A Study on the Conversion of a Semigroup to a Semilattice

Bahman Tabatabaie, Seyed Mostafa Zebarjad
Department of Mathematics, Shiraz University, Shiraz, Iran
E-mail: s_zebarjad@yahoo.com

Received January 19, 2011; revised March 15, 2011; accepted March 25, 2011

Abstract

The main aim of the current research has been concentrated to clarify the condition for converting the inverse semigroups such as S to a semilattice. For this purpose a property the so-called E^*–unitary has been defined and it has been tried to prove that each inverse semigroups limited with E^*–unitary show the specification of a semilattice.

Keywords: Semigroup, Semilattice, E^*–unitary

1. Introduction

1.1. Literature Survey

Literature survey done by the authors show that a special class of semigroups possessing is formed by the E^*–unitary inverse semigroups, sometimes also called 0–E^*–unitary, which was defined by Szendrei [1] and has been intensely studied in the semigroup literature. See, for example, Kellendonk’s topological groupoid is Hausdorff when S is E^*–unitary [2], and the related class of E^*–unitary inverse semigroups have also been shown to provide Hausdorff groupoids [3]. In the current research the authors try to prove that each inverse semigroups limited with E^*–unitary show the specification of a semilattice. For this purpose, firstly we present elementary concepts as follows.

1.2. Preliminary Definitions and Propositions

A groupoid is a set G together with a subset $G^2 \subseteq G \times G$, a product map $(a, b) \mapsto ab$.

From G^2 to G, and an inverse map $a \mapsto a^{-1}$ (so that $(a^{-1})^{-1} = a$) from G onto G such that:

1) if $(a, b), (b, c) \in G^2$, then $(ab, c), (a, bc) \in G^2$ and $(ab)c = a(bc)$.

2) $(b, b^{-1}) \in G^2$ for all $b \in G$, and if $(a, b) \in G^2$ then $a^{-1}(ab) = b$ and $(ab)b^{-1} = a$.

Note that G^2 is nothing but the set of all pairs (x, y) in $G \times G$ for which xy is defined, and G^2 is called the set of composable pairs of the groupoid G [3].

If $x \in G, d(x) = x^{-1}x$ is the domain of x and $r(x) = xx^{-1}$ its range. The pair (x, y) is composable if and only if the range of y is the domain of x. $G^0 = d(G) = r(G)$ is the unit space of G, its elements are units in sense that $xd(x) = x$ and $r(x) = x$ [4].

By an inverse semigroup we mean a semigroup S such that for each a in S, there exists a unique element a' in S with the following properties:

$aaa' = a$, and $a'a'a = a'$

It is well known that the correspondence $a \mapsto a'$ is an involutive anti-homomorphism, i.e., $(ab)^* = b^*a^*$ for all a and b in S. It is very common to denote it by $E(S)$, the set of all idempotent elements of S, it means that $a^2 = a$ for all a in $E(S)$. It is clear that $a' = a$ for all a in $E(S)$.

A very important example of an inverse semigroup is given by $S = I(X)$ the set of all partial one-to-one maps on a set X. So each element of $I(X)$ is a bijection form a subset U of X onto another subset V of X. The set $I(X)$ is a semigroup where the multiplication rule is given by composition of partial maps with the largest possible domain.

For example, if $\theta_1, \theta_2 \in I(X)$ with $\theta_1 : U_1 \rightarrow V_1$ and $\theta_2 : U_2 \rightarrow V_2$, then

$\theta_1 \theta_2 : \theta_1^{-1}(V_2 \cap U_1) \rightarrow \theta_2((V_2 \cap U_1)$

is given by:

$\theta_1(\theta_2(a)) = \theta_2(\theta(a)).$
The element θ^t_0 is taken to be θ^{-1}. It is easily checked that $I(X)$ is an inverse semigroup [3,5].

We recall that a relation \leq on a set X is called a partial ordering of X if for all $a, b, c \in X$:

1) $a \leq a$

2) $a \leq b$ and $b \leq a$ implies $a = b$

3) $a \leq b$ and $b \leq c$ implies $a \leq c$.

The following example is of great importance to us. Define $e \leq f$ ($e, f \in E(S)$) to mean $ef = fe = e$. It is clear that \leq is a partial ordering of $E(S)$. We shall call \leq the natural partial ordering of $E(S)$.

An element b of a partially ordered set X is called an upper bound of a subset Y of X, if $y \leq b$ for each $y \in Y$. An upper bound of Y is called a least upper bound or join of Y, if $b \leq c$ for every upper bound c of Y. If Y has a join in X, it is clearly unique. Lower bound and greatest lower bound or meet can be defined similarly.

A partially ordered set X is called a semilattice if every two elements subset $\{a, b\}$ of X has a join and a meet in X; it implies that every finite subset of X has both a join and a meet. The join (or meet) of a and b is called the meet (or join) of a and b.

Definition 1.1 Suppose that S is an inverse semigroup and X can be assumed that as a locally compact Hausdorff topological space.

An action of S on X is a semigroup homomorphism as follows:

$$\alpha : S \rightarrow I(X)$$

$$a \mapsto \alpha_a$$

such that

1) for every $a \in S$ there is a continuous α_a with open domain in X.

2) the union of the domains of all the α_a coincides with X.

Proposition 1.2 Let S be an inverse semigroup, α an action of S on a set X and $a \in S$, then

$$\alpha_a \circ \alpha_a = \alpha_a$$

and $\alpha_a \circ \alpha_a = \alpha_a$.

Proof: Since α is an action of S on X then $\alpha : S \rightarrow I(X)$ is a semigroup homomorphism, so for every $a \in S$ we have $\alpha(a)\alpha(a')\alpha(a) = \alpha(a)$, then $\alpha_a \circ \alpha_a = \alpha_a$, and simillarly $\alpha_a \circ \alpha_a = \alpha_a$.

With regard to the above text one may conclude that $\alpha_a = \alpha_a^{-1}$, and if $e \in E(S)$, so α_e is the identity map on its domain.

Since the range of each α_a coincides with the domain of $\alpha_a = \alpha_a^{-1}$, therefore it can be open as well as its domain. Also it can be mentioned that α_a^{-1}, is continuous, so α_a is necessarily a homeomorphism onto its range.

For every $e \in E(S)$ the domain (and range) of α_e can be denoted by E_e, it means:

$$\alpha_e : E_e \rightarrow E_e.$$

It is clear to show that the domains of both α_e and α_e^{-1} are the same, and implies that the domain of α_e is E_{α_1}. Likewise the range of α_e is given by E_{α_λ}. Thus $\alpha_e : E_{\alpha_\lambda} \rightarrow E_{\alpha_{\lambda^*}}$ is a homeomorphism for every $a \in S$.

Briefly if e and f are in $E(S)$ then we have $\alpha_e \circ \alpha_f = \alpha_{ef}$ and $E_e \cap E_f = E_{ef}$.

Proposition 1.3 For each $a \in S$ and $e \in E(S)$ we have:

$$\alpha_e (E_e \cap E_{\alpha_1}) = E_{\alpha_e}.$$

Proof: Since N. Sieben [6], R. Exel [7] and Lawson [8] proved it, the authors use their result.

Definition 1.4 Let Σ be the subset of $S \times X$ given by:

$$\Sigma = \{(ab) \in S \times X : b \in E_{\alpha_{ab}}\}$$

and for every (a_1, b_1) and (a_2, b_2) in Σ we will say that $(a_1, b_1) \sim (a_2, b_2)$ if $b_1 = b_2$ and there exists an idempotent e in $E(S)$ such that $b_1 \in E_e$, and $a_1 e = a_2 e$.

It is clearly that the relation \sim is an equivalence relation on Σ. The equivalence class of (a, b) will be denoted by $[a, b]$.

Let $G = \{[a, b] : a \in S, b \in X\}$ and put

$$G^2 = \{[[a_1, b_1], [a_2, b_2]] \in G \times G : b_1 = \alpha_{a_1}(b_2)\}$$

And for every $[[a_1, b_1], [a_2, b_2]] \in G^2$ define:

$$[[a_1, b_1], [a_2, b_2]] = [a_1 a_2, b_2]$$

$$[[a_1, b_1]]^{-1} = [a_1^{-1}, \alpha_{a_1}(b_1)]$$

it is easy to see that G is a groupoid [3] and the unit space $G^{(0)}$ of G naturally identifies with X under the correspondence

$$[e, b] \in G^{(0)} \mapsto b \in X,$$

where e is any idempotent such that $e \in E_e$. We show G semigroup as $G(a, x, X)$.

We would now like to give G is a topology. Let $a \in S$ and U be an open subset of E_{α_1} we define $\psi(a, U)$ as follows:

$$\psi(a, U) = \{[a, b] \in G : b \in U\}$$

The collection of all $\psi(a, U)$ is the basis of a topology on G, and also the multiplication and inversion operations on G are continuous, therefore G is a topological groupoid.
2. Main Results

Recall from [2] that an inverse semigroup S is naturally equipped with a partial order defined by:

$$a \leq b \iff a = ba^*a \forall a \in S$$

Proposition 2.1 Assume that S is an inverse semigroup which is a semilattice. Suppose that a is an action of S on a locally compact Hausdorff space X, such that for each $a \in S$, the domain $E_{s,a}$ of a_s is closed. Then $G = G(a,S,X)$ is Hausdorff.

Proof: Suppose $[a,c]$ and $[b,d]$ are two distinct elements of $G(a,S,X)$. The aim is to find two disjoint open subsets T_1 and T_2 of $G(a,S,X)$ such that:

$$[a,c] \in T_1, [b,d] \in T_2, T_1 \cap T_2 = \emptyset$$

We consider two cases:

Case 1): If $(c \neq d)$.
Since X is Hausdorff space then

$$\exists F_1, F_2 \subseteq X \text{ (open), } c \in F_1, d \in F_2, F_1 \cap F_2 = \emptyset$$

Now let $T_1 = \wp (a,F_1 \cap E_{s,a})$ and $T_2 = \wp (b,F_2 \cap E_{s,b})$

Since T_1 and T_2 are open set and

$$T_1 = \{(a,k) \in G : k \in F_1 \cap E_{s,a} \},$$

$$T_2 = \{(b,k) \in G : k \in F_2 \cap E_{s,b} \},$$

It is clearly that:

$$[a,c] \in T_1, [b,d] \in T_2 \text{ and } T_1 \cap T_2 = \emptyset$$

Case 2): If $(c = d)$.
Since S is a semilattice let $h = a \land b$ so

$$h \leq a \to h = ah'h$$

$$h \leq b \to h = bh'h$$

Then referring to what proposed in Definition 1.4, $e \in E_{s,b}$, $E_{s,b}$ is closed then $T_2 = X \setminus E_{s,b}$ can be open and $c \in T_2$.

Now we can set T as $T_2 \cap E_{s,b} \cap E_{s,b}$. But we know that $\psi (a,T) = \{(a,k) : k \in T \}$ and it is clear that $[a,c] \in \psi (a,T), [b,c] \in \psi (b,T)$.

To do so it is enough to prove that $\psi (a,T) \cap \psi (b,T) = \emptyset$.

Suppose that $[l,k] \in \psi (a,T) \cap \psi (b,T)$ then:

$$[l,k] \in \psi (a,T) \to [l,k] = [a,k] \to (l,k) \to (a,k) \to \exists e \in E(S), k \in E_s, ae = le$$

$$[l,k] \in \psi (b,T) \to [l,k] = [b,k] \to (l,k) \to (b,k) \to \exists f \in E(S), k \in E_s, bf = le$$

Since $\psi \in E(S)$ and $ef = fe$, $k \in E_s \cap E_{s'}$, it can be replaced e and f with ef and finally we have:

$$aef = lef \iff lef = ef = bef$$

Therefore we can find an element $e \in E(S)$ such that $k \in E_s, ae = le, le = be$. So $(le') = (le) = aef'le' = le'le' = le$, then $le \leq a$, and similary $le \leq b$, since $h = a \land b$ thus $le \leq h$, then $le = le'h'$, hence $le" = le'h" \leq h"h$, and finally

$$k \in E_{r\epsilon \cap E_\epsilon} \subseteq E_{\epsilon^\epsilon}$$

But $k \in T$ which is a contradiction.

Definition 2.2 A zero in an inverse semigroup S is an element $0 \in S$ such that:

$$oa = a0 = 0 \forall a \in S$$

Definition 2.3 An inverse semigroup S with zero is said to be E^*-unitary if for every $e,a \in S$ one has that $e^* \neq e \leq a \Rightarrow a^* = a$.

In other words, if an element dominates a nonzero idempotent then that element itself is an idempotent.

Proposition 2.4 If S is an E^*-unitary inverse semigroup and a,b belong to the defined semigroup S such that $a^*a = b^*b$ and $ae = be$ for some nonzero idempotent $e \leq a^*a$ then $a = b$.

Proof: We define $x = aea^*$. So x is nonzero idempotent because:

$$e \leq a^*a \Rightarrow e = (a^*a)^*(a^*a)e = a^*aa^*a$$

Then $e = a^*aa^*a$ (because of the ability of idempotent elements for being commute) and we have

$$ba'x = ba^*aa^* = bb'bea^* = bea^* = x.$$

Therefore, we have $x \leq ba'$. Since S is an E^*-unitary which implies that ba' is idempotent. Then $ba' = (ba')^* = ab'$ so ab' is idempotent as well. But, we have

$$bb' = bb'bb' = ba'ab' = ab'ba = aa'aa' = aa.$$

Setting $y = ba'$, we have that

$$y' = ba'ba' = b'aa'a = b'a'aa' = b'a'a = b'b = b'bb'b = b'b'$$

Also $y = a'a'$, while

$$b = bb'bb = by' , \text{ and } a = aa'a = ay'y,$$

So it is enough to prove that $y' = ay'$. We have

$$ay' = ab'ba' = ab' = ba'bb'a = bb'ab' = by'.$$

In what follows we give the main result of this paper.

Theorem 2.5 In condition that S is an E^*-unitary inverse semigroup with zero, then can be appeared as a semilattice.

Proof: For proving the above theorem it is necessary to show that $a \land b$ exists for every $a,b \in S$. If there is not nonzero $h \in S$ such that $h \leq a,b$, it is obvious that
For doing this we can assume that there is a nonzero $h \in S$ in which $h^* h = h = bh^* h = bkh^* h = yh^* h$

Using the proposition (2.4) $x = y$ will be achieved and so

$$ab^* h = y^* y = bb^*$$

and finally

$$ab^* b = ba^*$$

By applying the above argument to a^*, b^*, h^* and knowing that $h^* \neq 0$ and $h^* \leq a^*, b^*$ we have

$$a^* b^* b^* h = b^* a^*$$

so

$$\left(a^* b^* b^*\right)^* = \left(b^* a^*\right)^*$$

and therefore Equation (1) can be modified to

$$bb^* a = aa^* b$$

We have that $h \leq a, b$ then $h = ah^* h$ and $h = bh^* h$, then we can show that

$$b^* a h^* h = b^* h h = h^* h$$

Since S is a E^*-unitary and $b^* a$ is dominated by $h^* h$, we have $\left(b^* a\right)^* = b^* a$. By applying the same reasoning to a^*, b^* and h^*, $\left(b^* a\right)^* = ba^*$ can be a result.

Thus

$$\left(b^* a\right)^* = b^* a$$
$$\left(b^* a\right)^* = ba^*$$

and hence $ab^* b = ba^* b = bb^* a$

$$ab^* b = bb^* a$$

By combination of Equations (1) to (3), Equation (4) will be appeared.

$$ab^* b = ba^* a = bb^* a = aa^* b$$

At the end we try to prove that $ab^* b$ can satisfy the following condition

$$h \leq ab^* b \leq a, b$$

for every $h \in S$ such that $h \leq a, b$.

It is clear that $ab^* b \leq a, b$ and as defined before $k = a^* ab^* b$, then we have $h^* k \leq k$, and so

$$h = ab^* b = ah^* h = aa^* ab^* b h = ah^* bk = \left(ab^* b\right) h^* h$$

Finally $h \leq ab^* b$. It means that $ab^* b$ is the join of a and b and this is the proof of theorem.

3. References

