L-Topological Spaces Based on Residuated Lattices

Zhudeng Wang1, Xuejun Liu2

1Department of Mathematics, Yancheng Teachers University, Yancheng, China
2School of Computer and Information Technology, Zhejiang Wanli University, Ningbo, China

Email: zhudengwang2004@yahoo.com.cn, lm88134005@126.com

Received September 14, 2011; revised October 10, 2011; accepted October 20, 2011

ABSTRACT

In this paper, we introduce the notion of L-topological spaces based on a complete bounded integral residuated lattice and discuss some properties of interior and left (right) closure operators.

Keywords: Residuated Lattice; L-Topological Space; Interior Operator; Left (Right) Closure Operator

1. Introduction

Residuation is a fundamental concept of ordered structures and the residuated lattices, obtained by adding a residuated monoid operation to lattices, have been applied in several branches of mathematics, including \(L \)-groups, ideal lattices of rings and multivalued logic. Commutative residuated lattices have been studied by Krull, Dilworth and Ward. These structures were generalized to the non-commutative situation by Blount and Tsinakis [1].

Definition 1.1. [1-4]. A residuated lattice is an algebra \(L = (L, \land, \lor, \cdot, \multimap, 0, 1) \) of type \((2, 2, 2, 2, 2, 0, 0)\) satisfying the following conditions:

(L1) \((L, \land, \lor)\) is a lattice,

(L2) \((L, \cdot, 1)\) is a monoid, i.e., \(\cdot \) is associative and \(x \cdot 1 = 1 \cdot x = x \) for any \(x \in L \),

(L3) \(x \cdot y \leq z \) if and only if \(x \leq y \multimap z \) if and only if \(y \leq x \multimap z \) for any \(x, y, z \in L \).

Generally speaking, 1 is not the top element of \(L \). A residuated lattice with a constant 0 is called a residuated lattice or full Lambek algebra (\(FL \)-algebra, for short). If \(x \leq 1 \) for all \(x \in L \), then \(L \) is called integral residuated lattice. An \(FL \)-algebra \(L \) satisfies the condition \(0 \leq x \leq 1 \) for all \(x \in L \) is called \(FLw \)-algebra or bounded integral residuated lattice (see [2]). Clearly, if \(L \) is an \(FLw \)-algebra, then \((L, \land, \lor, 0, 1)\) is a bounded lattice.

A bounded integral residuated lattice is called commutative (see [5]) if the operation \(\cdot \) is commutative. We adopt the usual convention of representing the monoid operation by juxtaposition, writing \(ab \) for \(a \cdot b \).

The following theorem collects some properties of bounded integral residuated lattices (see [1-4,6]).

Theorem 1.1. Let \(L \) be a bounded integral residuated lattice. Then the following properties hold.

1) \(x \rightarrow x = x \leftrightarrow x = 1 \), \(1 \rightarrow x = 1 \leftrightarrow x = x \).

2) \(x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z) \).

3) \(x \rightarrow (y \land y) \leq x \land y, (x \rightarrow y) x \leq x \land y, x \leq y \rightarrow xy, y \leq x \rightarrow xy \).

4) \((x \rightarrow y) (y \rightarrow z) \leq x \rightarrow z, (y \rightarrow z) (x \rightarrow y) \leq x \rightarrow z \).

5) \(\multimap \) if \(x \leq y \), then \(xz \leq yz, zx \leq zy \), \(x \rightarrow z \geq y \rightarrow z, x \rightarrow z \geq x \rightarrow z \rightarrow y \rightarrow z, x \rightarrow x \leq z \rightarrow y \rightarrow z, \) and \(z \rightarrow x \leq z \rightarrow y \rightarrow z \).

6) \(x \leq y \) if and only if \(x \rightarrow y = 1 \) if and only if \(x \rightarrow y = 1 \).

7) \(\multimap z = y \rightarrow (x \rightarrow z), xy \rightarrow z = x \rightarrow (y \rightarrow z) \).

8) \((x \lor y) \multimap z = (x \rightarrow z) \land (y \rightarrow z), (x \lor y) \multimap z = (x \rightarrow z) \land (y \rightarrow z) \).

9) \(x \rightarrow (y \land z) = (x \rightarrow y) (x \rightarrow z), x \rightarrow (y \land z) = (x \rightarrow y) (x \rightarrow z) \).

If bounded integral residuated lattice \(L \) is complete, then

\(x \rightarrow z = \lor \{ y \in L | xy \leq z \}, x \rightarrow z = \lor \{ y \in L | xy \leq z \} \).

Thus, it follows from some results in [7] that

Theorem 1.2. Let \(L \) be a complete bounded integral residuated lattice and \(a, b, a_j, b_j \in L (j \in J) \). Then the following properties hold.

1) \(a \lor_{j \in J} b_j = \lor_{j \in J} ab_j \) and \(\lor_{j \in J} a_j b = \lor_{j \in J} a_j b \), i.e., the operation \(\lor \) is infinitely \(\lor \)-distributive.

2) \((\lor_{j \in J} a_j) \rightarrow b = \lor_{j \in J} (a_j \rightarrow b) \) and \((\lor_{j \in J} a_j) \rightarrow b = \lor_{j \in J} (a_j \rightarrow b) \).

3) \(a \multimap (\lor_{j \in J} b_j) = \lor_{j \in J} (a \multimap b_j) \) and \(a \multimap (\lor_{j \in J} b_j) = \lor_{j \in J} (a \multimap b_j) \), i.e., the two residuation operations \(\rightarrow \) and \(\multimap \) are all right infinitely \(\land \)-distributive (see [8]).

4) \((\land_{j \in J} a_j) \rightarrow b \geq \land_{j \in J} (a_j \rightarrow b) \) and \((\land_{j \in J} a_j) \rightarrow b \geq \land_{j \in J} (a_j \rightarrow b) \)
5) \(a \rightarrow (\vee_{j \in J} b_j) \geq \vee_{j \in J} (a \rightarrow b_j) \) and
\(a \rightarrow (\vee_{j \in J} b_j) \geq \vee_{j \in J} (a \rightarrow b_j) \).

Let us define on \(L \) two negations, \(-^L \) and \(-^R \):
\(-^L x = x \rightarrow 0 \) and \(-^R x = x \rightarrow 0 \).

For any \(x, x_j (j \in J), b \in L \), it follows from Theorems 1.1 and 1.2 that
\(-^L \neg^R x \geq x, \ -^R \neg^L x \geq x, \ x \rightarrow \neg^L y = \neg^L (xy),\)
\(x \rightarrow \neg^R y \geq \neg^R y = \neg^L (xy), \ x \rightarrow \neg^R y \rightarrow \neg^L x, \)
\(\neg^L \neg^R \neg^L x = \neg^L x, \ -^R \neg^L \neg^R x \geq \neg^R x, \)
\(x \rightarrow y \leq \neg^R y \rightarrow \neg^L x, \ x \rightarrow y \leq \neg^L y \rightarrow \neg^L x, \)
\(-^L (\vee_{j \in J} x_j) = \wedge_{j \in J} \neg^L x_j, \ -^L (\wedge_{j \in J} x_j) = \wedge_{j \in J} \neg^L x_j, \)
\(-^L (\wedge_{j \in J} x_j) \geq \wedge_{j \in J} \neg^R x_j, \ -^L (\wedge_{j \in J} x_j) \geq \wedge_{j \in J} \neg^R x_j.\)

A bounded residuated lattice \(L \) is called an involutive residuated lattice (see [3]) if \(-^L \neg^R x = \neg^R \neg^L x = x \) for any \(x \in L \). In a complete involutive residuated lattice \(L \),
\(x \rightarrow y \geq \neg^R y \rightarrow \neg^L x, \ x \rightarrow y \leq \neg^L y \rightarrow \neg^L x, \)
\(-^L (\wedge_{j \in J} x_j) = \wedge_{j \in J} \neg^L x_j, \ -^L (\vee_{j \in J} x_j) = \vee_{j \in J} \neg^L x_j.\)

In the sequel, unless otherwise stated, \(L \) always represents any given complete bounded integral residuated lattice with maximal element 1 and minimal element 0.

The family of all \(L \)-fuzzy set in \(X \) will be denoted by \(L^X \). For any family \(\mu, \mu_1 \in L^X \) of \(L \)-fuzzy sets,
we will write \(-^L \mu, \neg^R \mu, \vee_{j \in J} \mu_j \) and \(\wedge_{j \in J} \mu_j \) to denote the \(L \)-fuzzy sets in \(X \) given by
\((-^L \mu)(x) = \neg^L \{ \mu((x)) \}, \neg^R \mu(x) = \neg^R \{ \mu((x)) \},\)
\(\vee_{j \in J} \mu_j(x) = \vee_{j \in J} \mu_j(x), \wedge_{j \in J} \mu_j(x) = \wedge_{j \in J} \mu_j(x).\)

Besides this, we define \(1_X, 0_X \in L^X \) as follows:
\(1_X(x) = 1 \forall x \in X \) and \(0_X(x) = 0 \forall x \in X \).

2. \(L \)-Topological Spaces

A completely distributive lattice \(L \) is called a \(F \)-lattice, if \(L \) has an order-reversing involution \(\cdot : L \rightarrow L \). When \(L \) is a \(F \)-lattice, Liu and Luo [9] studied the concept of \(L \)-topology. Below, we consider the notion of \(L \)-topological space based on a complete bounded integral residuated lattice.

Definition 2.1. Let \(\tau \subseteq L^X \). If \(\tau \) satisfies the following three conditions:
(LFT1) \(0_X, 1_X \in \tau, \)
(LFT2) \(\mu, \nu \in \tau \Rightarrow \mu \wedge \nu \in \tau, \)
(LFT3) \(\mu \in \tau \Rightarrow \vee_{j \in J} \mu_j \in \tau, \)
then \(\tau \) is called an \(L \)-topology on \(X \) and \((L^X, \tau)\) an \(L \)-topological space.

When \(L = [0,1] \), called an \(L \)-topological space \((L^X, \tau)\) an \(F \)-topological space.

Every element in \(\tau \) is called an open subset in \(L^X \).
Let \(\tau^L = \{ \neg^L \mu \in \tau \} \) and \(\tau^R = \{ \neg^R \mu \in \tau \} \). The elements of \(\tau^L \) and \(\tau^R \) are, respectively, left closed subsets and right closed subsets in \(L^X \).

Definition 2.2. Let \(\tau \) be an \(L \)-topology on \(X \) and \(\mu \) \(L \)-fuzzy subset of \(X \). The interior, left closure and right closure of \(\mu \) w.r.t. \(\tau \) are, respectively, defined by
\(\text{int}(\mu) = \{ \eta \in \tau | \eta \leq \mu \}, \)
\(\text{cl}_L(\mu) = \{ \xi \in \tau | \mu \leq \xi \}, \)
\(\text{cl}_R(\mu) = \{ \xi \in \tau | \mu \leq \xi \}. \)

int, \(\text{cl}_L \) and \(\text{cl}_R \) are, respectively, called interior, left closure and right closure operators.

For the sake of convenience, we denote \(\text{int}(\mu), \text{cl}_L(\mu) \) and \(\text{cl}_R(\mu) \) by \(\mu^o, \mu_L \) and \(\mu_R \), respectively.

In view of Definitions 2.1 and 2.2, for any \(\mu \in L^X \),
\(\mu^o = \text{int}(\mu) = \{ \eta \in \tau | \eta \leq \mu \} \in \tau, \)
\(\mu_L = \text{cl}_L(\mu) = \{ \xi \in \tau | \mu \leq \xi \} \in \tau, \)
\(\mu_R = \text{cl}_R(\mu) = \{ \xi \in \tau | \mu \leq \xi \} \in \tau, \)
where
\(\mu_1 = \text{int}(\mu) = \{ \xi \in \tau | \mu \leq \xi \} \in \tau, \)
\(\mu_2 = \text{cl}_L(\mu) = \{ \xi \in \tau | \mu \leq \xi \} \in \tau, \)
i.e., \(\mu^o \) is just the largest open subset contained in \(\mu \), \(\mu_L \) and \(\mu_R \) are, respectively, the smallest left closed and right closed subsets containing \(\mu \).

For any \(\mu \in L^X \),
\(\neg^L \mu^o = \neg^L \{ \text{int}(\mu) \} = \{ \neg^L \eta | \eta \leq \mu, \eta \in \tau \} = \{ \neg^L \eta | \eta \leq \mu, \eta \in \tau \} \in \tau, \)
\(\geq \neg^L \{ \neg^L \eta | \neg^L \eta \leq \mu, \eta \in \tau \} = \{ \neg^L \mu \}. \)

Similarly, \(\neg^R \mu^o = \{ \neg^R \mu \} \).

Theorem 2.1. If \(L \) is an involutive residuated lattice and \(\mu \in L^X \), then
1) \(\neg^L \mu^o = \neg^L \mu_L \) and \(\neg^R \mu^o = \neg^R \mu_R \);
2) \(\mu^o \leq \neg^R \mu_L \) and \(\mu^o \leq \neg^L \mu_R \);
3) \(\neg^L \mu^o \leq \neg^R \mu_R \) and \(\neg^R \mu^o \leq \neg^L \mu_L \).
\[\mu_\ell = -^\ell \left(-^R \mu \right)^\ell \quad \text{and} \quad \mu_\ell = -^R \left(-^\ell \mu \right)^R. \]

Proof. When \(L \) is an involutive residuated lattice, \(-^R \left(-^\ell \mu \right) = -^\ell \left(-^R \mu \right) = \mu^\ell \mu \in L^R \).

1) If \(\eta \in L^X \) and \(-^\ell \mu \leq -^\ell \eta \), then
\[\mu = -^R \left(-^\ell \mu \right) \geq -^R \left(-^\ell \eta \right) = \eta. \]

Thus, \(-^\ell \left(\mu^\ell \right) = \left(-^\ell \mu \right)^\ell \). Similarly,
\[-^R \left(\mu^R \right) = \left(-^R \mu \right)^R. \]

2) It follows from 1) that
\[\mu^\ell = -^R \left(-^R \mu \right) = -^R \left(-^\ell \mu \right)^L, \]
\[\mu^R = -^\ell \left(-^\ell \mu \right) = -^\ell \left(-^R \mu \right)^R. \]

3) By 2), we see that
\[\left(-^\ell \mu \right)^\ell = -^R \left(-^R \mu \right)^R = -^R \left(-^\ell \mu \right)^L, \]
\[\left(-^R \mu \right)^\ell = -^\ell \left(-^R \mu \right)^R = -^\ell \left(-^R \mu \right)^L, \]
\[\left(-^\ell \mu \right) \left(-^R \mu \right)^\ell = \mu^\ell \left(-^\ell \mu \right)^R, \]
\[-^R \left(-^\ell \mu \right)^\ell = -^\ell \left(-^R \mu \right)^R = -^\ell \left(-^R \mu \right)^L, \]
\[-^R \left(-^R \mu \right)^\ell = -^\ell \left(-^R \mu \right)^R = -^\ell \left(-^R \mu \right)^L. \]

Theorem 2.2. Let \(\mu, \nu \in L^X \). Then the following properties hold:

1) \((1_X)^\ell = 1_X, (0_X)^L = 0_X \).
2) \(\mu^\ell \leq \mu, \mu \leq \mu^\ell, \mu \leq \mu^R, \mu \leq \mu^R \).
3) If \(\mu \leq \nu, \) then \(\mu^\ell \leq \nu^\ell, \mu^R \leq \nu^R, \mu_\ell \leq \nu_\ell, \mu_R \leq \nu_R. \)
4) \(\left(\mu^\ell \right)^\ell = \mu^\ell, \left(\mu^L \right) = \mu^L \text{ and } \left(\mu^R \right) = \mu^R. \)
5) Clearly, \(\left(\mu \lor \nu \right)^\ell \leq \mu^\ell \lor \nu^\ell \). Noting that \(\mu^\ell \lor \nu^\ell \in \tau \), we see that
\[\left(\mu \lor \nu \right)^\ell = \left(\mu \lor \nu \right)^\ell \leq \mu^\ell \lor \nu^\ell. \]

Thus, \(\mu \lor \nu \leq \mu^\ell \lor \nu^\ell \).
6) There exist \(\mu \in \tau \) such that \(\mu^\ell = -^\ell \mu, \mu^R = -^R \mu \).

If \(-^\ell (x \lor y) = -^\ell x \lor -^\ell y \forall x, y \in L \), then
\[-^R \left(\mu \lor \nu \right) = -^R \left(\mu \lor \nu \right) \lor -^\ell \mu^\ell \lor -^R \mu^R = \left(\mu \lor \nu \right)^R \in \tau. \]
Thus, \(\left(\mu \lor \nu \right)^R \leq \mu^\ell \lor \nu^R \).

Therefore, \(\left(\mu \lor \nu \right) = \mu^\ell \lor \nu^R \).
7) Similar to (6).

Theorem 2.3. Let \(f : L^X \rightarrow L^X \) be a mapping. Then the following two statements hold.

1) If the operator \(f \) on \(L^X \) satisfying the following conditions:

(C1) \(f(1_X) = 1_X, \)
(C2) \(f(\mu) \leq \mu \lor \mu, \mu \leq f(\mu), \mu \leq \mu \lor \mu \).
(C3) \(f(\mu \lor \nu) = f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
(C4) \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)

Then \(f \) is an L-operator on \(X \). Moreover, if the operator \(f \) also fulfills

(C4) \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
then with the L-topology \(\tau \), \(f(\mu) = \mu^\ell \) for every \(\mu \in L^X \), i.e., \(f \) is the interior operator w.r.t \(\tau \). 2) If the operator \(f \) on \(L^X \) satisfying the following conditions:

(C1') \(f(0_X) = 0_X, \)
(C2') \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
(C3') \(f(\mu \lor \nu) = f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)

Then \(f \) is an L-operator on \(X \), moreover, if the operator \(f \) also fulfills

(C4) \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
then with the L-topology \(\tau \), \(f(\mu) = \mu^\ell \) for every \(\mu \in L^X \), i.e., \(f \) is the left closure operator w.r.t \(\tau \). 2) If the operator \(f \) on \(L^X \) satisfying the following conditions:

(C1') \(f(1_X) = 1_X, \)
(C2') \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
(C3') \(f(\mu \lor \nu) = f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)

Then \(f \) is an L-operator on \(X \), moreover, if the operator \(f \) also fulfills

(C4) \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
then with the L-topology \(\tau \), \(f(\mu) = \mu^\ell \) for every \(\mu \in L^X \), i.e., \(f \) is the right closure operator w.r.t \(\tau \). 2) If the operator \(f \) on \(L^X \) satisfying the following conditions:

(C1') \(f(1_X) = 1_X, \)
(C2') \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
(C3') \(f(\mu \lor \nu) = f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)

Then \(f \) is an L-operator on \(X \), moreover, if the operator \(f \) also fulfills

(C4) \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
then with the L-topology \(\tau \), \(f(\mu) = \mu^\ell \) for every \(\mu \in L^X \), i.e., \(f \) is the left closure operator w.r.t \(\tau \). 2) If the operator \(f \) on \(L^X \) satisfying the following conditions:

(C1') \(f(0_X) = 0_X, \)
(C2') \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
(C3') \(f(\mu \lor \nu) = f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)

Then \(f \) is an L-operator on \(X \), moreover, if the operator \(f \) also fulfills

(C4) \(f(\mu) \leq f(\mu) \lor f(\nu) \forall \mu, \nu \in L^X, \)
then with the L-topology \(\tau \), \(f(\mu) = \mu^\ell \) for every \(\mu \in L^X \), i.e., \(f \) is the right closure operator w.r.t \(\tau \).
\[f(\neg^l (\vee_{j \in J} \eta_j)) = f(\bigwedge_{j \in J} \neg^l \eta_j) \leq \bigwedge_{j \in J} f(\neg^l \eta_j) = \bigwedge_{j \in J} \neg^l \eta_j = \neg^l (\vee_{j \in J} \eta_j). \]

Combing with (C2), we have that
\[f(\neg^l (\vee_{j \in J} \eta_j)) = \neg^l (\vee_{j \in J} \eta_j). \]

Thus, \(\vee_{j \in J} \eta_j \in \tau_i \) and so \(\tau_i \) is an \(L \)-topology on \(X \).

For any \(\mu \in L^X \),
\[
\begin{align*}
 f(\mu^c) &= f\left(\bigwedge \{ \neg^l \xi \mid \mu \leq \neg^l \xi, \xi \in \tau_i \right}\) \\
 &\leq \bigwedge\{ f(\neg^l \xi) \mid \mu \leq \neg^l \xi, \xi \in \tau_i \} \\
 &= \bigwedge\{ \neg^l \xi \mid \mu \leq \neg^l \xi, \xi \in \tau_i \} = \mu^c,
\end{align*}
\]
i.e., \(f(\mu) \leq f(\mu^c) \leq \mu^c \). Moreover, if (C4) holds and \(\neg^l : L^X \to L^X \) is a bijection, then
\[
\begin{align*}
 f(\mu) &\geq \bigwedge \{ \eta \in L^X \mid f(\eta) = \eta \geq \mu \} \\
 &= \bigwedge\{ \neg^l \xi \mid \mu \leq \neg^l \xi, \xi \in \tau_i \} = \mu^c.
\end{align*}
\]

Therefore, \(f(\mu) = \mu^c \), i.e., \(f \) is the left closure operator w.r.t \(\tau_i \).

We can prove in an analogous way that \(\tau_2 \) is an \(L \)-topology on \(X \) and the corresponding \(f \) is the right closure operator w.r.t \(\tau_2 \).

3. Acknowledgements

This work is supported by Science Foundation of Yancheng Teachers University (11YSYJB0201).

REFERENCES