times R^+ \rightarrow R^+ \) is continuous and satisfies the Lipschitz condition

\[| f(t, x) - f(t, y) | \leq k | x - y |, \quad k > 0, \]

for all \(x, y \in R^+ \).

Lemma 2.1. The solution of the nonlocal Cauchy problem (1)-(2) can be expressed by the integral equation

\[x(t) = B \left(x_0 - \sum_{j=1}^{m} b_j \int_{\tau_0}^{t} f(s, x(s)) ds \right) + \int_{\tau_0}^{t} f(s, x(s)) ds, \]

where \(B = \left(\sum_{j=1}^{m} b_j \right)^{-1} \).

Proof. Integrating the Equation (1), we obtain

\[x(t) = x(0) + \int_{0}^{t} f(s, x(s)) ds. \]

Let \(t = \eta_j \) in (5), we obtain

\[x(\eta_j) = x(0) + \int_{\tau_0}^{\eta_j} f(s, x(s)) ds, \]

and

\[\sum_{j=1}^{m} b_j x(\eta_j) = \sum_{j=1}^{m} b_j x(0) + \int_{\tau_0}^{\eta_j} f(s, x(s)) ds. \]

Substitute from (2) into (7), we obtain

\[x(0) = B \left(x_0 - \sum_{j=1}^{m} b_j \int_{\tau_0}^{\eta_j} f(s, x(s)) ds \right). \]
Substitute from (8) into (5), we obtain
\[x(t) = B \left(x_1 - \sum_{j=1}^m b_j \int_0^t f(s, x(s)) \, ds \right) + \int_0^t f(s, x(s)) \, ds. \]

Corollary 2.1. The solution of the integral Equation (4) is nondecreasing.

Proof. Let \(x \) be a solution of the integral Equation (4), then for \(t_1 < t_2 \), we have
\[
x(t_1) = B \left(x_1 - \sum_{j=1}^m b_j \int_0^{t_1} f(s, x(s)) \, ds \right) + \int_0^{t_1} f(s, x(s)) \, ds < B \left(x_1 - \sum_{j=1}^m b_j \int_0^{t_2} f(s, x(s)) \, ds \right) + \int_0^{t_2} f(s, x(s)) \, ds = x(t_2),
\]
which proves that the solution \(x \) of the integral Equation (4) is nondecreasing.

Corollary 2.2. Let \(f \) be satisfies (3). The solution of the integral Equation (4) is positive for \(t \in [a, T] \).

Proof. Define the operator \(T : C[0,T] \to C[0,T] \) by
\[
T(x)(t) = B \left(x_1 - \sum_{j=1}^m b_j \int_0^t f(s, x(s)) \, ds \right) + \int_0^t f(s, x(s)) \, ds.
\]
Differentiating (4), we get
\[
x'(t) = f(t, x(t)).
\]
Multiplying by \(B = \left(\sum_{j=1}^m b_j \right)^{-1} \), we obtain
\[
B \sum_{j=1}^m b_j \int_0^t f(s, x(s)) \, ds \leq B \sum_{j=1}^m b_j \int_0^t f(s, x(s)) \, ds = \int_0^t f(s, x(s)) \, ds
\]
and the solution \(x \) of the integral Equation (4) is positive for \(t \in [a, T] \). This complete the proof. \(\square \)

3. Local Existence of Solution

Theorem 3.1. Let \(f \) be satisfies the Lipschitz condition. If \(T < k \left(1 + |B| \sum_{j=1}^m b_j \right)^{-1} \) then the nonlocal Cauchy problem (1)-(2) has a unique nondecreasing positive solution.

Proof. Define the operator \(T : C[0,T] \to C[0,T] \) by
\[
T(x)(t) = B \left(x_1 - \sum_{j=1}^m b_j \int_0^t f(s, x(s)) \, ds \right) + \int_0^t f(s, x(s)) \, ds.
\]

Let \(x, y \in C[0,T] \), then
\[
T(x) - T(y) = -B \sum_{j=1}^m b_j \int_0^t f(s, x(s)) \, ds + \int_0^t f(s, x(s)) \, ds + B \sum_{j=1}^m b_j \int_0^t f(s, y(s)) \, ds - \int_0^t f(s, y(s)) \, ds
\]
\[
= -B \sum_{j=1}^m b_j \left[f(s, x(s)) - f(s, y(s)) \right] \, ds + \int_0^t \left[f(s, x(s)) - f(s, y(s)) \right] \, ds,
\]
\[
\|T(x) - T(y)\| \leq k \left| B \right| \sum_{j=1}^m b_j \left\| x(s) - y(s) \right\| \, ds + k \int_0^t \left\| x(s) - y(s) \right\| \, ds
\]
\[
\leq kT \left| B \right| \sum_{j=1}^m b_j \left\| x - y \right\| + kT \left\| x - y \right\| \leq kT \left(1 + \left| B \right| \sum_{j=1}^m b_j \right) \left\| x - y \right\| \leq K \left\| x - y \right\|
\]
but if
\[
K = kT \left(1 + \left| B \right| \sum_{j=1}^m b_j \right) < 1,
\]
then we get
\[
\|T(x) - T(y)\| \leq K \left\| x - y \right\|,
\]
which proves that the map \(T : C[0,T] \to C[0,T] \) is contraction.

Applying the Banach contraction fixed point theorem we deduce that the integral Equation (4) has a unique solution \(x \in C[0,T] \).

To complete the proof, we prove that the integral Equation (4) satisfies nonlocal problem (1)-(2).

Differentiating (4), we get
\[
x'(t) = f(t, x(t)).
\]

Let \(t = \eta_j \) in (4), we obtain
\[
x(\eta_j) = B \left(x_1 - \sum_{j=1}^m b_j \int_0^{\eta_j} f(s, x(s)) \, ds \right) + \int_0^{\eta_j} f(s, x(s)) \, ds,
\]
then
\[
\sum_{j=1}^m b_j x(\eta_j) = x_1.
\]
This implies that there exist a unique nondecreasing positive solution \(x \in C[0,T] \) of the nonlocal Cauchy problem (1)-(2). This complete the proof. \(\blacksquare \)

4. Continuous Dependence of the Solution

Consider the nonlocal Cauchy problem

\[
\left\{ \begin{array}{l}
x'(t) = f(t, x(t)), t \in [0, T], \\
\sum_{j=1}^{m} b_{j} x(\eta_{j}) = \bar{x}_{i}, \quad \text{and} \quad \eta_{j} \in (0, a) \subset [0, T].
\end{array} \right.
\]

Definition 4.1. The solution of the nonlocal Cauchy problem (1)-(2) continuously dependence on \(x_{i} \) if

\[
\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0, \text{ such that } |x_{i} - \bar{x}_{i}| < \delta, \quad \text{then } |x(t) - \bar{x}(t)| < \varepsilon
\]

where \(\bar{x}(t) \) is the solution of the nonlocal Cauchy problem \(\bar{P} \).

Now we have the following theorem

Theorem 4.1. The solution of the nonlocal Cauchy problem (1)-(2) continuously dependence on \(x_{i} \).

Proof. Let \(x(t), \bar{x}(t) \) are the solutions of (1)-(2) and \(\bar{P} \) respectively.

Then we can get

\[
x(t) - \bar{x}(t) = B(x_{i} - \bar{x}_{i}) - B \sum_{j=1}^{m} \int_{0}^{\eta_{j}} f(s, x(s)) \, ds + B \sum_{j=1}^{m} \int_{0}^{\eta_{j}} f(s, \bar{x}(s)) \, ds + \int_{0}^{\eta} [f(s, x(s)) - f(s, \bar{x}(s))] \, ds
\]

\[
\|x(t) - \bar{x}(t)\| \leq |B|x_{i} - \bar{x}_{i}| + |B| \sum_{j=1}^{m} b_{j} \|f(s, x(s)) - f(s, \bar{x}(s))\| ds + \int_{0}^{\eta} |f(s, x(s)) - f(s, \bar{x}(s))| ds
\]

\[
\leq |B|x_{i} - \bar{x}_{i}| + k |B| \sum_{j=1}^{m} b_{j} \sup_{t \in [0, T]} |x(s) - \bar{x}(s)| ds + k \sup_{t \in [0, T]} |x(s) - \bar{x}(s)| ds
\]

\[
\leq |B|x_{i} - \bar{x}_{i}| + k |B| \sum_{j=1}^{m} b_{j} \sup_{t \in [0, T]} |x(t) - \bar{x}(t)| \int_{0}^{\eta_{j}} ds + k \sup_{t \in [0, T]} |x(t) - \bar{x}(t)| \int_{0}^{\eta_{j}} ds
\]

Therefore, for \(\delta > 0 \) such that

\[
|x_{i} - \bar{x}_{i}| < \delta(\varepsilon),
\]

we can find

\[
\varepsilon = \left(1 - kT \left(1 + |B| \sum_{j=1}^{m} b_{j}\right)\right)^{-1} |B| \delta
\]

such that \(\|x - \bar{x}\| \leq \varepsilon \), which complete the proof theorem.

5. Global Existence of Solution

Theorem 5.1. Let \(f \) be satisfies the Lipschitz condition, then the nonlocal Cauchy problem (1)-(2) has a unique nondecreasing positive solution.

Proof. Define the operator \(T : C[\tau_{0}, T] \rightarrow C[\tau_{0}, T] \) by the Equation (9).

Let \(x, y \in C[\tau_{0}, T] \), then

\[
Tx(t) - Ty(t) = -B \sum_{j=1}^{m} \int_{0}^{\eta_{j}} f(s, x(s)) \, ds + \int_{0}^{\eta} f(s, y(s)) \, ds + B \sum_{j=1}^{m} \int_{0}^{\eta_{j}} f(s, y(s)) \, ds - \int_{0}^{\eta} f(s, y(s)) \, ds
\]

\[
\|Tx(t) - Ty(t)\| \leq k |B| \sum_{j=1}^{m} b_{j} \left|\int_{0}^{\eta_{j}} x(s) - y(s) \, ds\right| + k \sup_{t \in [0, T]} |x(s) - y(s)| ds
\]

\[
e^{-N(\tau_{0})} \|Tx(t) - Ty(t)\| \leq k |B| \sum_{j=1}^{m} b_{j} \left|e^{-N(\tau_{0})} \int_{0}^{\eta_{j}} x(s) - y(s) \, ds\right| + k e^{-N(\tau_{0})} \sup_{t \in [0, T]} |x(s) - y(s)| ds
\]
\[e^{-\lambda(t-t_0)} \left| T_x(t) - T_y(t) \right| \leq k \sum_{j=1}^{m} b_j \int_{0}^{\rho} e^{-\lambda(s-t_0)} e^{-\lambda(s-t_0)} \left| x(s) - y(s) \right| ds \]
\[
\quad + k \int_{0}^{\rho} e^{-\lambda(s-t_0)} e^{-\lambda(s-t_0)} \left| x(s) - y(s) \right| ds
\]
\[
\leq k \sum_{j=1}^{m} b_j \left\| x - y \right\| \int_{0}^{\rho} e^{-\lambda(s-t_0)} ds + k \left\| x - y \right\| \int_{0}^{\rho} e^{-\lambda(s-t_0)} ds
\]
\[
\leq k \sum_{j=1}^{m} b_j \left\| x - y \right\| \frac{e^{-\lambda(t)} - e^{-\lambda(t_0)}}{\lambda} + k \left\| x - y \right\| \frac{1 - e^{-\lambda t}}{\lambda}
\]
\[
\leq \frac{k}{\lambda} \left\{ \sum_{j=1}^{m} b_j \left(e^{-\lambda(t)} - e^{-\lambda(t_0)} \right) + \left(1 - e^{-\lambda t_0} \right) \right\} \left\| x - y \right\|
\]

where

\[K = \frac{k}{\lambda} \left(\sum_{j=1}^{m} b_j + 1 \right). \]

Choose \(N \) large enough such that \(K < 1 \), then

\[\left\| T_x - T_y \right\| \leq K \left\| x - y \right\|, \]

therefore the map \(T : C[t_0, T] \rightarrow C[t_0, T] \) is contraction.

Applying the Banach contraction fixed point theorem we deduce that the integral Equation (4) has a unique solution \(x \in C[t_0, T] \).

To complete the proof, we prove that the integral Equation (4) satisfies nonlocal problem (1)-(2).

Differentiating (4), we get

\[x'(t) = f(t, x(t)). \quad (11) \]

Let \(t = \eta_j \) in (4), we obtain

\[x(\eta_j) = B \left(x_0 - \sum_{j=1}^{m} b_j \int_{0}^{s_j} f(s, x(s)) ds \right) + \int_{0}^{s_j} f(s, x(s)) ds, \]

then

\[\sum_{j=1}^{m} b_j x(\eta_j) = x_0. \]

This implies that there exist a unique nondecreasing positive solution \(x \in C[t_0, T] \) of the nonlocal Cauchy problem (1)-(2), This complete the proof. \(\blacksquare \)

6. Lyapunov Uniform Stability of the Solution

Consider here the nonlocal Cauchy problem

\[\left\{ \begin{array}{l}
 x'(t) = f(t, x(t)), t \in [t_0, T], \\
 \sum_{j=1}^{m} b_j x(\eta_j) = \bar{x}_0, \quad \text{and} \quad \eta_j \in (0, a) \subset [t_0, T].
\end{array} \right. \]

Definition 6.1. The solution of the nonlocal Cauchy problem (1)-(2) is uniform stable, if for some \(\epsilon > 0, \delta(\epsilon) > 0 \), such that

\[|x(t) - \bar{x}(t)| < \epsilon. \]

where \(\bar{x}(t) \) is the solution of the nonlocal Cauchy problem \(\bar{P} \).

Now we have the following theorem

Theorem 6.1. The solution of the nonlocal Cauchy problem (1)-(2) is uniformly stable.

Proof. Let \(x(t), \bar{x}(t) \) are the solutions of (1)-(2) and \(\bar{P} \) respectively.

Then we can get

\[x(t) - \bar{x}(t) = B(x_0 - \bar{x}_0) - B \sum_{j=1}^{m} b_j \int_{0}^{s_j} f(s, x(s)) ds + B \sum_{j=1}^{m} b_j \int_{0}^{s_j} f(s, \bar{x}(s)) ds + \sum_{j=1}^{m} \{ f(s, x(s)) - f(s, \bar{x}(s)) \} ds \]

\[\left\| x(t) - \bar{x}(t) \right\| \leq \left\| B \right\| \left\| x_0 - \bar{x}_0 \right\| + \left\| B \right\| \sum_{j=1}^{m} b_j \int_{0}^{s_j} \left\| f(s, x(s)) - f(s, \bar{x}(s)) \right\| ds + \sum_{j=1}^{m} \left\| f(s, x(s)) - f(s, \bar{x}(s)) \right\| ds \]

\[\quad \leq \left\| B \right\| \left\| x_0 - \bar{x}_0 \right\| + k \left\| B \right\| \sum_{j=1}^{m} b_j \int_{0}^{s_j} \left\| x(s) - \bar{x}(s) \right\| ds + k \int_{0}^{s_j} \left\| x(s) - \bar{x}(s) \right\| ds \]

\[e^{-\lambda(t-t_0)} \left\| x(t) - \bar{x}(t) \right\| \leq e^{-\lambda(t-t_0)} \left\| B \right\| \left\| x_0 - \bar{x}_0 \right\| + k \left\| B \right\| \sum_{j=1}^{m} b_j \int_{0}^{s_j} e^{-\lambda(t-t_0)} \left\| x(t) - \bar{x}(t) \right\| ds \]

\[+ k \int_{0}^{s_j} e^{-\lambda(t-t_0)} \left\| x(t) - \bar{x}(t) \right\| ds \]
\[\|x - \bar{x}\| \leq |\beta| |x_1 - \bar{x}_1| + k |\beta| \sum_{j=1}^{m} |p_j| \|x - \bar{x}\| \int_0^t e^{-N(t-s)} ds + k \|x - \bar{x}\| \int_0^t e^{-N(t-s)} ds \]
\[\leq |\beta| |x_1 - \bar{x}_1| + k |\beta| \sum_{j=1}^{m} |p_j| \left(\frac{e^{-N(t-b_0)} - e^{-N(t)}}{N} \right) + \frac{1 - e^{-N(t)}}{N} \|x - \bar{x}\| \]
\[\leq |\beta| |x_1 - \bar{x}_1| + \frac{k}{N} \left(\|x - \bar{x}\| \right) \]
\[\|x - \bar{x}\| \leq |\beta| \left[1 - \frac{k}{N} \left(\|x - \bar{x}\| \right) \right] \]

Therefore, \(|x_1 - \bar{x}_1| < \delta(\varepsilon) \Rightarrow \|x - \bar{x}\| < \varepsilon \), which complete the proof of theorem.

REFERENCES

