
Applied Mathematics, 2017, 8, 1031-1044 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2017.88080  Aug. 7, 2017 1031 Applied Mathematics 
 

 
 
 

Asymptotic Behavior and Stability  
of Stochastic SIR Model with  
Variable Diffusion Rates 

Xianhua Xie1, Li Ma1,2, Jingfei Xu1* 

1Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, 
China 
2College of Mathematics and Econometrics, Hunan University, Changsha, China 

 
 
 

Abstract 
In this paper, we propose random fluctuation on contact and recovery rates in 
deterministic SIR model with disease deaths in nonparametric manner and 
derive a new stochastic SIR model with distributed time delay and general 
diffusion coefficients. By analysis of the introduced model, we obtain the suf-
ficient conditions for the regularity, existence and uniqueness of a global solu-
tion by means of Lyapunov function. Moreover, we also investigate the sto-
chastic asymptotic stability of disease free equilibria and endemic equilibria of 
this model. Finally, we illustrate our general results by applications. 
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1. Introduction 

SIR models are the foundation for a large number of compartmental models in 
mathematical epidemiology which classify the population into three classes: 
Susceptible, Infected and Removed (see [1]-[19]). Generally, these models admit 
two types of equilibrium: disease free and endemic equilibrium. If the disease 
free equilibrium is asymptotically stable, it implies the disease dies out. If the 
endemic equilibrium is asymptotically stable, it implies the disease persists in the 
population at the equilibrium level. 

In 1976, Hethcote [13] considered the following deterministic SIR model with 
disease deaths:  
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

,

,

.

S t S t I t K S t

I t S t I t I t

R t I t R t

β µ

β µ α

α µ

 ′ = − + −
 ′ = − +
 ′ = −                 

(1) 

In Equation (1), ( ) ( ) ( ), ,S t I t R t  denote the number of the individuals 
susceptible to the disease, of infected members and of members who have been 
removed from the population, respectively. The model (1) is based on the 
following assumptions:  

i) The population considered has a constant size K, that is, ( ) ( ) ( )S t I t R t K+ + =  
for all t;  

ii) Births and deaths occur at equal rates µ  in K. All the newborns are 
susceptible. µ  is called a daily death removal rate;  

iii) β  is the daily contact rate, i.e., the average number of contacts per infective 
per day. A contact of an infective is an interaction which results in infection 
of the other individual if it is susceptible;  

iv) α  is the daily recovery removal rate of the infective. Of course, 
, , Rβ µ α +∈ .  

In [8], Beretta and Takeuchi pointed out that when a susceptible vector is 
infected by a person, there is a time 0τ >  during which the infectious agents 
develop in the vector and it is only after that time that the infected vector 
becomes itself infectious, and proposed the following model  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0

0

d ,

d ,

,

h

h

S t S t f s I t s s K S t

I t S t f s I t s s I t

R t I t R t

β µ

β µ α γ

α µ

 ′ = − − + −

 ′ = − − + +


′ = −


∫

∫

          

(2) 

where ( )f s  is a non-negative function which is square integrable on [ ]0,h  
and satisfies  

( ) ( )
0 0

d 1, d ,
h h
f s s sf s s= < +∞∫ ∫                  

(3) 

and the non-negative constant h is the time delay, ( ) ( ) ( )
0

d
h

S t f s I t s sβ −∫  can 
be viewed as the force of infection at time t. 

In fact, all infectious diseases are subject to randomness in terms of the nature 
of transmission. Recently, Tornatore et al. [16] investigate the dynamics of 
system (2) by perturbing the functional contact rates and modified (2) as:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

d d d d d

d d d d

d ,

h h

h h

S t S t f s I t s s S t t S t f s I t s s W t

I t S t f s I t s s I t S t f s I t s s W t

R t I t R t

β µ µ σ

β µ α σ

α µ

  = − − − + − −   
  = − − + + −   
 = −


∫ ∫

∫ ∫ (4) 

where σ  is a positive constant and W is a real Wiener process defined on a 
stochastic basis ( )( )0

, , ,t t
P

≥
Ω F F . They only proved the stability of disease-free 

equilibrium under some given condition. Along these clues, we propose a 
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stochastic SIR model with deaths and varying contact and recovery rates, where 
the introduced model covers general diffusion coefficients (functional contact 
and recovery rates). 

In order to make the SIR system (2) more realistic, we consider the case of 
( ) ( ) ( )S t I t R t K+ + ≤  and we perturbed the deterministic system (2) by a 

white noise and obtained a stochastic counterpart by replacing the rates β  by  

( ) ( ) ( )( ) ( )1
1

d
, ,

d
W t

F S t I t R t
t

β +  and α  by ( ) ( ) ( )( ) ( )2
2

d
, ,

d
W t

F S t I t R t
t

α + , 

and hence we modify the SIR system (2) as the following model:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

0 0

1 1

0 0

1 1 2 20

2 20

d d d d

, , d ,

d d d

, , d d , , d

d d , , ,

h h

h h

h

h

S t S t f s I t s s K S t t S t f s I t s s

F S t I t R t W t

I t S t f s I t s s I t S t f s I t s s

F S t I t R t W t f s I t s sF S t I t R t W t

R t I t R t f s I t s sF S t I t R t dW t

β µ

β µ γ α

α µ

  = − − + − − −   


×
  = − − + + + −   
 × − −

 = − + −

∫ ∫

∫ ∫

∫

∫

(5) 

where , , , Kα β µ  have the same meaning as model (2), ( )( )1,2iW t i =  are real 
Wiener processes and i.i.d which defined on a filtered complete probability 
space ( )( )0

, , ,t t
P

≥
Ω F F . Here, we introduce other two new general stochastic 

terms: functions ( )1,2iF i =  which are locally Lipschitz continuous defined on  

( ){ }3, , : 0, 0, 0, .S I R S I R S I R K= ∈ ≥ ≥ ≥ + + ≤   

Besides, there are deaths due to disease the total population size may vary in 
time so that we always assume the total population size is less than K in the 
context, where K represents a carrying capacity. Note that if we consider the 
population size is a constant K and the disease-related death rate 0γ = , besides 
we also take ( ) ( )1 2F t F t σ= =  (where σ  is a positive constant), the system (3) 
becomes the model which has been discussed in [16]. In [16], Tornatore proved 
the stability of disease-free equilibrium under some restricted conditions. 
However, they didn’t consider the dynamics of the endemic equilibrium. It is of 
great importance from a theoretical point of view to investigate the stability of 
the endemic equilibrium. 

In this paper, we mainly study the stochastic SIR model (5) with distributed 
delay which has more general diffusion coefficients than model (4)’s. By means 
of averaged Itô formula and Lyapunov function, we obtain the sufficient 
conditions for the regularity, existence and uniqueness of a global solution. 
Furthermore, we also investigate the stochastic asymptotic stability of disease 
free equilibria and the dynamics of endemic equilibria which has not been 
discussed in [16]. 

The remaining parts of the paper are organized as follows: In Section 2, we 
will give some basic concepts and conclusions. In Section 3, we employ the 
averaged Itô formula to obtain the regularity, existence and uniqueness of the 
global solution of SIR model (5). In Section 4, we derive the sufficient condition 

https://doi.org/10.4236/am.2017.88080


X. H. Xie et al. 
 

 

DOI: 10.4236/am.2017.88080 1034 Applied Mathematics 
 

to ensure the global stochastic asymptotic stability of disease free equilibrium in 
SIR model (5), besides we also consider the stochastic asymptotic stability of 
endemic equilibrium in Section 5. Finally, we illustrate our general results by 
applications. 

2. Some Preliminary Definition and Lemmas 

At first, we recall the notation of regularity of continuous time stochastic 
processes as introduced in [10]. Let ( )1d d⊂ ≥   be a fixed closed domain. 
For Simplicity, we only consider deterministic domains 3⊂   in this 
exposition. 

Definition 1. A continuous time stochastic process ( ){ }, 0X t t ≥  is called 
regular on   (or invariant with respect to  ) if  

( )( )0 : 1,t P X t∀ ≥ ∈ =  

otherwise irregular with respect to   (or not invariant with respect to  ).  
Consider the d-dimensional stochastic differential equation of the form  

( ) ( )( ) ( )( ) ( )d , d , ,X t f X t t t g X t t dW t= +
             

(6) 

with an initial value ( )0 0 0,X t X t t T= ≤ ≤ < ∞  where [ ]0: ,d df t T× →   
and [ ] ( )0: , 1d d mf t T m×× → ≥   are Borel measurable, ( ){ }

0t t
W W t

≥
=  is an 

m -valued random variable.  
Definition 2. The infinitesimal generator   associated with the SDE (6) is 

given by  

( ) ( ) ( )( )
2

T

1 , 1

1, , , .
2

d m

i iji i ji i j

f x t g x t g x t
t x x x= =

∂ ∂ ∂
= + +
∂ ∂ ∂ ∂∑ ∑  

Lemma 2.1. (Regularity Theorem [10]) Let   and n  be open sets in d  
with  

1, , and ,n n n n
n

+⊆ ⊆ =


       

and suppose f  and g  satisfy the existence and uniqueness conditions for 
solutions of (6) on each set ( ){ }0, : , nt x t t x> ∈ . Suppose there is a nonnegative 
continuous function [ ]0: ,V t T +× →   with continuous partial derivatives 
and satisfying V cV≤  for some positive constant c  and 0t t> , x∈ . 
Moreover, if  

( )
0 , \
inf , as ,

nt t x
V x t n

> ∈
→∞ →∞

 
 

then ( )0 1P X ∈ =  for any 0X  independent of ( )Wσ , that is to say the 
stochastic process ( ){ }, 0X t t ≥  is called regular on  . Regularity on   
implies boundedness, uniqueness, continuity and Markov property of the strong 
solution process X  of SDE (6) with ( ) 00X X= , and ( )X t ∈  for all 0t >  
(a.s.). 

Definition 3. The equilibrium solution *x  of the SDE (6) is stochastically 
stable (stable in probability) if for every 0>  and 0s t≥   
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( )
0*

0 0
,lim sup 0,s X

X x t s
P X t

→ ≤ <∞

 
≥ = 

 
  

where ( )
0,s XX t  denotes the solution of (6) satisfying ( ) 0X s X=  at time 

t s≥ .  
Definition 4. The equilibrium solution *x  of the SDE (6) is stochastically 

asymptotically stable (stable in probability) if it is stochastically stable and  

( )( )0*
0

*
,lim lim 1.s XtX x

P X t x
→∞→

= =  

Definition 5. The equilibrium solution *x  of the SDE (6) is said to be 
globally stochastically asymptotically stable (stable in probability) if it is 
stochastically stable and for every 0X  and every s   

( )( )0

*
,lim 1.s Xt

P X t x
→∞

= =  

Lemma 2.2. ([4]) Assume that f  and g  satisfy locally Lipschitz-continuous 
and satisfy linear growth condition and they have continuous coefficients with 
respect to t. 

1) Suppose that there exists a positive definite function [ )( )2,1
0 ,hV C U t∈ × ∞ , 

where { }*:d
hU x x x h= ∈ − <  for 0h > , such that  

( ) 0, 0, , .hV x t t t x U≤ ∀ ≥ ∈  

Then the equilibrium solution *x  of (6) is stochastically stable. 
2) In addition, if V  is descresent (that is to say there exists a positive definite 

function 1V  such that ( ) ( )1,V x t V x≤  for all hx U∈ ) and ( ),V x t  is 
negative definite, then the equilibrium solution *x  is stochastically asymptotically 
stable. 

3) If the assumptions of part (2) hold for a radially unbounded function 
[ )( )2,1

0 ,dV C t∈ × ∞  defined everywhere then the equilibrium solution *x  is 
globally stochastically asymptotically stable.  

3. Existence, Uniqueness and Regularity of Stochastic SIR  
Model Solution 

Theorem 3.1. Let ( ) ( ) ( )( ) ( )0 0 0 0 0 0, , , ,S t I t R t S I R D= ∈ =  
( ){ }3, , , 0 : 0, 0, 0,S I R t S I R S I R K∈ ≥ ≥ ≥ ≥ + + ≤ , and ( )0 0 0, ,S I R  be 

independent of σ-algebra ( )( ), 0W t tσ ≥ . Then, under the condition (A) or (B) 

a) ( ) ( ) ( ) ( )
0

d 0
h
f s I t s s LI t L− ≤ >∫ ; 

b) ( ) ( ) ( ) ( )
0

d
h
f s I t s s I t R t− ≤ +∫ ; 

the stochastic process ( ) ( ) ( )( ){ }0, , ,S t I t R t t t≥  governed by Equation (5) is 
regular on  ; i.e. we have ( ) ( ) ( )( )( ), , 1P S t I t R t ∈ =  for all 0t ≥ . 
Moreover, regularity on   implies stochastic SIR model (5) admits a a unique, 
continuous-time, Markovian global solution process ( ) ( ) ( )( ){ }0, , ,S t I t R t t t≥ .  

Proof. First we consider the result under the condition of (A). Denote drift 
term  
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( )

( ) ( ) ( )

( ) ( ) ( )
0

0

d

, , d

h

h

S f s T t s s K S

b S I R S f s I t s s I

I R

β µ

β α µ γ

α µ

 − − + − 
 

= − − + + 
 − 
 

∫

∫  

and the diffusion term  

( )

( ) ( )

( ) ( )
1 0

20

2

d 0 0

, , d 0 .

0 0

h

h

SF f s I t s s

B S I R S f s I t s s IF

IF

 − − 
 

= − − 
 
 
 

∫

∫  

Let open domains  
( ){ }: , , : e e ,e e ,e e , , .n n n n n n

n S I R S K I K R K S I R K n− − − − − −= < < − < < − < < − + + ≤ ∈ 
 

Since Equation (5) is well-defined on   and n , and the coefficients 
( ), ,b S I R , ( ), ,B S I R  are locally Lipschitz-continuous and satisfy linear growth 

condition on  , then there exists a unique, bounded and Markovian solution 
up to random time ( )τ   (or ( )nτ  ), where ( )τ   (or ( )nτ   represents the 
random time of the first exit of stochastic process ( ) ( ) ( )( ), ,S t I t R t  from the 
domain   (or n ), started in ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , ,S t I t R t S s I s R s= =

( )0 0 0, ,S I R ∈  (or 0 0 0( , , ) nS I R ∈ ) at the initial time [ )0 ,s t∈ ∞ . To ensure 
the solution regular, we only prove that ( )( ) 1P τ = ∞ = . a.s. Now, we use 
function ( )2V C∈   defined on   via  

( ) ( ) ( ) ( ) ( ), , ln ln ln ln ,V S I R S S I I K S K S K R K R= − + − + − − − + − − −  

and assume that ( ), ,EV S I R < ∞ . For ( ), ,S I R ∈ , we have ( ), , 4V S I R ≥  
and for ( ), , \ nS I R ∈  , we have  

( )
( )

, , \
inf , , 2 2, for .

nS I R
V S I R n n

∈
> + ∈

 
               (7) 

Define   as infinitesimal generator as in Definition 2, then calculate  

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

0

0

2 2 22
2 2

1 2 20

2 2 2
2 2

2 2 2

0

, , d

d

1 d , , 2
2

1 , , 2
2

1 1d

h

h

h

h

VV S I R S f s I t s s K S
S
VS f s I t s s I R
R

V V VS f s I t s s F S I R
S IS I

V V V VI F S I R I
I R II R

S f s I t s s K S
K S S

β µ

β α µ

α γ µ

β µ

∂
= − − + −

∂
∂+ − + − ∂
 ∂ ∂ ∂

+ − − + ∂ ∂∂ ∂ 
 ∂ ∂ ∂ ∂

+ − + − + +   ∂ ∂ ∂∂ ∂  
 = − − + − − − 

∫

∫

∫

∫



( ) ( ) ( )

( ) ( )( ) ( )
( )

0

2
2 2

1 2 2 20

1 1d 1 1

1 1 1 1d , ,
2

h

h

S f s I t s s I R
I K R

S f s I t s s F S I R
S IK S

β α µ   + − − + − −   −   
 
 + − + +
 − 

∫

∫
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( )
( )

( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

2 2
2 2 2

0
0

0 0

2
2

10

2
2

102
2

0

1 1 1 1, , 1
2

d
d

1d d

1 d , ,
2

d , ,1
2

1
2

h
h

h h

h

h

h

I F S I R I
II K R

S f s I t s s K S
f s I t s s

K S S

S f s I t s s S f s I t s s
I

I RI R f s I t s s F S I R
K R K R

f s I t s s F S I R
S

I

f s I t

α γ µ

β µ
µ β

β β α γ µ

α µα µ

    + + − + + −    − 

− − −
= + + − −

−

+ − − − + + +

+ − − + + −
− −

−
+

+

∫
∫

∫ ∫

∫

∫

∫ ( )( ) ( )
( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2
2

2

2

2
2

102
2

2
2

20

2

d , ,

( )

d , ,1
2 ( )

d , ,1 .
2

h

h

s s F S I R
I

K R

f s I t s s F S I R
S

K S

f s I t s s F S I R

I

α γ µ
−

− + +
−

−
+

−

−
+

∫

∫

In view of the condition (A) that ( ) ( ) ( )
0

d
h
f s I t s s LI t− ≤∫ , and hence we have  

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

0 0

2 2 2
1 2

, ,

2 2 2
1 2

, ,

, , 3 d d 2

3 , , , ,sup
2

3 2
3 , , , , .sup
2

h h

S I R

S I R

V S I R f s I t s s S f s I t s s

R LK F S I R LF S I R

LI SI R

LK F S I R LF S I R

µ β β α

γ µ

µ β β α γ µ
∈

∈

≤ + − + − +

 + + + + 
 

≤ + + + + +

 + + 
 

∫ ∫







 

If we take  

( )
( ) ( )2 2 2

1 2
, ,

1 30 < 3 2 , , , , ,sup
4 2S I R

c LI SI R LK F S I R LF S I Rµ β β α γ µ
∈

  ≤ + + + + + + +  
  

 

therefore ( ) ( ), , , ,V S I R cV S I R≤  due to ( ), , 4V S I R ≥  for ( ), ,S I R ∈ . 
In what follows, to show that ( )( ) 1P τ = ∞ = , i.e., ( )( ) 0P tτ < = . Now, 

introduce a new function [ )( )1,2 ,W C s∈ ∞ ×  by ( )( ) ( ) ( ), , , e , ,c t sW t S I R V S I R− −= , 
where c  is defined as above. And hence  

( )( ) ( ) ( ) ( ), , , e , , , , 0,c t sW t S I R cV S I R V S I R− −= − + ≤     

since ( ) ( ), , , ,V S I R cV S I R≤ . Denote ( ){ }: min ,n n tτ τ=   and apply 
averaged Itô formula, we have  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

e , ,

e e , ,

e , , ,

n

n

c t
n n n

c sc t s
n n n

c t s
n n n n

E V S I R

E V S I R

E W S I R

τ

τ

τ τ τ

τ τ τ

τ τ τ τ

−

− −−

−

 
 
 =  
  =   
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )0 0 0

e , , ,

e , , ,

, , , d

e , , ,

e , ,

e , , .

n

c t s
n n n n

c t s

s

c t s

c t s

c t s

E W S I R

EW s S s I s R s

E W x S x I x R x x

EW s S s I s R s

EV S s I s R s

EV S I R

τ

τ τ τ τ−

−

−

−

−

  =   
  =  

+ 
 ≤  
 =  

≤

∫   

Using this fact and Equation (7), one can estimates  

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )( )
( )

( )

( ) ( )

( )
( )

( ) ( )

, , \

0 0 0

, , \

0 0 0

0

, ,
e

inf , ,

, ,
e

inf , ,

, ,
e 0 as ,

2 2

n

n

n
n

n

n

n

n n

n n nc t

tS I R

c t

S I R

c t

P t P t P t E I t

V S I R
E

V S I R I

EV S I R
V S I R

EV S I R
n

n

τ

τ

τ

τ

τ

τ τ τ

τ τ τ
−

<∈

−

∈

−

≤ < ≤ < = < = <

 
 ≤
 
  

≤

≤ → →∞
+

 

 

 

  

 

for all fixed [ ),t s∈ +∞ , because of the appearance of the function ( ).I . Thus 
( )( ) ( )( ) 0nP t P tτ τ< = < =   for ( )0 0 0, ,S I R ∈  and 0t t≥ , that is, 
( )( ) 1nP τ = ∞ = . 

Then it proves the regularity and the global existence of the solution 
( ) ( ) ( )( ), ,S t I t R t ∈  and by means of Lemma 2.1 under the condition of (A), 

we also derive the uniqueness and continuity of the solution. 
Similarly the above discussions, we only need to take the function ( ), ,V S I R  

as ( ) ( )ln lnS S K S K S− + − − − , and we can also obtain the same results under 
the condition of (B). Here, we omits the details. 

This completes the proof of Theorem 3.1.  
Remark 3.1. Because 0I S R= = =  are undefined in the domain  . In what 

follows, we distinguish three cases to investigate the solution of these special 
situations. 

1) If 0S = , then the system (5) will reduce to  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

0

0

d d d , d ,

d d d , d ,

h

h

I t K I t t f s I t s sF I t R t W

R t I t R t t f s I t s sF I t R t W

µ α γ µ

α µ

 = − + + − −

 = − + −

∫

∫  

(8) 

with intial condition ( ) ( ){ }0 0 1, , : 0, 0,I R D I R I R I R K∈ = > > + ≤ . By using the 
similar analysis, we know that the above SDE is regular which implies there 
exists a unique global solution on 1D ; 

2) If 0I = , then the system (5) will reduce to an ODE  

( ) ( )( )
( ) ( )

d d ,

d d ,

S t K S t t

R t R t t

µ

µ

 = −


= −                     
(9) 
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with intial condition ( ) ( ){ }0 0 2, , : 0, 0,S R D S R S R S R K∈ = > > + ≤ . By using 
the theory of ODE, we know that the above ODE is regular which implies there 
exists a unique global solution on 2D ; 

3) If 0R = , then the system (5) will become  

( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0

0

0

0

d d d

( ) , d ,

d d d

d , d ,

h

h

h

h

S t S t f s I t s s K S t t

f s I t s ds F S t I t W

I t S t f s I t s s I t t

S t f s I t s s F S t I t W

β µ

β α µ

 = − − + −


− − ×

 = − − +

 + − ×

∫

∫

∫

∫         

(10) 

with intial condition ( ) ( ){ }0 0 3, , : 0, 0,S I D S I S I S I K∈ = > > + ≤ . By using the 
similar analysis, we know that the above SDE is regular which implies there 
exists a unique global solution on 3D .  

4. Global Stochastic Asymptotic Stability  
of Disease Free Equilibrium 

Theorem 4.1. Assume that ( ) ( ) ( )
0

d
h
f s I t s s I t

K
α γ µ

β
+ +

− ≤∫  for all fixed  

[ ),t s∈ ∞ , then the disease free equilibrium solution ( ) ( )1 1 1, , ,0,0S I R K=  of 
Equation (5) is globally stochastically stable on  .  

Proof. Notice that the assumption ( ) ( ) ( )
0

d
h
f s I t s s I t

K
α γ µ

β
+ +

− ≤∫  for all  

fixed [ ),t s∈ ∞ , and hence one can estimates that there exists a positive constant 
C  which satisfies ( ) ( ) ( ) ( )

0
d

h
K f s I t s s C I tβ α γ µ− ≤ ≤ + +∫  for all fixed 

[ ),t s∈ ∞ . Introduce a Lyapunov function  

( ) ( )21, , .
2

V S I R S I R K CI= + + − +  

Just note that the infinitesimal generator   satisfies  

( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )
( )

( ) ( ) ( )( )
( )

0

0

0

2

0
2

2

0

2

, , d

d

d

d

d

h

h

h

h

h

V S I R S f s I t s s K S S I R K

S f s I t s s I S I R K

I R S I R K C S f s I t s s I

K S I R K S I R I C S f s I t s s

MI I RI

K S I R C f s I t s s I S

K C I I R

β µ

β α γ µ

α µ β α γ µ

µ γ β

α γ µ γ γ

µ β γ

γ α γ µ γ γ

= − − + − + + −

+ − − + + + + −

+ − + + − + − − + +

= − − − − + − − − + −

− + + − −

= − − − − + − −

+ − + + − −  

∫

∫

∫

∫

∫



( )2 2 ,

I

K S I R I RIµ γ γ≤ − − − − − −

(11) 

then ( ), ,V S I R  becomes negative definite on  , and hence it completes the 
proof of Theorem 4.1 by applying Lemma 2.2.  
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Remark 4.1. As we known, the basic reproduction number 0R  is one of the 
most important parameters in epidemiology, which reflects the expected number 
of secondary infections produced when one infected individual entered a fully 
susceptible population. If 0 1R <  then the outbreak will disappear, on the other 
hand, if 0 1R >  then the epidemic will spread a population. In this context, the  

basic reproduction number of the SIR model is 0
KR β

α γ µ
=

+ +
.  

5. Stochastic Asymptotic Stability of Endemic Equilibrium 

If 0 1R >  and ( ) ( )2 2 2, , 0 1,2iF S I R i= = , then there exists a unique endemic 
equilibrium solution ( )2 2 2, ,S I R  for the model (5), where  

( )

( ) ( )

2 2 2

0 0
0

, , , 1 , 1

, 1 , 1 .

K KS I R

K R R
R

α γ µ µ β α β
β β α γ µ β α γ µ

µ α
β β

    + +
= − −    + + + +    
 

= − − 
 

 

Theorem 5.1. The endemic equilibrium solution, ( )2 2 2, ,S I R  of the 
Equation (5) is stochastically asymptotically stable on  

( ){ }, , : 0, 0, 0,S I R S I R S I R K= > > > + + ≤  under the assumption of 0 1R >  
for some ( ), ,iF S I R  such that ( )2 2 2, , 0iF S I R =  and satisfies ( ), , 0G S I R ≤ , 
where  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2 2
2 2 2 2

2 2 2
2 2 20

2
2 2

10

2
2

20

, ,

d

d , ,
2

d , , ,
2

h

h

h

G S I R S I R S I R I I
S I R S I R

a S S f s I t s s b S S b R R

a S f s I t s s F S I R

b f s I t s s F S I R

µ γ

β µ µ

= − + + − − − − −
+ + + +

− − − − − − −

+ −

+ −

∫

∫

∫
 

(12) 

and  

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

2 2 2 20

2 2 2 20

2

2 2 2 20
2

2 2 2 20

0, if 0, d 0;

0, if 0, d 0;

, if 0, d 0;

0, if 0, d 0,

h

h

h

h

s S S I I S S f s I t s s I

S S I I S S f s I t s s I
a Ka S S I I S S f s I t s s I

S

S S I I S S f s I t s s I

γ
β

 > − − > − − − >


− − < − − − <
= 
 > − − < − − − >


= − − > − − − <


∫

∫

∫

∫

(13) 

( ) ( ) ( )( )

( )( )

2 2, ,

2 2

inf , if 0;

, if 0.

S I R
S S R R

S I R
b

S S R R
K

γ
α

γ
α

∈

 − − > + += 
 − − <



         

(14) 

Proof. It is a fact that the endemic equilibrium solution of system (5) exists if 

0 1R >  and ( )2 2 2, , 0iF S I R = . Introduce a Lyapunov function  
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( ) ( ) ( )

( ) ( )

2 2 2 2 2 2
2 2 2

2 2
2 2

, , ln

,
2 2

S I RV S I R S I R S I R S I R
S I R

a bS S R R c

+ +
= + + − + + − + +

+ +

+ − + − +

 

on  , where a  and b  are defined as Equations ((13) and (14)), c is an 
arbitrary positive constant. An elementary computation leads to 0V >  for any 
point ( ), ,S I R ∈ , and we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2
20

2 2
2 2 2

1 20 0

2 2 2
0

2 2 2
2

, , d 1

d , , d
2 2

d 1

1 .

h

h h

h

S I RV S I R S f s I t s s K S a S S
S I R

a bS f s I t s s F S I R f s I t s s F

S I RS f s I t s s I
S I R

S I RI R b R R
S I R

β µ

β α γ µ

α µ

+ +  = − − + − − + −    + + 

   + × − + −      
+ +  + − − + + −    + + 

+ + + − − + − + + 

∫

∫ ∫

∫



 

From the following formulas and the definitions of a , b  can help to 
simplify ( ), ,S I R  

i) ( ) ( ) ( )2 2 2 2 ;K I S R I S I R S I R I Iµ γ µ γ− − − − = − + + − − − − −  

ii) 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )
0

2 2 2 20 0

d

d d ;

h

h h

S f s I t s s K S

S S f s I t s s S f s I t s s I S S

β µ

β β µ

− − + −

= − − − − − − − −

∫

∫ ∫
 

iii) 2;Sα β µ β+ + =  
iv) ( ) ( )2 2 .I R I I R Rα µ α µ− = − − −  

Then  

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

[ ] ( )

( )( )

2 2 2
2 2

2 2 20 0
2 2

2 2 2
1 20 0

2 2
2 2 2 2

2 2

1

d d

d ( , , ) d
2 2

h h

h h

S I RV K S I R I a S S S S
S I R

f s I t s s S f s I t s s I S S

a bS f s I t s s F S I R f s I t s s F

S I R S I R I I
S I R S I R

S S I I
S I R

µ γ β

β µ

µ γ

γ

+ + = − − − − − + − − −     + + 
× − − − − − − 

   + − + −      

= − + + − − − − −
+ + + +

− − − −
+ +

∫ ∫

∫ ∫



( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

[ ] ( )

( ) ( ) ( ) ( )
( )( )

2 2

2
2 2 2 20 0

2 2
2 2 2

1 20 0

2 2
2 2 2 2

2
2 2 2 2

2
2 2 2

d d

d , , d
2 2

( )

h h

h h

I I R R
S I R

a S S f s I t s s a S S S f s I t s s I

a bS f s I t s s F S I R f s I t s s F

S I R S I R I I
S I R S I R
a S S b R R I I R R

b I I R R b R R a S

γ

β β

µ γ

µ α µ

α µ µ

− −
+ +

− − − − − − −

   + − + −      

≤ − + + − − − − −
+ + + +

− − + − − − −  
+ − − − − −

∫ ∫

∫ ∫

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2

2 2
2 20

2 2
2 2 2

1 20 0

d

d , , d .
2 2

h

h h

S

a S S f s I t s s b R R
a bS f s I t s s F S I R f s I t s s F

β µ

−

− − − − −

   + − × + −      

∫

∫ ∫  
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( ), , 0V S I R =  if and only if ( ) ( )2 2 2, , , ,S I R S I R=  and by the given 
condition one can obtain 0V <  on ( )2 2 2\ , ,S I R . Therefore ( ), ,V S I R  
is negative definite on   for some suitable ( ), ,iF S I R . Then Lemma 2.2 (ii) 
leads to the stochastically asymptotical stability of the endemic equilibrium with 

0 1R >  and for some suitable functions ( ), ,iF S I R  such that ( ), ,iF S I R  
satisfies Equation (12) and ( )2 2 2, , 0iF S I R = .  

6. Example 

In this section, we visualize our results with some simulation to confirm them. 
Due to the difficulty of the research on the drawing of the disease equilibrium 
point, many scholars have not given the relevant examples. Along this clue, we 
only give the figures of the disease-free equilibrium point (Figure 1). We consider 
the special case ( ) ( ) ( )1

0
df s I t s s I t− =∫  which only satisfies the condition of  

Theorem 4.1 ( ) ( ) ( )
0

d
h
f s I t s s I t

K
α γ µ

β
+ +

− ≤∫ , that is, 1Kβ
α γ µ

<
+ +

, and  

hence we can obtain the disease free equilibrium solution ( ) ( )1 1 1, , ,0,0S I R K=  
of Equation (5) is globally stochastically stable on  . In the simulation, the 
parameters are chosen as follows  

1000, 1 / 75 0.013, 52, 52, 0.05.K µ α γ β= = = = = =  
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