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Abstract 
Buffon’s needle experiment was originally devised to get the value of π . With 
the advent of computers, Buffon’s needle algorithm has been used pedagogi-
cally as an example of Monte Carlo methods in introduction classes, and there 
are many Buffon’s needle algorithm implementations available on the inter-
net. However, for the calculation of π , the exact value of π  is used in the 
programs for Buffon’s needle angle sampling, and hence the example is not 
demonstrated correctly. This brief note presents a random angle sampling al-
gorithm for the Buffon’s needle. We then compare the Buffon’s needle and 
Hit-and-Miss integration algorithms using Monte Carlo laboriousness com-
parison, and find that the Hit-and-Miss algorithm is superior. 
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1. Introduction 

Buffon’s needle experiment [1] was originally used to provide π . Throwing a 
needle (see Figure 1) onto a flat plane with equally-spaced parallel lines, the 
probability that the needle touches the parallel line provides an estimate for π  
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and so  
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where P  is the probability, l  the length of the needle and a  the spacing 
with <l a .  
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Here, we should note that the Buffon’s needle problem becomes an integra-
tion problem (see Figure 2) so the probability is just the ratio of areas. 

Many variants of the original Buffon’s needle experiment [2] [3] [4] [5] [6] [7] 
have been developed. Kendall and Moran [2] and Diaconis [3] examined several 
aspects of the problem for a long needle ( >l a ) and Siniksaran [7] used Ma-
thematics to review various statistical aspects of the experiment. 

With the advent of computers, Buffon’s needle has been pedagogically used as 
an example in Monte Carlo method introductory classes and many websites pro- 
vide Buffon’s needle algorithm implementations. However, in these programs, 
the value of π  is used for the random sampling of the needle angular direction. 
Thus π  is used to obtain the value of π  itself. 

This note presents a sampling algorithm for the random direction of the 
needle that avoids using π  within the algorithm. We then compare the Buf-
fon’s needle and the Hit-and-Miss integration algorithms using the common 
Monte Carlo algorithm comparison method, the time consumption (laborious-
ness) [8]. 

 

 
Figure 1. Buffon’s needle algorithm with spacing a  and needle length l . 

 

 
Figure 2. Buffon’s needle problem can be converted to an integration problem. 
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2. Buffon’s Needle Algorithm  

For random direction sampling of the needle, we use a square enclosing a tightly 
fitted circle (see Figure 3).  

Since the directions of the random points inside the circle are uniform, we 
obtain uniform needle random directions.  

3. Comparison with the Hit-and-Miss Algorithm 

The Hit-and-Miss integration algorithm can also provide the value of π . Using 
one quadrant of the circle circumscribed by a square (see Figure 4), we can ob-
tain = 4hπ , where, h  is the probability of hitting the shaded area, when we 
generate a pair of random numbers to sample a random point inside of the square. 

We use the common Monte Carlo algorithm comparison, time consumption 
(laboriousness): [8] tDξ  where t  is the CPU time expended in calculating a 
single estimate and Dξ  estimate variance. Figure 5 shows the log-log plot of 
the number of Monte Carlo steps v.s. the errors of the two algorithms, and Table 
1 compare the two algorithms. The Hit-and-Miss algorithm is superior to the 
Buffon’s needle algorithm for calculation of π , which seems reasonable given 
the Buffon’s needle algorithm requires more numerical operations for a Monte 
Carlo step. Of course, we can improve Buffon’s algorithm performance using a 
tighter non-constant proposed probability distribution for the acceptance-rejec- 
tion sampling method. Using quasi-Monte Carlo random numbers [9] for the 
angle sampling will also improve the convergence. 

4. Conclusion  

Buffon’s needle algorithm has been pedagogically used as an introduction to  
 

  
Figure 3. Needle random direction sampling. After generating a ran- 
dom point inside the circle, we obtain the random direction vector for 
the needle. 
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Figure 4. Hit-and-Miss diagram. Using a pair of random num- 
bers, we obtain the probability of hitting inside of the marked 
quadrant. 

 

 
Figure 5. Monte Carlo steps and estimation errors. The linear regression slopes 
for Buffon’s needle and Hit-and-Miss algorithms (solid and dotted lines res- 
pectively) are 0.502−  and 0.505−  with correlation coefficients 0.9994−  and 

0.9999−  respectively. 

 
Table 1. Time consumption of Buffon’s needle and Hit-and-Miss algorithm. Variances 
were obtained from 100 independent runs and the number of random walks per run was 

710 . 

Method  CPU time per run (s) Variance ( 710− ) Time consumption ( 610− ) 

Buffon’s needle 15.9  5.97 9.49 

Hit-and-Miss   13.0  2.51 3.26 

r

r
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Monte Carlo methods. However, π  is used for needle angle sampling inside 
the original algorithm. This note presents a method for the needle angle sam-
pling without using π  and make the Buffon’s needle algorithm a Monte Carlo 
method to estimate π . We compared the Buffon’s needle and Hit-and-Miss in-
tegration algorithms and found that the Buffon’s needle algorithm is not supe-
rior to the Hit-and-Miss integration algorithm.  
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