Geodesic Lightlike Submanifolds of Indefinite Sasakian Manifolds*

Junhong Dong¹, Ximin Liu²

¹Department of Mathematics, South China University of Technology, Guangzhou, China
²School of Mathematical Sciences, Dalian University of Technology, Dalian, China

E-mail: dongjunhong-run@163.com, ximinliu@dlut.edu.cn

Received July 23, 2011; revised August 15, 2011; accepted August 25, 2011

Abstract

In this paper, we study geodesic contact CR-lightlike submanifolds and geodesic screen CR-lightlike (SCR) submanifolds of indefinite Sasakian manifolds. Some necessary and sufficient conditions for totally geodesic, mixed geodesic, D̅-geodesic and D'-geodesic contact CR-lightlike submanifolds and SCR submanifolds are obtained.

Keywords: CR-Lightlike Submanifolds, Sasakian Manifolds, Totally Geodesic Submanifolds

1. Introduction

A submanifold M of a semi-Riemannian manifold \tilde{M} is called lightlike submanifold if the induced metric on M is degenerate. The general theory of a lightlike submanifold has been developed by Kupeli [1] and Bejancu-Duggal [2].

The geometry of CR-lightlike submanifolds of indefinite Kaehler manifolds was studied by Guggal and Bejancu [2]. The geodesic CR-lightlike submanifolds in indefinite Kaehler manifolds were studied by Sahin and Günes [3,4].

Lightlike submanifold of indefinite Sasakian manifolds can be defined according to the behavior of the almost contact structure, and contact CR-lightlike submanifolds and screen CR-lightlike (SCR) submanifolds of indefinite Sasakian manifolds were studied by Duggal and Sahin in [5]. The study of the geometry of submanifolds of indefinite Sasakian manifolds has been developed by [6] and others.

In this paper, geodesic contact CR-lightlike submanifolds and geodesic screen CR-lightlike (SCR) submanifolds of indefinite Sasakian manifolds are considered. Some necessary and sufficient conditions for totally geodesic, mixed geodesic, \tilde{D}-geodesic and D'-geodesic contact CR-lightlike submanifolds and SCR submanifolds are obtained.

*This work is supported by NSFC (10931005).
Now, let ∇ be the Levi-Civita connection on \bar{M}, we have
\[
X(\bar{g}(Y,Z)) = \bar{g}(\nabla_X Y, Z) + \bar{g}(Y, \nabla_X Z), \quad \forall X, Y, Z \in \Gamma(TM),
\]
(2.1)
\[
\nabla_X Y = \nabla^*_X Y + h'(X,Y), \quad \forall X, Y \in \Gamma(TM),
\]
(2.2)
\[
\nabla_X V = -A_X X + \nabla_X^* V, \quad \forall X \in \Gamma(TM),
\]
(2.3)
\[
V \in \Gamma(tr(TM)),
\]
where $\{\nabla^*_X A_X X\}$ and $\{h(X,Y), \nabla^*_X V\}$ belong to $\Gamma(TM)$ and $\Gamma(tr(TM))$, respectively. Using the projectors $l: tr(TM) \rightarrow S(TM)$ and $s: tr(TM) \rightarrow \text{ltr}(TM)$, from [1], we have
\[
\nabla_X Y = \nabla^*_X Y + h'(X,Y), \forall X, Y \in \Gamma(TM),
\]
(2.4)
\[
\nabla_X N = -A_X X + \nabla^*_X N + D'(X,N), \forall N \in \Gamma(ltr(TM)),
\]
(2.5)
\[
\nabla_X W = -A_X X + \nabla^*_X W + D'(X, W), \forall W \in \Gamma(TM),
\]
(2.6)
Denote the projection of TM to $S(TM)$ by P, we have the decomposition
\[
\nabla_X P Y = \nabla^*_X P Y + h'(X, PY),
\]
(2.7)
\[
\nabla^*_X \xi = -A^*_X X + \nabla^*_X \xi,
\]
(2.8)
for any $X, Y \in \Gamma(TM), \xi \in \Gamma(Rad(TM)), N \in \Gamma(ltr(TM))$. From the above equations we have
\[
\bar{g}(h'(X,Y), \xi) = g(A^*_X X, Y),
\]
(2.9)
\[
\bar{g}(h'(X, PY), N) = g(A_X X, PY),
\]
(2.10)
\[
\bar{g}(h'(X, \xi), \bar{g}(V, V) = 0, A^*_X \xi = 0.
\]
(2.11)
Definition 2.1 A $(2n + 1)$-dimensional Semi-Riemannian manifold (\bar{M}, \bar{g}) is called a contact metric manifold if there is a $(1,1)$ tensor field ϕ, a vector field V, called the characteristic vector field, and its dual 1-form η such that
\[
\bar{g}(\phi X, \phi Y) = \bar{g}(X, Y) - \epsilon \eta(X) \eta(Y), \bar{g}(V, V) = \epsilon,
\]
(2.12)
\[
\phi^2(X) = -X + \eta(X)V, \bar{g}(X, V) = \epsilon \eta(X),
\]
(2.13)
\[
d\eta(X, Y) = \bar{g}(X, \phi Y), \forall X, Y \in \Gamma(TM),
\]
(2.14)
where $\epsilon = \pm 1$.
From the above definiton, it follows that
\[
\phi^2(X) = -X + \eta(X)V, \bar{g}(X, V) = \epsilon \eta(X),
\]
(2.13)
\[
d\eta(X, Y) = \bar{g}(X, \phi Y), \forall X, Y \in \Gamma(TM),
\]
(2.14)
where $\epsilon = \pm 1$.
From the above definiton, it follows that
\[
\phi^2(X) = -X + \eta(X)V, \bar{g}(X, V) = \epsilon \eta(X),
\]
(2.13)
\[
d\eta(X, Y) = \bar{g}(X, \phi Y), \forall X, Y \in \Gamma(TM),
\]
(2.14)
so $h'(Y, \nabla_Y X) = 0$. That is to say $h'(Y, PX) = 0$.
In a similar way, we can get $h'(X, Y) = 0$. Thus, M is totally geodesic.

Conversely, if $h'(X, Y) = h'(X, Y) = 0$, since
\[
\left(\nabla_X h' \right)(Y, Z) = \nabla_X h'(Y, Z) - h'(\nabla_X Y, Z)
- h'(Y, \nabla_X Z) = 0,
\]
\[
\left(\nabla_X h' \right)(Y, Z) = \nabla_X h'(Y, Z) - h'(\nabla_X Y, Z)
- h'(Y, \nabla_X Z) = 0,
\]
so h' and h' are parallel, which completes the proof.

4. Geodesic Contact CR-Lightlike Submanifolds

Definition 4.1 Let $(M, g, S(TM), S(TM^\perp))$ be a lightlike submanifold, tangent to the structure vector field V, immersed in an indefinite Sasakian manifold $(\overline{M}, \overline{g})$. We say that M is a contact CR-lightlike submanifold of \overline{M} if the following conditions are satisfied:

1. [A] $\text{Rad} TM$ is a distribution on M such that $\text{Rad} TM \cap \phi(\text{Rad} TM) = \{0\}$.
2. [B] There exist vector bundles D_0 and D' over M such that $S(TM) = \{\phi(\text{Rad} TM) \oplus D' \} \perp D_0 \perp V$,
\[
\phi D_0 = D_0, \phi D' = L_1 \perp L_2,
\]
where D_0 is non-degenerate and $L_1 = \text{tr}(TM)$, L_2 is a vector subbundle of $S(TM^\perp)$. So we have the decomposition
\[
TM = \{D \perp \phi D' \} \perp V, \quad D = \text{Rad} TM \perp \phi(\text{Rad} TM) \perp D_0.
\]

If we denote $\hat{D} = D \perp V$, then we have
\[
TM = \hat{D} \oplus D', \phi \hat{D} = \hat{D}.
\]

Definition 4.2 A contact CR-lightlike submanifold of an indefinite Sasakian manifold is called D-geodesic contact CR-lightlike submanifold if its second fundamental form h satisfies $h(X, Y) = 0$, for any $X, Y \in \Gamma(\hat{D})$.

Definition 4.3 A contact CR-lightlike submanifold of an indefinite Sasakian manifold is called mixed geodesic contact CR-lightlike submanifold if its second fundamental form h satisfies $h(X, Z) = 0$, for any $X \in \Gamma(\hat{D})$ and $Z \in \Gamma(D')$.

Definition 4.4 A contact CR-lightlike submanifold of an indefinite Sasakian manifold is called D'-geodesic contact CR-lightlike submanifold if its second fundamental form h satisfies $h(Z, U) = 0$, for any $Z, U \in \Gamma(D')$.

Theorem 4.1 Let M be a contact CR-lightlike submanifold of an indefinite Sasakian manifold \overline{M}.

Then M is totally geodesic if and only if
\[
\overline{g}(h(X, A_0 X) = \overline{g}(Y, D'(X, W)), \quad \nabla X \phi Y \text{ has no components in } \phi L_1, \quad Y \in \Gamma(TM) - \text{span}\{V\} \} \text{ or } X \text{ has no components in } \phi L_1.
\]

Proof. We know that M is totally geodesic if and only if $h(X, Y) = 0$, for any $X, Y \in \Gamma(TM)$. By the definition of the second fundamental form, $h(X, Y) = 0$ is equivalent to $\overline{g}(h(X, Y), \xi) = 0, \overline{g}(h(X, Y), W) = 0$, for any $\xi \in \Gamma(\text{Rad} TM), W \in \Gamma(S(TM^\perp))$.

From (2.4) and (2.7) we have
\[
\overline{g}(h(X, Y), \xi) = \overline{g}(\nabla_X Y, \xi)
= \overline{g}(\phi \nabla_X Y, \phi \xi) + \eta(\nabla_X Y)\eta(\xi)
= \overline{g}(\nabla_X \phi Y, \phi \xi) + \overline{g}(\overline{g}(X, Y)\phi \xi)
= \overline{g}(\nabla_X \phi Y, \phi \xi) + \eta(Y)\overline{g}(X, \phi \xi)
\]
and
\[
\overline{g}(h'(X, Y), W) = \overline{g}(\nabla_X Y', W)
= x(\overline{g}(X, W') - \overline{g}(Y, \nabla_X W')
= -\overline{g}(Y, \nabla_X W')
= -\overline{g}(Y, -A_0 X + \nabla_X W + D'(X, W))
= \overline{g}(Y, A_0 X) - \overline{g}(Y, D'(X, W))
\]

Thus, from (4.1) and (4.2), the proof is completed.

Theorem 4.2 Let M be a contact CR-lightlike submanifold of an indefinite Sasakian manifold \overline{M}. Then M is mixed geodesic if and only if $A_0 X \phi Y \text{ has no components in } \phi \text{Rad} TM \perp L_2$.

Proof. By the definition, M is mixed geodesic if and only if
\[
\overline{g}(h(X, Y), \xi) = 0, \overline{g}(h(X, Y), W) = 0.
\]

Then we have
\[
\overline{g}(h(X, Y), \xi) = \overline{g}(\nabla_X Y, \xi)
= \overline{g}(\phi \nabla_X Y, \phi \xi) + \eta(\nabla_X Y)\eta(\xi)
= \overline{g}(\nabla_X \phi Y, \phi \xi)
= \overline{g}(\nabla_X \phi Y, \phi \xi) + \overline{g}(\overline{g}(X, Y)\phi \xi)
= \overline{g}(\nabla_X \phi Y, \phi \xi) + \eta(Y)\overline{g}(X, \phi \xi)
= -\overline{g}(A_0 X, \phi \xi) + \eta(Y)\overline{g}(X, \phi \xi)
= -\overline{g}(A_0 X, \phi \xi)
\]
and
\[\bar{g}(h(X,Y),W) = \bar{g}(\nabla_Y Y, W) \]
\[= \bar{g}(\phi \nabla_Y Y, \phi W) + \eta(\nabla_Y Y) \eta(W) \]
\[= \bar{g}(\phi \nabla_Y Y, \phi W) \]
\[= \bar{g}(\nabla_Y Y, \phi W) \]
\[= \bar{g}(\nabla_Y Y, \phi W) + \bar{g}(\bar{g}(X,Y)V + \eta(Y)X, \phi W) \]
\[- \bar{g}(A_{\phi} Y, \phi W). \]

Thus, the proof of the theorem is complete.

Theorem 4.3 Let \(M \) be a contact CR-lightlike submanifold of an indefinite Sasakian manifold \(\bar{M} \). Then \(M \) is \(\bar{D} \)-geodesic if and only if
\[\nabla_\eta \phi \xi \in \Gamma(\phi RadTM \perp \phi L_2), \nabla_\eta Y \] has no components in \(\phi L_2, \nabla_\eta Y \in \Gamma(\bar{D}). \]

Proof. \(M \) is \(\bar{D} \)-geodesic if and only if
\[\bar{g}(h(X,Y),\xi) = 0, \bar{g}(h'(X,Y),W) = 0, \] for any
\(X,Y \in \Gamma(D'), \xi \in \Gamma(RadTM) \) and \(W \in \Gamma(S(TM^\perp)). \)

Thus the assertions of the theorem follows.

5. Geodesic Contact SCR-Lightlike Submanifolds

Definition 5.1 Let \((M,g,S(TM),S(TM^\perp)) \) be a lightlike submanifold, tangent to the structure vector field \(V \), immersed in an indefinite Sasakian manifold \(\bar{M}, g \). We say that \(M \) is a contact SCR-lightlike submanifold of \(\bar{M} \) if the following conditions are satisfied
\[\text{[(A)] There exist real non-null distributions } D \text{ and } D^\perp, \text{ such that } \]
\[S(TM) = D \perp D^\perp \perp V, \phi(D^\perp) \subset S(TM^\perp), \]
\[D \cap D^\perp = \{0\}, \]
where \(D^\perp \) is the orthogonal complementary to \(D \perp V \) in \(S(TM) \). \[\text{[(B)] } \phi D = D, \phi RadTM = RadTM, \phi ltr(TM) = ltr(TM). \]

Hence we have the decomposition
\[TM = \bar{D} \perp D^\perp \perp V, \bar{D} = D \perp RadTM. \]

Let us denote \(\bar{D} = D \perp V. \)

Definition 5.2 A contact SCR-lightlike submanifold of an indefinite Sasakian manifold is called mixed geodesic contact SCR-lightlike submanifold if its second fundamental form \(h \) satisfies \(h(X,Y) = 0 \), for any \(X \in \Gamma(\bar{D}) \) and \(Y \in \Gamma(D^\perp). \)

Theorem 5.1 Let \(M \) be a contact SCR-lightlike submanifold of an indefinite Sasakian manifold \(\bar{M} \). Then \(M \) is totally geodesic if and only if
\[h(X,Y), \xi) = 0, \bar{g}(h'(X,Y),W) = 0, \] for any
\(X,Y \in \Gamma(D'), \xi \in \Gamma(RadTM) \) and \(W \in \Gamma(S(TM^\perp)). \)

Proof. We know \(M \) is totally geodesic if and only if
\[\bar{g}(h(X,Y),\xi) = 0, \bar{g}(h'(X,Y),W) = 0, \] for any
\(X,Y \in \Gamma(\bar{D}), Y \in \Gamma(D^\perp). \)
From (2.1) and Lie derivative we obtain
\[
\bar{g}(h(X,Y),\xi) = \bar{g}(\nabla_X Y,\xi)
\]
\[
= X(\bar{g}(Y,\xi)) - \bar{g}(\nabla_Y X,\xi)
\]
\[
= \bar{g}(Y,[\xi,X]) - \bar{g}(Y,\nabla_Y X)
\]
\[
= \bar{g}(Y,[\xi,X]) - \xi(\bar{g}(X,Y)) + \bar{g}(X,\nabla_Y \xi)
\]
\[
= \bar{g}(Y,[\xi,X]) - \xi(\bar{g}(X,Y)) + \bar{g}(X,[\xi,Y]) + \bar{g}(\nabla_Y \xi, X)
\]
\[
= -(L_\xi \bar{g})(X,Y) - \bar{g}(h(X,Y),\xi).
\]
Hence we have
\[
2 \bar{g}(h(X,Y),\xi) = -(L_\xi \bar{g})(X,Y).
\]
In a similar way, we can get
\[
2 \bar{g}(h(X,Y),W) = -(L_\xi \bar{g})(X,Y),
\]
thus the proof is completed.

Theorem 5.2 Let \(M \) be a contact SCR-lightlike submanifold of an indefinite Sasakian manifold \(\bar{M} \). Then \(M \) is mixed geodesic if and only if \(\nabla_x \phi Y \in \Gamma(D^+) \), \(A_{\phi Y} X \in \Gamma(D^+) \), for any \(X \in \Gamma(\bar{D}) \), \(Y \in \Gamma(D^+) \).

Proof. For any \(X \in \Gamma(\bar{D}) \), \(Y \in \Gamma(D^+) \),
\[
\xi \in \Gamma(RadTM), \ W \in \Gamma(S(TM^+))
\]
denote by
\[
\phi X = P'X + Q'X, \phi W = B'W + C'W,
\]
where \(P'X \in \Gamma(\bar{D}) \), \(Q'X \in \Gamma(\phi D^+) \), \(B'W \in \Gamma(D^+) \)
and \(C'W \in \Gamma(S(TM^+) - \phi D^+) \).

If \(M \) is mixed geodesic, then
\[
h(X,Y) = \nabla_x Y - \nabla_x Y = 0.
\]
From the definition, there exists \(W \in \Gamma(S(TM^+)) \) such that \(\phi W = Y \). Thus we have
\[
0 = \nabla_x Y = \nabla_x Y - \nabla_x Y
\]
\[
= \phi(-A_{\phi W} X + \nabla_x W) - \nabla_x Y
\]
\[
= -P' A_{\phi W} X - Q' A_{\phi W} X + B' \nabla_x W + C' \nabla_x W - \nabla_x Y.
\]
From the definition of the \(Q' \) and \(C' \), we know that \(Q' A_{\phi W} X = C' \nabla_x W, W = 0 \). So we have
\[
\nabla_x W \in \Gamma(\phi D^+), \ A_{\phi W} X \in \Gamma(\bar{D}).
\]
From \(\phi W = Y \) and (2.13), we have \(W = -\phi Y \), thus the proof is completed.

Theorem 5.3 Let \(M \) be a contact SCR-lightlike submanifold of an indefinite Sasakian manifold \(\bar{M} \). Then \(D^+ \) defines a totally geodesic foliation if and only if \(h'(X,\phi Z) \) and \(h'(X,\phi N) \) has no components in \(\Gamma(\phi(D^+)) \), \(\forall X \in \Gamma(D^+) \), \(Z \in \Gamma(D^+) \).

Proof. From the definition, we have that \(D^+ \) is a totally geodesic foliation if and only if \(\nabla_x Y \in \Gamma(D^+) \), for any \(X, Y \in \Gamma(D^+) \), which is equivalent to
\[
g(\nabla_x Y, Z) = g(\nabla_x Y, N) = 0,
\]
\(\forall Z \in \Gamma(D^+), N \in \Gamma(ltr(TM)) \).

Then we have
\[
g(\nabla_x Y, Z) = \bar{g}(\nabla_x Y, Z) = -\bar{g}(\nabla_x Y, Z)
\]
\[
-\bar{g}(\phi Y, \phi \nabla_x Z) - \eta(Y) \eta(\nabla_x Z)
\]
\[
= \bar{g}(\phi Y, \phi \nabla_x Z)
\]
\[
-\bar{g}(\phi Y, \nabla_x \phi Z + g(X, Z) V + \eta(Z) X)
\]
\[
= \bar{g}(\phi Y, \nabla_x \phi Z)
\]
\[
= \bar{g}(\phi Y, h'(X, \phi N))
\]
and
\[
g(\nabla_x Y, N) = \bar{g}(\nabla_x Y, N)
\]
\[
= \bar{g}(\phi \nabla_x Y, \phi N) + \eta(\nabla_x Y) \eta(N)
\]
\[
= \bar{g}(\phi \nabla_x Y, \phi N)
\]
\[
= \bar{g}(\nabla_x \phi Y + g(X, Z) V + \eta(Y) X, \phi N)
\]
\[
= \bar{g}(\nabla_x \phi Y, \phi N)
\]
\[
= \bar{g}(\phi Y, \nabla_x \phi N)
\]
\[
= \bar{g}(\phi Y, h'(X, \phi N)).
\]
Thus the assertion is proved.

6. References
