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Abstract 
In this paper, we prove the existence of a limit cycle for a given system of dif-
ferential equations corresponding to an asymmetrical intraguild food web 
model with functional responses Holling type II for the middle and top pre-
dators and logistic grow for the (common) prey. The existence of such limit 
cycle is guaranteed, via the first Lyapunov coefficient and the Andronov-Hopf 
bifurcation theorem, under certain conditions for the parameters involved in 
the system. 
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1. Introduction 

It is well known that interaction between three species, in which predation and 
competition occurs, is called intraguild predation (see [1]). This kind of in- 
teraction can take place in a group of species that exploit the same resources in a 
similar way (see [2]). This kind of interaction among the species in an intraguild 
model is of particular interest. One of the main questions when looking at inter- 
action of species is whether or not there will be coexistence among them. This is 
of importance from the ecological point of view. In the intraguild predation 
model, one can consider two cases, the symmetric which occurs when there is a 
mutual predation between two species, and the asymmetric that occurs when 
one species, usually called intraguild predator, always predate the middle species, 
which is called the intraguild prey. In both cases it is assumed that the corres- 
ponding species use common foods (see [1]). 
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The criterion to have coexistence in the asymmetric intraguild predation sys- 
tem seems to be, on one hand, to impose conditions on the intraguild prey, that 
is, it should be superior at the competition for the resources in comparison with 
the intraguild predator, and on the other hand, that the intraguild predator 
should be substantially benefit from the consumption to the intraguild prey in 
the sense that its most important food source is intermediate species (see [3]). 

There are some recent papers where food chain models between three species 
have been studied in which the authors have obtained results about the co- 
existence of the species by looking at the existence of limit cycles for the 
corresponding model systems, for instance tritrophic models with linear growth 
prey (see [4] [5] [6]) and logistic growth prey (see [7]). These models do not 
consider predation of the top predator to the resource (the prey). Hence one can 
see that intraguild predation is a more complex interaction between species that 
the tritrophic model. 

If the growth rate for the resource is linear, we are assuming that the density 
of the resource is growing exponentially. When it is assumed logistic growth rate 
for the resource, the corresponding carry capacity implies that the resource 
density is bounded, which has Ecological sense but it seems to be more difficult 
to have a coexistence between the species. 

In this paper, we are interested in guaranteeing the coexistence of three species 
forming an intraguild food web model, which is an asymmetrical intraguild 
predation model with functional response ( )1f x  for the middle predator species, 
and functional responses ( ) ( )2 3,f x f y  for the top predator, and logistic grow 
for the prey. More precisely models with the form:  

( ) ( )

( ) ( )
( ) ( )( )

1 2

1 1 2 3

3 3 4 2

1 ,

,

,

xx x yf x zf x
R

y c yf x c y zf y

z z c f y c f x

ρ

µ

 = − − − 
 

= − −

= + −







                  (1) 

where x  represents the density of a prey that gets eaten by a species of density 
y  (mesopredator) and a species of density z  (super-predator), and the species 
y  feeds the species z . Moreover R  represents the carry capacity of the prey 

and ρ  represents the growth rate of the prey. The parameters 1 3,  c c  and 4c  
are positive constants which represent the benefit from the consumption of food 
and the parameters 2c  and µ  represent the mortality rate of the correspon- 
ding predators. We will consider that the functions 1 2,  f f  and 3f  given in (1) 
are Holling type II, that is  

( )

( ) ( )

1
1 1

2 3
2 2 3 3

,

and ,

xf x
a x b

x yf x f y
a x b a y b

=
+

= =
+ +

 

where 1 1 2 2 3,  ,  ,  ,  a b a b a  and 3b  are positive constants. 
Consequently, the intraguild predation model that we will study is  



F. E. Castillo-Santos et al. 
 

360 

( )
1 1 2 2

1 2
1 1 3 3

3 4
3 3 2 2

1 ,

,

.

x xx x x R y z
a x b a x b

x yy c y c y z
a x b a y b

y xz z c c
a y b a x b

ρ

µ

= − − −
+ +

= − −
+ +

 
= + − + + 







              (2) 

For ecological considerations the domain of interest Ω  is the positive octant 
of 3 ,  that is ( ){ }3: , , : 0, 0, 0 .x y z x y zΩ = ∈ > > >  

We now state our main result. We establish the existence of a unique equi- 
librium point 0p  for the system (2) in Ω , at this point, 0p , we show that the 
system exhibits a Hopf’s Bifurcation and the limit cycle given by the bifurcation 
is stable. All of this is obtained under certain restrictions on the parameters 
involved in the system. 

Theorem 1 (Main result). If the positive parameters involved in system (2) 
satisfy the conditions  

3 3 01 1
1 2 3 1 2 32 2 2

0 10 0

3 0 31
1 2 3 4 02

1 00

154 2
,  ,  ,  ,  ,

275
74 73,  ,  ,  ,  2 ,

4 2

b b xk ka a a b b b
x kx x

b x bkc c c c R x
k xx

ρ
ρ ρ

µρ µρ
ρ

= = = = =

= = = = =
 

where 1 > 0k  and 0 > 0,x  then the point 31
0 0

0

2
, ,

76
bkp x

x
ρ

ρ
 

=  
 

 is the unique  

equilibrium point of system (2) in Ω  moreover, we have a Hopf bifurcation in 

0p  and the limit cycle that bifurcates from the equilibrium 0p  of system (2) as  

µ  increases from the critical value 0
47,775,075

600,704
ρµ =  is stable. 

This article is organized as follows. 
In Section 2 we provide the reader with the results that allowed us to study the 

system. In particular we present the version of the well known Hopf’s Bifurcation 
Theorem. 

Section 3 is devoted to study the equilibrium points for our system in the 
positive octant with the aim of guaranteeing the hypothesis of Hopf’s Bifurcation 
Theorem. For this, we consider two subsections, the subsection 3.1 in which we 
show, under certain conditions on the parameters, the existence of an equi- 
librium point 0p  in the positive octant of 3 ; and subsection 3.2 where we 
show that under certain conditions on the parameters, the eigenvalues for the 
linear system at the equilibrium point 0p  associated to the system given in (2) 
are α  which is real and iω±  the conjugated pure imaginary, and also the 
Lyapunov coefficient is computed. 

In Section 4 we provide the proof of our main result in this paper. Further- 
more in Section 5 we provide the reader with a numerical result showing the 
stable limit cycle of the system. 

In order to obtain all the calculations and simulations in this paper, we made 
use of a routine in the program Mathematica. This allowed us to simplify most 
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of the process needed to obtain our result. 

2. Preliminaries  
2.1. Lyapunov Coefficient and Hopf Bifurcation  

One of the main tools to determine the existence of a stable or unstable limit 
cycle is the first Lyapunov coefficient. This, in general, is not easy to calculate. 
To compute the first Lyapunov coefficient ( )1 0l p  of a differential system at an 
equilibrium point 0 ,p  we make use of result by Kuznetsov (see [[8], p. 175]) 
whose statement is given in the following Theorem (cf. [4]). 

Theorem 2. Let : nF Ω→   be a differentiable map of class 4C  in an open 
subset Ω  of n  whose third order Taylor approximation of F  around 

0 0p =  is  

( ) ( ) ( ) ( )41 1, , , .
2! 3!

F x Ax B x x C x x x O x= + + +  

being B  and C  bilinear and trilinear forms, respectively. More over, assume 
that A  has a pair of purely imaginary eigenvalues iω± . Let q  be the 
eigenvector of A  corresponding to the eigenvalue iω , normalized so that the 
hermitian product satisfies 1q q⋅ =  being q  the conjugate vector of q . Let 
p  be the adjoint eigenvector such that T =A p ipω−  and 1p q⋅ = . If I  

denotes the identity matrix, then the first Lyapunov constant ( )1 0p  of the 
system of Ordinary Differential Equations ( )x F x=  with an equilibrium point 
at 0 0p =  is  

( ) ( )( ) ( ) ( )( )( )111 Re , , 2 , , , 2 ( , .
2

p C q q q p B q A B q q p B q iI A B q qω
ω

−−⋅ − ⋅ + ⋅ −  (3) 

The next theorem was proved by E. Hopf in 1942 (see [9] and for a proof in 
the bidimensional case see [10] and the general case see [[11], Section 5], and 
[[8], Section 5.4]). This theorem guarantees the existence of a Hopf’s bifurcation 
at an equilibrium point of a system of ordinary differential equations ( ),x F x µ=  
whenever µ  reaches a critical value 0µ . 

Theorem 3 (Hopf's Theorem.). Suppose that the 4C -system  

( ), ,x f x µ=                            (4) 

with nx∈  and ,µ ∈  has a critical point 0p  for 0µ µ=  and that  
( )0 0,Df p µ  has a simple pair of pure imaginary eigenvalues and no other 

eigenvalues with zero real part. Then there is a smooth curve of equilibrium 
points ( )p µ  with ( )0 0p pµ =  and the eigenvalues, ( )λ µ  and ( )λ µ  of  

( )( ),Df p µ µ , which are pure imaginary at 0µ µ=  vary smoothly with µ . 
Furthermore, if  

( )( ) ( )0 0

d Re
: 0,

d
λ µ

ξ µ
µ

= ≠  

then there is a unique two-dimensional center manifold passing through the 
point ( )0 0,x µ  and a smooth transformation of coordinates such that the sys- 
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tem (4) on the center manifold is transformed into the normal form 

( ) ( ) ( )
( ) ( ) ( )

42 2 2 2

42 2 2 2

x y ax x y by x y O x

y x bx x y ay x y O x

= − + + − + +

= + + + + +





 

in a neighborhood of the origin which, for 0a ≠ , has a weak focus of 
multiplicity one at the origin and  

( ) ( )
( ) ( )

2 2 2 2

2 2 2 2

x x y ax x y by x y

y x y bx x y ay x y

µ

µ

= − + + − +

= + + + + +





 

is a universal unfolding of this normal form in a neighborhood of the origin on 
the center manifold. Moreover a periodic solution bifurcates from the point 0p  
for 0µ µ>  if ( )1 0 0 0p ξ <  or for 0µ µ<  if ( )1 0 0 0p ξ > . This periodic 
solution is stable if ( )1 0 0p <  and unstable if ( )1 0 0p > . For 0 0,ξ <  the 
equilibrium point 0p  is a locally stable point for 0µ µ>  and locally unstable 
point for 0µ µ< . For 0 0,ξ >  the equilibrium point 0p  is locally unstable 
point for 0µ µ>  and locally stable point for 0µ µ< .  

2.2. A Little of Linear Algebra  

In this subsection we show a few results from Linear Algebra that allowed us to 
simplify our calculations in the next sections. This will provide us with a dif- 
ferent technique to find the eigenvalues of a given matrix. 

If M  is a 3 3×  matrix with 33 0m = , its characteristic polynomial is de- 
termined by the entries of M  as a classical computation shows. In fact,  

( ) ( )
( ) ( )3 2

11 22 11 22 12 21 13 31 23 32

11 23 32 12 23 31 13 21 32 13 22 31

det

 .

MP M Id

m m m m m m m m m m
m m m m m m m m m m m m

λ λ

λ λ λ

= −

= − + + + − + + +

− + + −

  (5) 

Lemma 1. Let ( )ijM m=  be a 3 3×  matrix with 33 0m = . Then M  has 
eigenvalues α ∈  and iω±  with 0ω >  if and only if:  

11 22
2

11 22 12 21 13 31 23 32
2

11 23 32 12 23 31 13 21 32 13 22 31

m m

m m m m m m m m

m m m m m m m m m m m m

α

ω

αω

= +

= − − −

= − + + −

         (6) 

Proof. M  has the given eigenvalues of α ∈  and iω±  with 0ω > , if 
and only if its characteristic polynomial takes the form:  

( ) ( )( )2 2 3 2 2 2p λ λ α λ ω λ αλ λω αω= − − + = − + − +  

Comparing to (5) we obtain the result.                                
Corollary 1. If ( )ijM m=  is a 3 3×  matrix with 33 0m = . Then M  has 

eigenvalues α ∈  and iω±  with 0ω >  if and only if ( ) 0D M = , where 

( ) 2 2
11 22 11 12 21 13 31 11 11 22

12 21 22 12 23 31 13 21 32 22 23 32 .
D M m m m m m m m m m m

m m m m m m m m m m m m
= − + + −

+ + + +
 

Proof. Use that the system (6) is satisfied.                              
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3. Equilibrium Points in the Positive Octant  
3.1. Existence of an Equilibrium Point 0p  in the Positive  

Octant of 3  

In order to find the equilibrium points and the restrictions in the parameters 
involved in the system (2) we use a different approach. We think of the equi- 
librium point ( )0 0 0 0, ,p x y z=  as a new three parameters of the system. In this 
way our system (2) will have as new parameters the values of 0 0 0,  ,  x y z  which 
we are setting to be positive. This approach differs from the usual method that is 
applied to find the equilibrium points (See [4]). 

In the next lemma we proceed to show the existence of an equilibrium point 
given conditions on the parameters involved in the system of differential 
equations. Moreover we can guarantee that the equilibrium point will be in Ω . 

Lemma 2. Assume that the parameters in the system (2) are given by 

( )
( )( )

3 1 2 0 2
1 2 2

2 1 0 3 1 2 0 1

2 3 2 3
3 3 4 2 0

2 1 0 2 1 0

,
2 2

, , , 2 ,

b k a x b
a

a b x b b c x k

b b b b
a c c a R x

a b x a b x

ρ

ρ ρ

µ
µ

ρ ρ

+
=

+ +

= = = =

 

where, 1 0k >  and 0 0x >  then  

( )
( )( )

3 1 2 0 2
0 0 1 2 2

2 1 0 3 1 2 0 1

, , ,
2 2

b k a x b
p x b

a b x b b c x k
ρ

ρ
ρ ρ

 + =
 + + 

 

is an equilibrium point of the system (2) in the region .Ω   
Proof. The equilibrium points of the system are solutions of the following 

equations. 

1 1 2 2

1 2
1 1 3 3

3 4
3 3 2 2

1 0,

0,

0,

x x xx y z
R a x b a x b

x yc y c y z
a x b a y b

y xz c c
a y b a x b

ρ

µ

 − − − =  + + 

− − =
+ +

 
+ − = + + 

               (7) 

By multiplying the above equations by the denumerators (which are always 
non zero), involved in each corresponding equation we obtain that the equi- 
librium point must satisfy (8). Correspondingly each solution of (8) must also be 
an equilibrium point of the system (2) 

( )( ) ( )( )( )
( )( ) ( )
( ) ( )( ) ( )

2 2 1 1 1 1 2 2

1 2 1 1 2 3 3 1 1

2 3 3 3 3 4 2 2 3 3 4 2 3

0,

0,

0,

R b y a xy b a x z R x b a x b a x

b c c x a c x b a y b a x z

b b c y a y x b c a a c a c a a y

ρ

µ µ µ µ

+ + + − − + + =

− + + + + =

− + − − + + − =

  (8) 

By taking 3 3c a µ=  and 4 2c a µ=  (8) reduces to 

( )( ) ( )( )( )
( )( ) ( )

2 2 1 1 1 1 2 2

1 2 1 1 2 3 3 1 1

2 3 2 3

0,

0,
0.

R b y a xy b a x z R x b a x b a x

b c c x a c x b a y b a x z
b b xa a y

ρ

µ µ

+ + + − − + + =

− + + + + =

− =

    (9) 
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Notice that the last equation in the system above, is linear with respect to the 
variable 3a . Solving this equation and substituting this value on the second one 
we obtain a system of two equations in 1a  and z  where the exponents of 1a  
and z  in each equation is 1. From there we can obtain that the solutions of the 
system (9) are the following. 

( )
( )

( ) ( )( )
( )

3 1 21
1

3 2 2

2 3
3

2

3 2 2 2 1

3 1 2

,

R b c a yba
x b c R a R x x

b b
a

a xy

b b a x c Ry c x R x
z

Rx b c a y

ρ

ρ

+
= − +

+ −

=

+ + − +
= −

+

 

Taking 2R x=  and 
( )

1 2
1 ,

k c Ryc
R x xρ
+

=
−

 where 1 0,k >  we have: 

( ) ( )( )( ) ( )( )
( ) ( )

( )( ) ( )( )( )

2 2
1 2 1 3 1 2 1 3 2 2

3 2 3 2

2
3 1 2 2 3 1 2 2

2 2 2 2 ,

,

2 2 .

a a x y b b k c x y b x b c a x

a b b a xy

z b k b a x b k c xy a x y

ρ ρ ρ ρ ρ

ρ ρ

= − + + − +

=

= + + +

 

From there if 1y b ρ=  then all parameters involved in (2) becomes positive 
and 

( )
( )( )

3 1 2 0 2
0 0 1 2 2

2 1 0 3 1 2 0 1

, ,
2 2

b k a x b
p x b

a b x b b c x k
ρ

ρ
ρ ρ

 + =
 + + 

 

is a solution of (7). Thus proving the lemma.                             

3.2. A Pair of Pure Imaginary Eigenvalues and the First Lyapunov  
Coefficient 

Now our goal is to determine when the equilibrium point 0p  exhibits a Hopf's 
bifurcation. In order to show this, we show the existence of parameters where 
the equilibrium point has a pair of pure imaginary eigenvalues and a negative 
real eigenvalue. Making use of Hopf’s Theorem, we shall prove the existence of a 
Hopf bifurcation. 

Theorem 4. If the parameters involved in system (2) satisfy the conditions of 
Lemma 2 and additionally  

31
2 1 2 3 22

00

273 47,775,075,  ,  ,   and ,
4 600,704

bkc b b b a
xx

ρ ρµ
ρ

= = = = =  

then the equilibrium point 0p  is  

31
0 0

0

2
, ,

76
bkp x

x
ρ

ρ
 

=  
 

 

and the eigenvalues of the linear approximation of system (2) at 0p  are  

5,625  and ,
23,104

iρα ω= − ±                    (10) 
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where  

( )2 23,104 31,213,049
0.

7,023,616
ρ µ ρ

ω
+

= >                 (11) 

Proof. The Jacobian matrix ( ) ( )ijM p m=  of the system (2) at 0p  is 

11 12 13

21 22 23

31 32 33

m m m
M m m m

m m m

 
 =  
 
 

 

where 

( )( )( )
( ) ( )( )

( )
( )( )

( ) ( )

2 2
3 1 2 0 2 1 0 3 1 1 2 0 2 3 1

11 22 2
2 2 0 2 1 0 3 1 1 2 0

2
0 3 2 2 0

12 2 2
2 1 0 3 1 1 2 0

0
13

2 2 0
22 2

1 3 2 2 0 1 1 2 0
21

2 2
2 1 0 3 1 1 2

2 41 1
4 2

2

2 2

2 2

4 2

b k a x a b x b k b c x b b k
m

b a x a b x b k b c x

x b c a x
m

a b x b k b c x

x
m

b a x

b b c a x k b c x
m

a b x b k b c

ρ ρ
ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ

ρ

 + + −
 = −  + + + 

+
= −

+ +

= −
+

+ +
=

+ +( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

2

0

2 2 1 0
22 2 2

2 2 0 2 1 0 3 1 1 2 0

2 1 0
23

2 3 2 0 3

2 2 3 1
31 2 2

2 2 0 2 1 0 3 1 1 2 0

2 2 3 1 0
32 2 2

1 2 2 0 2 1 0 3 1 1 2 0

33

2 2

2 2

2 2

0.

x

a b k x
m

b a x a b x b k b c x

a b x
m

b b a x b
a b b k

m
b a x a b x b k b c x

a b b k x
m

b b a x a b x b k b c x

m

ρ

ρ
ρ ρ

ρ

µ ρ
ρ ρ

µ
ρ ρ

=
+ + +

= −
+

=
+ + +

=
+ + +

=  
Using Corollary 1 the characteristic polynomial of M  has roots 11 22m mα = +  

and iω±  where  
2

11 22 12 21 13 31 23 32m m m m m m m mω = − − −  

if and only if  
2 2

11 22 11 12 21 13 31 11 11 22 12 21 22

12 23 31 13 21 32 22 23 32

0
  .

m m m m m m m m m m m m m
m m m m m m m m m

= − + + − +

+ + +
      (12) 

In this case the value of α  is given by:  

(

)

2 2 2 2 2
2 3 1 2 2 3 1 0 1 2 3 2 1 0 2 1 2 3 2 1 0

2 2 2 2 2 2 2 2 2 2 3 2 2 3 2
1 2 3 2 0 2 1 2 3 1 0 2 1 3 2 0 2 1 2 1 0

2 3 3 2 2 4 3 2 2 4 4
2 1 2 3 2 0 2 1 3 2 0 2 1 2 0

3 2 5 4
2 1 0

2 2 4 4

  4 2 4 2

  4 4

  

b b k a b b k x b b b c k x a b b b c k x

b b b c x a b b b k x a b b c x a b b k x

a b b b c x a b b c x a b b x

a b x

α ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ

= − − + −
+ + + −

+ + +

+  ( )( )22 2
2 2 0 3 1 1 3 2 0 2 1 04 2b a x b k b b c x a b xρ ρ + + +  

  (13) 

Choose 2 0k >  and  
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( )
2 2 3 2

2 2 2 3 1 0 2 1 2 1 0
2 2 2

2 1 2 3 0 1 1 0

2 2
,

4
k a b b k x a b b k x

c
a b b b x k b x

ρ
ρ ρ

+ +
= −

−
 

Now taking ( ) ( )2
1 1 02b k x ρ=  we have 2 0c >  and with this choices  

0α < . 
Now taking 2 3b b= , the expression for 2ω  simplifies to:  

( ) ( )( )

( ) ( )(
( )

22 3 4 4 3 2
2 3 1 0 3 2 0 2 2 3 1 0 3 2 0

2 4 3 3 2 2 2 6 4 3 2 2 2
3 2 2 3 2 3 1 2 0 2 2 3 1 3 1 2 2 0

3 2 2 6 4 3 2 2 3
2 3 1 2 3 1 3 1 2 2 0

4 2 9 6 6 4 3
2 3 1 3 1 3 1 2 3

32 4 2

  2 5 36 48

  2 28 140 33

  4 8 144 187

a b k x b a x k a b k x b a x

b k a b k b k k x a k b k b k k k x

a b k k b k b k k k x

a b k b k b k k b k

ω ρ µ = + + + 

+ + + + + +

+ + +

+ + +( )
( )
( ) ( )
( )

)

2 2 3 4
1 2 2 0

5 3 4 6 4 3 2 2 5
2 3 1 3 1 3 1 2 2 0

6 2 4 6 4 3 2 2 6 7 4 6 3 2 7
2 3 1 3 1 3 1 2 2 0 2 3 1 3 1 2 0

8 3 6 3 2 8 9 5 8 9
2 3 1 3 1 2 0 2 3 1 0

10 4 8 10
2 3 1 0

7

  8 40 311 99

  16 140 297 18 32 221 128

  128 83 10 7680

  2048

k k x

a b k b k b k k k x

a b k b k b k k k x a b k b k k x

a b k b k k x a b k x

a b k x ρ

+

+ + +

+ + + + +

+ + +

+ ( ) ( )( )322 2 2
2 3 1 0 3 2 0 2 2 3 1 0 3 2 032 4 2 .a b k x b a x k a b k x b a x  + + +    

 (14) 

Now solving Equation (12) for the parameter µ  in terms of  

2 3 1 0 2,  ,  ,  ,  a b k x k  and ,ρ  we obtain:  

(
)

(

2 3 2 2 2 5 4 2 2 2 2 2
3 2 2 3 1 2 0 2 2 0 2 3 1 0 2 3 1 2 0

3 4 4 3 3 2 3 4 3 4 4 5 2 4 5
2 3 1 0 2 3 1 2 0 2 3 1 0 2 3 1 0

2 4 4 2 3 4 2 6 4 2 2 2 3 2 3 2
3 2 2 3 1 2 0 2 3 2 0 2 3 1 2 0 2 3 1 2 0

8 20 16

  52 16 64 64

  10 2 36 48

  

b k a b k k x a k x a b k x a b k k x

a b k x a b k k x a b k x a b k x

b k a b k k x a b k x a b k k x a b k k x

µ = − + + + +

+ + + +

+ + + +

2 4 2 3 8 6 3 3 5 4 2 3 3 2 2 3 3
2 2 0 2 3 1 2 0 2 3 1 2 0 2 3 1 2 0

4 10 8 4 4 7 6 4 4 4 4 2 4 4 2 3 4
2 3 1 0 2 3 1 2 0 2 3 1 2 0 2 3 1 2 0

5 9 8 5 5 6 6 5 5 3 4 2 5 6
2 3 1 0 2 3 1 2 0 2 3 1 2 0 2

56 280 66

  32 576 748 28

  320 2488 792 2240

a k x a b k k x a b k k x a b k k x

a b k x a b k k x a b k k x a b k k x

a b k x a b k k x a b k k x a

+ + + +

+ + + +

+ + + +

) ( )

8 8 6
3 1 0

6 5 6 6 6 2 4 2 6 7 7 8 7 7 4 6 7
2 3 1 2 0 2 3 1 2 0 2 3 1 0 2 3 1 2 0

8 6 8 8 8 3 6 8 9 5 8 9
2 3 1 0 2 3 1 2 0 2 3 1 0

10 4 8 10 2 3 2 2 2 2
2 3 1 0 2 3 1 0 3 2 0 2 2 3 1 0

  4752 288 7072 4096

  10624 1280 7680

  2048 8 4

b k x

a b k k x a b k k x a b k x a b k k x

a b k x a b k k x a b k x

a b k x a b k x b a x k a b k xρ

+ + + +

+ + +

+ + + + ( )

(
)

22 2 2
2 3 1 0

3 2 2 2 2 4 4 2 2 2 2 2 3 6 6 3
2 2 3 1 2 0 2 3 1 2 0 2 3 1 2 0 2 3 1 0

3 3 4 3 4 5 6 4 5 4 6 5 6 3 6 6
2 3 1 2 0 2 3 1 0 2 3 1 0 2 3 1 0

8

  4 12 12 64

  16 112 128 256

a b k x

k a b k k x a b k k x a b k k x a b k x

a b k k x a b k x a b k x a b k x




− − + − +

− + + + 

 (15) 

Choosing  

( )2 3 2 2 2 3 3
2 1 0 3 2 3 0 2 3 0 2 0

2
3 2 0

4 4 7 8 16
,

3 4

a k x b a b x a b x a x
k

b a x

+ + +
=

− +
 

0,µ >  and if ( ) ( )2 3 5 03 4 ,a b k x= +  with 5 0,k >  we also obtain that,  

2 0k > . If we take 5 3k b=  then 3 2
2 3 1140 ,k b k=  hence all expressions of the as- 

signed parameters of system (2) are simplified:  



F. E. Castillo-Santos et al. 
 

367 

3 3 01 1
1 2 3 1 2 32 2 2

0 10 0

3 0 31
1 2 3 4 02

1 00

154 2
, , , , ,

275
74 73, , , , 2 ,

4 2

b b xk ka a a b b b
x kx x

b x bkc c c c R x
k xx

ρ
ρ ρ

µρ µρ
ρ

= = = = =

= = = = =
 

and the expression for µ  given by (15) simplifies to 47,775,075 .
600,704

ρµ =  Thus  

the equilibrium point is  

31
0 0

0

2
, , ,

76
bkp x

x
ρ

ρ
 

=  
 

 

and from (13) and (14) the eigenvalues of the linear approximation of system (2) 
at 0p  are given by Equations (10) and (11), which proves the theorem.     □ 

Remark 5. Notice that by Theorem 4 and Subsection 2.2, the characteristic 
polynomial of the linear approximation of system (2) at the equilibrium point 

0p  has the form ( ) ( )( )2
MP λ λ α λ ω= − − +  if and only if the fundamental 

Equation (12) is satisfied, which, in this case, Equation (12) reduces to  

( ) ( )23,675 47,775,075 600,704
0,

162,273,624,064
D M

ρ ρ µ−
= =  

thus, the linear approximation of system (2) at the equilibrium point 0p  has a  

pair of pure imaginary eigenvalues if and only if 47,775,075
600,704

ρµ = .  

Applying the Theorem 2 to system (2) at the equilibrium point 0p  we get the 
following result. 

Theorem 6. If the parameters involved in system (2) satisfy the hypothesis of 
Lemma 2 and Theorem 4 then the eigenvalues of the linear approximation of 
system (2) at the equilibrium point  

31
0 0

0

2
, ,

76
bkp x

x
ρ

ρ
 

=  
 

                      (16) 

are 5,625
23,104

ρα = −  and ,iω±  where 
2

2 45,227,071 ,
9,611,264

ρω =  and the first  

Lyapunov coefficient ( )1 0p  of the differential system (2) at the equilibrium 
point 0p  is given by  

( ) ( )
2 2

1 0
1 0 2 4 2 2 2 4

2 3 1 4 0 5 3 0

,
s x

p
s s k s x s b x

ρ
ρ ρ

= −
+ +

  

where 1 2 3 4,  ,  ,  s s s s  y 5s  are the positive constants defined by  

1

2

3

4

5

262,247,304,865,615,302,723,837,224,164,005,159,392,947,216 ,
45,227,071

1,538,018,750,999,306,870,027,605,
664,087,191,252,992,
9,099,199,882,240,
2,552,956,682,775.

s

s
s
s
s

=

=
=

=
=

 

Proof. Let 0p  as in (16) and consider a linear change of variables to translate 
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0p  to the origin of coordinates, after that change, we obtain a differential sys- 
tem  

( )X F X=                             (17) 

with ( ), ,X x y z=  and ( )0 0.F =  Denote the vector field  
( ) ( ) ( ) ( )( )1 2 3, , , , , , , , , , ,F x y z F x y z F x y z F x y z=  associated to this differential 

system. Now, we compute the linear part ,A  the bilinear ,B  and trilinear C  
forms of the Taylor expansion of the function .F  

The linear part of system (17) at 0 is 
2 2
0 0

1 3

1 1
2

3 00
2 3

3 3 0

0 1

755,701
23,104 304 2

208,125
30411,552

47,775,075 47,775,075
0

182,614,016 365,228,032

x x
k b

k kA
b xx

b b x
x k

ρρ

ρ
ρ

ρ ρ

 
− − − 

 
 
 = −
 
 
 
 
 

 

It follows immediately from Theorem 4 that the eigenvalues of A  are 
5,625
23,104

ρα = −  and ,iω±  where 
2

2 45,227,071 .
9,611,264

ρω =  

The bilinear function B  at vectors ( ) ( ), , , , ,x y z u v w  is given by  

( ) ( )( ) ( )1 2 3, , , , , , ,B x y z u v w B B B=  

where  

( )( )

( ) ( )

( )( )
( )

2
1 0

1
3 1 0

2
01

3
3 1 00

2

2 3 4
3 1 0 3 3 0

3
1 0

3 439,001 71,250
,

4 1,755,904
219,488 7,908,7501,44416,025,625

,
877,952

47,775,075 4 76

152 730,45

k ux x uy vxuz wxB
b k x

vz wy uy vxvx yk ux
b k xx

B

B k x uz wx b ux b vx y

k x vz wy

ρ ρ

ρρ

ρ ρ ρ

ρ

+ ++
= − −

+ +
− − + +

=

= + − −
+ +  ( )2 2

1 06,064 .k x

 

The trilinear function C  at vectors ( ) ( ) ( ), , , , , , , ,x y z u v w r s t  is given by 

( ) ( ) ( )( ) ( )1 2 3, , , , , , , , , ,C x y z u v w r s t C C C=  

where  

( )( )

( )

( )

2
0 1

1 2
3 0 1 0

3 2
0 0 1

2 2 4
3 1 1 0

2
0

3

3 10,972,500 3,378,9601
,

4 266,897,408
3 3,701,919,375

8 2,432 133,448,704
16,025,625

  ,
1,755,904

47,775

x ruy rvx sux k ruxruz rwx tuxC
b x k x

x svz swy tvy svx y k ruxC
b k k x

ruy rvx sux
x

C

ρ ρ

ρ ρ

ρ

+ + −+ +
= +

+ +
= − +

+ +
−

= ( )( )((
( )))

3 4 6
1 3 0 3 0

2 5 3 3
1 0 1 0

,075 8 3 152 3

  304 2,921,824,256

k b rux x ruz rwx tux b svx y

k x svz swy tvy k x

ρ ρ ρ

ρ

− + + +

 − + +  

 

The normalized eigenvector ( )1 2 3, ,q q q q=  of A  corresponding to eigen- 
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value iω  has coordinates 

( )

0

1
3

1
2 2

3 0

3

1,84632,703,712
637,0017,358,624

4,007,775 4,007,775

,

23,104 405,769,637 50,606 1,175,903,846
,

2,552,956,682,775
1.

i
x

q
b

i k
q

b x
q

ρ

ρ

 
 
 − +
 
 
 =

+
=

=

 

The adjoint eigenvector ( )1 2 3, ,p p p p=  of the transpose matrix of A  
corresponding to the eigenvalue iω−  has coordinates  

( )

( )

3
1

0
2

3 0
2

1

3

33,124,052 4,249 1,175,903,846
,

36,342,592
33,124,052 349 1,175,903,846

,
72,685,184

1.

i b
p

x
i b x

p
k

p

ρ

ρ

− +
=

+
=

=

 

Taking into account the formula of the first Lyapunov constant ( )1 0p  of 
Theorem 2, the values of ,  ,  A B C  and ,  ,  ,q q p  we have that the expression of 
the first Lyapunov coefficient at the equilibrium point 0p  is  

( ) ( )
2 2

1 0
1 0 2 4 2 2 2 4

2 3 1 4 0 5 3 0

,
s x

p
s s k s x s b x

ρ
ρ ρ

= −
+ +

  

where 1 2 3 4,  ,  ,  s s s s  y 5s  are the positive constants defined by  

1

2

3

4

5

26224,730,486,561,530,272,383,722,416,400,515,939,2947,216 ,
45,227,071

1,538,018,750,999,306,870,027,605,
664,087,191,252,992,
9,099,199,882,240,
2,552,956,682,775.

s

s
s
s
s

=

=
=
=
=

 

  
Remark 7. Notice that with the parameters as in Theroem 4 and Theorem 6 

and according with the above result the first Lyapunov coefficient of the system 
at the given equilibrium point is always negative.  

4. Proof of the Main Result  

In this section, using the results given in Section 2 and results obtained in 
Subsection 3.2, we give a proof of our main result given by Theorem 1.  

Proof of Theorem 1. If  

3 0 3 0 31
1 3 3 4 02 2

1 1 00

154
, , , , 2 ,

2 275
b x b x bka a c c R x

k k xx
ρ µρ µ

ρ
= = = = =  

it follows immediately from Lemma (2), that 31
0 0

0

2
, ,

76
bkp x

x
ρ

ρ
 

=  
 

 is an equi-  
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librium point of system (2) in the positive octant of 3.  
If  

3 1
2 1 2 3 22

0 0

2 73, , , ,
4

b ka b b b c
x x

ρ
ρ

= = = =  

and taking into account the above assignments of 1 3 3 4,  ,  ,  a a c c  and ,R  it  

follows from Theorem 4 and Remark 5 that if 0
47,775,075

600,704
ρµ µ= =  the eigen-  

values of the linear approximation of system (2) at the equilibrium point 0 ,p   

are ( )0
5,625
23,104

ρα µ = −  and the pure imaginary complex numbers ( )0 ,iω µ±  

where ( )0
1 45,227,071 .

608 26
ω µ ρ=  For ,µ ∈  with the above assignments  

of 1 2 3 1 2 3 4,  ,  ,  ,  ,  ,  a a a b b c c  and ,R  the real part of the complex eigenvalues 
( )λ µ  and ( )λ µ  of the linear approximation of system (2) at the equilibrium 

point 0 ,p  (the equilibrium point 0p  does not depend of the parameter µ ), 
is  

( )( ) ( )1 3 1 6
1 2

1 6
3

1,755,904 3 2,361,644,849 3 3 11,250
Re ,

138,624

r r

r

ρ µ ρ
λ µ

− − + −
=  

where,  

(

3 2
1

3

3 3 2

5, 413,801,206,181,003,264 432,269,257,343,222,802,481,152

  13,437,254,340,777,791,771,358,085,799 505,553,051,317,500 3

  3,749,169,810,374,656 157,241,523,352,487,313,408

  13,117,2

r µ µ ρ

ρ

ρ µ µ ρ

= +

+ −

 +
+

)
(

(

2

1 23

2

3 2

28,409,565,237,258,048

  9, 213,647,144,507,986,638,030,671

  5, 267,712 1,614,096,551,032,357,801 3,773,400 3

  374,916,981,037,4656 157,241,523,352,487,313,408

  13,117,228,409,565,23

µρ

ρ

µ ρ

ρ µ µ ρ

+ 

+ +

 +

+ ) 1 22 37, 258,048 9,213,647,144,507,986,638,030,671 ,µρ ρ +  

 

(

(

3 3 2
2

3

3 3 2

5, 413,801,206,181,003,264 432,269,257,343,222,802,481,152

  13,437,254,340,777,791,771,358,085,799 505,553,051,317,500 3

  3,749,169,810,374,656 157,241,523,352,487,313,408

  13,117

r ρ µ µ ρ

ρ

ρ µ µ ρ

= +

+ −

 +
+

)
(

(

2

1 23

2

3 2

, 228,409,565,237,258,048

  9, 213,647,144,507,986,638,030,671

  5, 267,712 1,614,096,551,032,357,801 3,773,400 3

  3,749,169,810,374,656 157,241,523,352,487,313,408

  +13,117,228,409,565

µρ

ρ

µ ρ

ρ µ µ ρ

+ 

+ +

 +

)

2

1 23

, 237,258,048

  9, 213,647,144,507,986,638,030,671 ,

µρ

ρ +  
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and  

(

(

3 3 2
3

3

3 3 2

5, 413,801,206,181,003,264 432,269,257,343,222,802,481,152

  13,437,254,340,777,791,771,358,085,799 50,555,3051,317,500 3

  3,749,169,810,374,656 157,241,523,352,487,313,408

  13,117

r ρ µ µ ρ

ρ

ρ µ µ ρ

= +

+ −

 +
+

)
(

(

2

1 23

2

3 2

, 228,409,565,237,258,048

  9, 213,647,144,507,986,638,030,671

  5, 267,712 1,614,096,551,032,357,801 3,773,400 3

  3,749,169,810,374,656 157,241,523,352,487,313,408

  +13,117,228,409,565

µρ

ρ

µ ρ

ρ µ µ ρ

+ 

+ +

 +

)

2

1 23

, 237,258,048

  9, 213,647,144,507,986,638,030,671 .

µρ

ρ +  

 

Hence,  

( )( ) ( )0 0

d Re 47,201,700 0.
d 33,065,273,387
λ µ

ξ µ
µ

= = >  

Moreover, by Theorem 6 the first Lyapunov coefficient of the differential sys- 
tem (2) at the equilibrium point 0 ,p  is ( )1 0 0,l p <  then applying Hopf’s 
Theorem, (Theorem 3), we have a Hopf’s bifurcation at 0p  and that the limit 
cycle that bifurcates from the equilibrium 0p  of system (2) as µ  increases  

from the critical value 0
47,775,075

600,704
ρµ =  is stable. 

Now, taking into account the assignments for parameters given above, the 
system (2) has the form:  

2 2
0 0

3 3 0 1 1 0 0

1

0 3 1 3 0

1

0 1 0

75
,

154 150 2

22775 73 ,
77 75 4 2

2
,

2

x z x y xx x
b x b x k x k x x

k zxy y
x x b k b x y

kxz z
x x k x y

ρ ρρ

ρ
ρ

µ
ρ

 
= − − + − 

+ + 

  
= − −   + +  

 
= − + + 







          (18) 

which is in terms of the free positive parameters 0 3 1,  ,  ,  x b k ρ  and .µ  We 
have that the rest of equilibrium points of system (18) are 

( ) ( )0 1
1 2 0 3

0

5, 475 60,861,300
, ,0 , 2 ,0,0 , and 0,0,0 ,

5479 30,019,441
x kp p x p

xρ
 

= = = 
 

   (19) 

thus, the unique equilibrium point of system (18) in the positive octant of 3  is 

0p  and the theorem is proved.                                      
Remark 8. Notice that system (18) has, additionally to 0p , the equilibrium 

points given by (19). For 0µ µ=  the eigenvalues of the linear approximation of 
the system are: 

For 1p  
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( )29,952,557 265,848,086,191,023,551101,822,611,784,888,325 ,   .
397,768,345,977,357,056 243,267,600

i ρρ ±
−  

For 2p  

15,925,025 5,483, , .
600,704 916

ρ ρρ− −  

For 3p  

( )47,775,075 1, 73 , .
600,704 4

ρ ρ ρ− −  

As a consequence these equilibrium points are hyperbolic, moreover they are 
saddle points.  

5. Numerical Result  

Theorem 1 guarantees the existence of a Hopf’s bifurcation if we have the fol- 
lowing assignments for the parameters of system (2):  

3 3 01 1
1 2 3 1 2 32 2 2

0 10 0

3 0 31
1 2 3 4 02

1 00

154 2
, , , , ,

275
74 73, , , , 2 .

4 2

b b xk ka a a b b b
x kx x

b x bkc c c c R x
k xx

ρ
ρ ρ

µρ µρ
ρ

= = = = =

= = = = =
 

With these assignments of the parameters the system (2) is in terms of the free 
positive parameters 0 3 1,  ,  ,  x b k ρ  and ,µ  the unique equilibrium point of  

system (2) in the positive octant of 3  is 31
0 0

0

2
, , .

76
bkp x

x
ρ

ρ
 

=  
 

 By Theorem 1, 

for µ  close enough to 0
47,775,075

600,704
ρµ =  and 0µ µ>  then a limit cycle  

bifurcates from the equilibrium 0p  of system (2). 
For example, if we consider the parameters values  

0 3

1

1, 76,
1, 1,

x b
k ρ

= =

= =
                         (20) 

then the linear approximation of system (2) at ( )0 1, 2,1p =  is 

( )0

5,701 75 1
23,104 304 152

208,125 1 1 .
11,552 304 76

0
4 8

DF p

µ µ

 − − − 
 
 

= − 
 
 
 
 

 

The real part of the complex eigenvalues is  

( )( )
3 6

2 2

6
2

3 11,250 1,755,904 3 2,361,644,849 3
Re ,

138,624
S S

S
µ

λ µ
− − −

=  

where  
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( )( )

((
)

1

2 1

1

23,104 92,416 1,755,904 73,643,242,047 567,747,074,513,730,837

9,213,647,144,507,986,638,030,671,

505,553,051,317,500 3 1,755,904 1,755,904 1,755,904

140,201,549,547 11,320,200 3 4,842, 289,6

S

S S

S

µ µ µ

µ µ µ

= + +

+

= − +

+ + + )53,097,073,403

13,437,254,340,777,791,771,358,085,799+

 

and its derivative is 

( ) ( )

( 4

3 2
5 6

3
3 4

3
4

d Re
d

19 521,660,579,269,757,164,085,418,393,600

  284,936,905,588,473,856 162,273,624,064

  3, 228,193,102,064,715,602 3

  204,823,995,417,137,033,019,192,719,132,775

  46,125,171,7

S S

S S

S

λ
µ

µ

µ

µ µ

= −

+ −

−

−

+

) ( )
3 7

7 6
3 4

52,042,700,219,319,109,098 3 92,416

  539,617,382,860,506,682,442,178,492,636,645,334,335,975 6 ,

S S

S S

µ−

−

 

where  

( )(
)

((
)

3

4 3

3

23,104 92,416 1,755,904 73,643,242,047

567,747,074,513,730,837 9,213,647,144,507,986,638,030,671,

505,553,051,317,500 3 1,755,904 1,755,904 1,755,904

140,201,549,547 11,320,200 3 4,842,289,6

S

S S

S

µ µ µ

µ µ µ

= +

+ +

= − +

+ + + )

3
5 4 3

3 3
6 3 4 4 3

7

53,097,073,403

13,437,254,340,777,791,771,358,085,799,

744,750 38 3 85,934,584,097,414,325,

38 3 43,856,687,570,103,225 7,013,802,672,786 3
94,011,905,468,216,518,536,340,125,

3,551

S S S

S S S S S

S

+

= − + +

= + −
+

= 3 3
3 4 4

3

,772,588,524 3 3,840,506,095,057,118,582,941,800

8,081,347,093,810,953,130,686 3
9,957,828,728,837,768,681,342,262,239,204,175.

S S S

S

+

+
−

 

If 0
47,775,075: ,

600,704
µ µ= =  then ( )0DF p  has eigenvalues  

5,625 1 45,227,071, ,
23,104 608 26

i− ±  

and 
( ) ( )0

d Re 47,201,700 .
d 33,065,273,387

λ
µ

µ
=  

The Lyapunov coefficient is  

( )1 0

26389,076,327,149,463,767,977,358,754,156,017,900,441
45,227,071 0,

4,105,749,627,489,518,890,132,734,733,438,379,235
p = − <  

hence, we have a supercritical Hopf bifurcation, and then the periodic orbit 
obtained from the bifurcation is stable. 



F. E. Castillo-Santos et al. 
 

374 

In Figure 1, we exhibit the stable limit cycle of differential system (2) with the 
above parameters values, that is, we show an orbit tending to the local attractor 
defined by a stable Hopf periodic orbit with 0 1 100µ µ= +  and initial con-  

dition 0 0
1 1 1, ,

50 50 50
q p  = +  

 
. 

Figure 2 shows the same behavior but with different initial condition  

( )4
0 1 4 10 ,2,0.025q = − . 
 

 

Figure 1. Stable limit cycle and Time series with initial condition 0 0
1 1 1, ,
50 50 50

q p  = +  
 

. 
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Figure 2. Stable limit cycle and Time series with initial condition ( )4
0 1 4 10 ,2,0.025q = − . 

 
Finally, notice that, under the assignations in (20) one has the following:  

• ( ) ( )1 2154 76 762
75

x xf x f x
x x

= > =
++

 and hence in the competition for the  

resource, the meso-predator is superior in comparison with the super- 
predator;  

• ( ) ( )3 238 76
yf y f x

y
= >

+
 on the corresponding domains, that is  
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9 11,
10 10

y  ∈   
 and 19 21,

10 10
x  ∈   

 (see Series Time in Figure 1 and Figure 2),  

therefore the super-predator is substantially benefit from the consumption to 
the meso-predator in the sense that its most important food source is in- 
termediate species.  

From the above, one can conclude that our model makes ecological sense. 
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