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Abstract 
In this paper, an efficient computational approach is proposed to solve the 
discrete time nonlinear stochastic optimal control problem. For this purpose, 
a linear quadratic regulator model, which is a linear dynamical system with 
the quadratic criterion cost function, is employed. In our approach, the mod-
el-based optimal control problem is reformulated into the input-output equa-
tions. In this way, the Hankel matrix and the observability matrix are con-
structed. Further, the sum squares of output error is defined. In these point of 
views, the least squares optimization problem is introduced, so as the differ-
ences between the real output and the model output could be calculated. Ap-
plying the first-order derivative to the sum squares of output error, the neces-
sary condition is then derived. After some algebraic manipulations, the op-
timal control law is produced. By substituting this control policy into the in-
put-output equations, the model output is updated iteratively. For illustration, 
an example of the direct current and alternating current converter problem is 
studied. As a result, the model output trajectory of the least squares solution is 
close to the real output with the smallest sum squares of output error. In con-
clusion, the efficiency and the accuracy of the approach proposed are highly 
presented. 
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1. Introduction 

Stochastic dynamical system is a practical system in modeling and simulating 
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the real-world problems. The behavior of the fluctuation, which is caused by the 
effect of noise disturbance in the dynamical system to represent the real situa-
tion, rises to the attention of many researchers. See for examples, [1]-[8]. As 
such, optimization and control of the stochastic dynamical system are a chal-
lenging topic. In the past decades, the research outcomes, both for theoretical 
results and development of the algorithms, are well-defined [9] [10] [11] [12] 
[13]. In general, the real processes, which are modeled into the stochastic optim-
al control problem, are mostly nonlinear process. Their actual models in natural 
could be necessary unknown. Applying the linear model, including the Kalman 
filtering theory, to solve the stochastic optimal control problems, in particular, 
for nonlinear case, give a simplification methodology instead [14] [15] [16] [17]. 

Recently, the integrated optimal control and parameter estimation (ICOPE) 
algorithm, which solves the linear model-based optimal control problem itera-
tively, is proposed in the literature [18] [19]. The purpose of this algorithm is to 
provide the optimal solution of the discrete time nonlinear stochastic optimal 
control problem with the different structure and parameters. In this algorithm, 
the adjusted parameters are added into the model used so as the differences be-
tween the real plant and the model used can be calculated, in turn, update the 
optimal solution of the model used during the computation procedure. The in-
tegration of system optimization and parameter estimation is the main feature of 
this algorithm, where the principle of model-reality differences and the Kalman 
filtering theory are incorporated. Once the convergence is achieved, the iterative 
solution approximates to the correct optimal solution of the original optimal 
control problem, in spite of the model-reality differences. However, increasing 
the accuracy of the model output to track the real output would be necessary 
required. 

In this paper, an efficient matching scheme, which diminishes the adjusted 
parameters, is established deliberately. In our approach, the model-based optim-
al control problem is simplified from the discrete-time nonlinear stochastic op-
timal control problem. Then, this model-based optimal control problem is re-
formulated into the input-output equations. During the formulation of the in-
put-output equations, the Hankel matrix and the observability matrix are con-
structed. These matrices capture the characteristic of the model used into the 
output measurement. By virtue of this, the least square optimization problem is 
introduced. From the validation of the first order necessary condition, the nor-
mal equation is resulted and the optimal control law is updated accordingly on 
the recursion formula. As a result of this, the sum squares of the output error 
could be minimized demonstratively. Hence, the efficiency of the algorithm 
proposed is highly presented. 

The rest of the paper is organized as follows. In Section 2, the discrete time 
nonlinear stochastic optimal control problem and its simplified model-based op-
timal control problem are described. In Section 3, the system optimization with 
the least squares updating scheme is discussed. The computation procedure is 
summarized as the iterative algorithm. In Section 4, the current converter prob-
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lem is illustrated and the result is demonstrated. Finally, some concluding re-
marks are made. 

2. Problem Description 

Consider a general class of dynamical system given by  

( ) ( ) ( )( ) ( )1 , ,x k f x k u k k G kω+ = +                (1a) 

( ) ( )( ) ( ),y k h x k k kη= +                     (1b) 

where ( ) ( ),  0,1, , 1,  ,  0,1, ,m nu k k N x k k N∈ℜ = − ∈ℜ = 
, and  

( ) ,  0,1, ,py k k N∈ℜ = 
, are, respectively, the control sequence, the state se-

quence and the output sequence. The terms ( ) ,  0,1, , 1qk k Nω ∈ℜ = −
, and 

( ) ,  0,1, ,pk k Nη ∈ℜ = 
, are, respectively, process noise sequences and output 

noise sequences. Both of these noise sequences are the stationary Gaussian white 
noise sequences with zero mean and their covariance matrices are given by Qω  
and Rη , respectively, where Qω  is a q q×  positive definite matrix and Rη  is 
a p p×  positive definite matrix. In addition, G  is an n q×  process noise 
coefficient matrix, : n m nf ℜ ×ℜ ×ℜ→ℜ  represents the plant dynamics and 

: n ph ℜ ×ℜ→ℜ  is the output measurement channel. 
Here, the aim is to find the control sequence ( ) ,  0,1, , 1u k k N= − , such 

that the following cost function  

( ) ( )( ) ( ) ( )( )
1

0
0

, , ,
N

k
g u E x N N L x k u k kϕ

−

=

 = +  
∑            (2) 

is minimized over the dynamical system in Equation (1), where : nϕ ℜ ×ℜ→ℜ  
is the terminal cost and : n mL ℜ ×ℜ ×ℜ→ℜ  is the cost under summation. The 
cost function 0g  is the scalar function and [ ]E ⋅  is the expectation operator. It 
is assumed that all functions in Equations (1) and (2) are continuously differen-
tiable with respect to their respective arguments. 

The initial state is  

( ) 00x x=  

where 0
nx ∈ℜ  is a random vector with mean and variance given, respectively, 

by  

[ ]0 0E x x=  and ( ) ( )T
0 0 0 0 0E x x x x M − − =  . 

Here, 0M  is an n n×  positive definite matrix. It is assumed that the initial 
state, the process noise and the measurement noise are statistically independent. 

This problem is regarded as the discrete-time nonlinear stochastic optimal 
control problem and is referred to as Problem (P). Notice that the structure of 
Problem (P) is complex, and the exact solution of Problem (P) is, in general, 
unable to be obtained. In view of these, Problem (P) is proposed to be solved via 
solving a simplified model-based optimal control problem iteratively. For this 
purpose, let this simplified model-based optimal control problem, which is re-
ferred to as Problem (M), be given below: 
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1T T T
1

0

1 1min
2 2

N

u k k
g u x N S N x N x k Qx k u k Ru k

−

=

= + +∑     

subject to                                                        (3) 

( ) ( ) ( )1 ,x k Ax k Bu k+ = +  ( ) 00x x=  

( ) ( )y k Cx k=  

where ( ) ,  0,1, ,nx k k N∈ℜ = 
, and ( ) ,  0,1, ,py k k N∈ℜ = 

, are, respec-
tively, the expected state sequence and the expected output sequence. Here, A  
is an n n×  state transition matrix, B  is an n m×  control coefficient matrix, 
C  is a p n×  output coefficient matrix, whereas ( )S N  and Q  are n n×  
positive semi-definite matrices, R  is a m m×  positive definite matrix and 1g  
is the scalar cost function. 

Notice that only solving Problem (M) actually would not give the optimal so-
lution of Problem (P). However, by establishing an efficient matching scheme, it 
is possible to approximate the true optimal solution of Problem (P), in spite of 
model-reality differences. This could be done iteratively. 

3. System Optimization with Least Square Updating Scheme 

Now, let us define the Hamiltonian function for Problem (M) as follows: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )T T T1 1
2

H k x k Qx k u k Ru k p k Ax k Bu k= + + + + .  (4) 

Then, from Equation (3), the augmented cost function becomes 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

T T
1

1T T

0

1 0 0
2

             
N

k

g u x N S N x N p x

p N x N H k p k x k
−

=

′ = +

− + −∑
          (5) 

where ( ) np k ∈ℜ  is the appropriate multiplier to be determined later. 
Applying the calculus of variation [20] [21] [22] to the augmented cost func-

tion in Equation (5), the following necessary conditions are resulted:  
1) Stationary condition:  

( )
( ) ( ) ( )T 1 0

H k
Ru k B p k

u k
∂

= + + =
∂

                 (6) 

2) Costate equation: 

( )
( ) ( ) ( ) ( )T 1

H k
Qx k A p k p k

x k
∂

= + + =
∂

               (7) 

3) State equation: 

( )
( ) ( ) ( ) ( )1

1
H k

Ax k Bu k x k
p k
∂

= + = +
∂ +

               (8) 

with the boundary conditions ( ) 00x x=  and ( ) ( ) ( )p N S N x N= . 

3.1. State Feedback Optimal Control Law 

The following theorem expresses the feedback control law based on the state that 
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can be used in solving Problem (M). 
Theorem 1. For the given Problem (M), the optimal control law is the feed-

back control law defined by  

( ) ( ) ( )u k K k x k= −                       (9) 

where 

( ) ( )( ) ( )
1T T1 1K k B S k B R B S k A
−

= + + +             (10) 

( ) ( ) ( )( )T 1S k A S k A BK k Q= + − +               (11) 

with the boundary condition ( )S N  given. Here, the feedback control law is a 
linear combination of the states. That is, the optimal control is linear state-vari- 
able feedback. 

Proof. From Equation (6), the stationary condition can be rewritten as  

( ) ( )T 1Ru k B p k= − + .                    (12) 

Applying the sweep method [20] [21] [22], 

( ) ( ) ( )p k S k x k= ,                     (13) 

for 1k k= +  in Equation (12) to yield  

( ) ( ) ( )T 1 1Ru k B S k x k= − + + .                 (14) 

Taking Equation (8) into Equation (14), we have  

( ) ( ) ( ) ( )( )T 1Ru k B S k Ax k Bu k= − + + . 

After some algebraic manipulations, the feedback control law (9) is obtained, 
where Equation (10) is satisfied. 

Now, substituting Equation (13) for 1k k= +  into Equation (7), the costate 
equation is written as  

( ) ( ) ( ) ( )T 1 1p k Qx k A S k x k= + + +                (15) 

and considering the state Equation (8) in Equation (15), the costate equation 
becomes 

( ) ( ) ( ) ( ) ( )( )T 1p k Qx k A S k Ax k Bu k= + + + .          (16) 

Hence, by applying the feedback control law (9) in Equation (16), and doing 
some algebraic manipulations, it could be seen that Equation (11) is satisfied af-
ter comparing the manipulation result to Equation (13). This completes the 
proof. 

By substituting Equation (9) into Equation (8), the state equation becomes  

( ) ( )( ) ( )1x k A BK k x k+ = −                 (17) 

and the model output is measured from  

( ) ( )y k Cx k= .                      (18) 

In view of this, the calculation procedure for obtaining the feedback control 
law for Problem (M) is summarized below: 

Algorithm 1: Feedback control algorithm 
Data Given ( ) 0, , , , , , ,A B C Q R S N x N . 



S. L. Kek et al. 
 

6 

Step 0 Calculate ( ) ,  0,1, , 1K k k N= − , and ( ) ,  0,1, ,S k k N=  , from 
Equations (10) and (11), respectively. 

Step 1 Solve Problem (M) that is defined by Equation (3) to obtain  
( ) ,  0,1, , 1u k k N= − , and ( ) ( ),  ,  0,1, ,x k y k k N=  , respectively, from 

Equations (9), (17) and (18). 
Step 2 Evaluate the cost function 1g  from Equation (3). 
Remarks: 
1) Data A, B, C can be obtained by the linearization of the real plant f  and 

the output measurement h  from Problem (P). 
2) In Step 0, the offline calculation is done for ( ) ,  0,1, , 1K k k N= − , and 
( ) ,  0,1, ,S k k N=  . 
3) The solution procedure, which the dynamical system is solved in Step 1, 

and the cost function is evaluated in Step 2, is known as system optimization. 

3.2. Least Squares Updating Scheme 

Now, we define the output error : m pr ℜ →ℜ  given by 

( ) ( ) ( ) ,r u y k y k= −                      (19) 

where the model output (18) is reformulated as 

( ) ( ) ( )y k Cx k Du k= + .                   (20) 

where D  is a p m×  coefficient matrix. Formulate Equation (20) as the fol-
lowing input-output equations [23] for 0,1, ,k N= 

: 

( )
( )
( )

( )

( )
( )
( )

( )

2
0

1 2 3

0 00 0 0
1 10 0

.2 20

1N N N N

y uC D
y uCA CB D

xy uCA CAB CB D

y N u NCA CA B CA B CA B D− − −

      
      
      
      = +
      
      
       −      







      



(21) 

For simplicity, we have  

0y Ex Fu= +                         (22) 

where  

2

N

C
CA

E CA

CA

 
 
 
 =
 
 
  



 and 

1 2 3

0 0 0
0 0

.0

N N N

D
CB D

F CAB CB D

CA B CA B CA B D− − −

 
 
 
 =
 
 
  







    



 

In addition, define the objective function 2 : mg ℜ →ℜ , which represents the 
sum squares of error (SSE), given by  

( ) ( ) ( )T
2g u r u r u= .                    (23) 

Then, an optimization problem, which is referred to as Problem (O), is stated 
as follows:  

Problem (O): 
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Find a set of the control sequence ( ) ,  0,1, , 1u k k N= − , such that the ob-
jective function 2g  is minimized. 

It is obviously noticed that for solving Problem (O), Taylor’s theorem [24] 
[25] is applied to write the objective function 2g  as the second-order Taylor 
expansion about the current ( )iu  at iteration i as follows:  

( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )( ) ( ) ( )( )

T1 1
2 2 2

T1 12
2

1                   
2

i i i i i

i i i i i

g u g u u u g u

u u g u u u

+ +

+ +

≈ + − ∇

+ − ∇ −
        (24) 

where the higher-order terms are ignored and the notation ∇  represents the 
differential operator. The first-order condition in Equation (24) with respect to 

( )1iu +  is expressed by  
( )( ) ( )( )( ) ( ) ( )( )12

2 20 i i i ig u g u u u+≈ ∇ + ∇ − .              (25) 

Rearrange Equation (25) to yield the normal equation,  
( )( )( ) ( ) ( )( ) ( )( )12

2 2
i i i ig u u u g u+∇ − = −∇ .               (26) 

Notice that the gradient 2g∇  is calculated from  

( )( ) ( )( ) ( )( )T

2 2i i ig u r u r u∇ = ∇                    (27) 

and the Hessian of 2g  is computed from  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )T T2 2
2 2i i i i ig u r u r u r u r u ∇ = ∇ +∇ ∇ 

 
        (28) 

where ( )( )ir u∇  is the Jacobian matrix of ( )( )ir u , and its entries are denoted 
by  

( )( )( ) ( )( ) ,  1, 2, , 1;  1, 2, , 1.i ii

ij j

rr u u F i N j N
u
∂

∇ = = = − = −
∂

 

    (29) 

From Equations (27) and (28), Equation (26) can be rewritten as 

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )T T T12 .i i i i i i i ir u r u r u r u u u r u r u+ ∇ +∇ ∇ − = −∇ 
 

(30) 

By ignoring the second-order derivative term, that is, the first term at the 
left-hand side of Equation (30), and define  

( ) ( ) ( )1 -i i iu u u+∆ = ,                     (31) 

the normal equation given by Equation (26) is simplified to  

( )( ) ( )( ) ( ) ( )( ) ( )( )T Ti i i i ir u r u u r u r u ∇ ∇ ∆ = −∇ 
 

.         (32) 

Then, we obtain the following updating recurrence relation, 
( ) ( ) ( )1i i iu u u+ = + ∆                      (33) 

with the initial ( )0u  given, where  

( ) ( )( ) ( )( ) ( )( ) ( )( )
1T Ti i i i iu r u r u r u r u
−

   ∆ = − ∇ ∇ ∇   
   

.        (34) 
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Hence, Equations (33) and (34) are known as the least squares recursive equa-
tions, which are based on the Gauss-Newton recursion formula. 

From the discussion above, the least-squares updating scheme for the control 
sequence is summarized below: 

Algorithm 2: Least-squares updating scheme 
Step 0 Given an initial ( )0u  and the tolerance ε . Set 0i = . 
Step 1 Evaluate the output error ( )( )ir u  and the Jacobian matrix ( )( )ir u∇  

from Equations (19) and (29), respectively. 
Step 2 Solve the normal equation from Equation (32) to obtain ( )iu∆ . 
Step 3 Update the control sequence by using Equation (33). If ( ) ( )1i iu u+ = , 

within a given tolerance ε , stop; else set 1i i= +  and repeat from Step 1 to 
Step 3. 

Remarks: 
1) In Step 1, the calculation of the output error ( )( )ir u  and the Jacobian ma-

trix ( )( )ir u∇  are done online, however, the Jacobian matrix ( )( )ir u∇  could 
be done offline if it is independent from ( )iu . 

2) In Step 2, the inverse of ( )( ) ( )( )Ti ir u r u∇ ∇  must be exist, and the value of 
( )iu∆  represents the step-size for the control set-point. 

3) In Step 3, the initial ( )0u  is calculated from (9). The condition ( ) ( )1i iu u+ =  
is required to be satisfied for the converged optimal control sequence. The fol-
lowing 2-norm is computed and it is compared with a given tolerance to verify 
the convergence of ( )u k : 

( ) ( ) ( )( ) ( )( )
1 21 11

0

N i ii i

k
u u u k u k

−
++

=

 − = − 
 
∑ .            (35) 

4) In order to provide a convergence mechanism for the state sequence, a 
simple relaxation method is employed: 

( ) ( ) ( )( )1i i i
xx x k x x+ = + −                   (36) 

where ( ]0,1xk ∈ , and x  is the state sequence of the real plant. 

4. Illustrative Example 

In this section, an example of the direct current and alternating current (DC/AC) 
converter model is illustrated [26] [27] [28]. In this model, the real plant is a 
nonlinear dynamics structure and the output channel is a single output mea-
surement, where the stationary Gaussian white noises are taken into the model. 
Since this model is a continuous time model, the simple discretization scheme is 
required. We define this model as Problem (P), while the simplified model, 
which is an expectation model, is employed as Problem (M). The cost function 
for both problems is a quadratic criterion function. The true solution of the 
original optimal control problem would be obtained by using the approach pro-
posed and the solution procedure is implemented in the MATLAB environment.  

Problem (P): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1T T T

0
0

1 1min
2 2

N

u k
g u E x N S N x N x k Qx k u k Ru k

−

=

= + +  
∑  
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subject to 

( ) ( )( )
( ) ( ) ( ) ( )

2
2

1 1 1
1

5 5
x t

x t x t u t t
x t

ω= − + +  

( ) ( )( )
( )( )

( ) ( )
( ) ( ) ( ) ( )

3
2 2

2 2 1 22
11

7 5 2
x t x t

x t x t x t u t t
x tx t

ω
 

= − + + +  
 

  

( ) ( ) ( )2y t x t kη= +  

with the initial ( ) ( )T0 0.1,0x = . Here, ( ) ( ) ( )( )T
1 2 k k kω ω ω=  and ( )kη  are 

Gaussian white noise sequences with their respective covariance given by  
210Qω
−=  and 110Rη

−= . The weighting matrices in the cost function are  
( ) 2 2S N I ×= , 2 2Q I ×=  and 1R = . 
Problem (M): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1T T T

1
0

1 1min
2 2

N

u k
g u x N S N x N x k Qx k u k Ru k

−

=

= + +∑  

subject to  

( )
( )

( )
( ) ( )1 1

2 2

1 1 5 0 5
1 0 1 7 0.2

x k x kT T
u k

x k x kT T
 +   − ⋅ ⋅   

= +      + − ⋅ ⋅      
 

( ) ( )2y k x k=  

for 0,1, ,80k = 
, with the sampling time 0.01T =  second. 

The simulation result is shown in Table 1. The implementation of the algo-
rithm proposed takes four iteration numbers to converge. The initial cost of 
0.0429 unit is the value of cost function belong to Problem (M) before the itera-
tion begins. After the convergence is achieved, the final cost of 116.9461 units is 
obtained. The original cost of 1.0881 × 103 is the value of cost function of the 
original optimal control problem. It is noticed that the cost reduction is 89.28 
percent. The value of SSE, which is 8.046097 × 10−12, shows the smallest differ-
ences between the real output and the model output. 

The trajectories of final control and real control are shown in Figure 1 and 
Figure 2, respectively. The final control takes into the consideration of noise 
sequence during the calculation, while the real control is free from the noise 
disturbance. Figure 3 shows the trajectories of final output and real output. It 
can be seen that the final output tracks closely to the real output. Figure 4 shows 
the trajectories of final state and real state, where they are statistically identical. 
Figure 5 and Figure 6 show, respectively, the output errors after and before ite-
rations. The accuracy of the model output is increased due on the decrease of the 
output error. 
 
Table 1. Simulation result. 

Number of Iterations Initial Cost Final Cost Original Cost SSE 

4 0.0429 116.9461 1.0881 × 103 8.046097 × 10−12 
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Figure 1. Trajectory of final control. 

 

 
Figure 2. Trajectory of real control. 

5. Concluding Remarks 

A computational algorithm, which is equipped with the efficient matching 
scheme, was discussed in this paper. The linear model-based optimal control 
problem, which is simplified from the discrete time nonlinear stochastic optimal 
control problem, was solved iteratively. During the calculation procedure, the 
model used was reformulated into the input-output equations. Then, the least 
squares optimization problem was introduced. By satisfying the first order neces-
sary condition, the normal equation was solved such that the least squares  
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Figure 3. Trajectories of final output (−) and real output (∗). 

 

 
Figure 4. Trajectories of final state (−) and real state (+). 

 
recursion formula could be established. In this way, the control policy could be 
updated iteratively. As a result of this, the sum squares of the output errors was 
minimized, which indicates the equivalent of the model output to the real out-
put. For illustration, an example of the direct current and alternating current 
converter model was studied. The result obtained showed the accuracy of the 
algorithm proposed. In conclusion, the efficiency of the algorithm proposed was 
highly presented. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.5

0

0.5

1

1.5

2

2.5

time

ou
tp

ut

 

 
y
yb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

time

st
at

e

 

 
x1
x2
xb1
xb2



S. L. Kek et al. 
 

12 

 
Figure 5. Output error after iteration. 
 

 
Figure 6. Output error before iteration. 
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