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The Convergences Comparison between the

Halley’s Method and Its Extended One Based ~ Lhe purpose of this paper is that we give an extension of Halley’s method (Section 2),
on Formulas Derivation and Numerical Cal-  and the formulas to compare the convergences of the Halley’s method and extended
culations. Applied Mathematics, 7, 2394-
2410.
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one (Section 3). For extension of Halley’s method we give definition of function by
variable transformation in Section 1. In Section 4 we do the numerical calculations of

Halley’s method and extended one for elementary functions, compare these conver-
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1. Introduction

In 1673, Yoshimasu Murase [1] made a cubic equation to obtain the thickness of a
hearth. He introduced two kinds of recurrence formulas of square X and the defor-
mation. We find that the three formulas lead to a Horner’s method (Horiguchi, [2])
and an extension of Newton’s method (Horiguchi, [3]). This shows originality of Wa-
san (mathematics developed in Japan) in the Edo era (1603-1868). We do research sim-
ilar to Horiguchi, [3] against the Halley’s method. We give function y=(¢ (t) defined
from f (X) for extension of Halley’s method.

From now on, let X be a real number, and a function f (X) i(Z 1) times differen-
tiable if necessary, and " (x) continuous.

Definition 1.1. Let X% =t where ( is a real number that is not 0. We define the
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function g(#) such as
g(t):=f ()= (x). (1)

Because g(xq): f (x), the graph of g(x) extends or contracts by x* =t in the
X -axis, without changing the height of y = f (X). Expansion and contraction come to
object in |X|<1 and |X|>l.

Theorem 1.2. The formulas

Xt ”(x);z(;—q?)f’(x) >0(<0 resp.), x#0 (2)
g”(t):g”<xq): fr/(x)[1+1_ f'(X)J
f”
X () >0(<0 resp.), x=0,f"(x)£0  (3)
@]

give the convex upward (the convex downward resp.) at the point X% of graph of

9(x).
Proof. It is proved by the next calculations.
_dg(t) df(x) df(x)dx

g'(t) = tx)—=

dt dt dx dt

(4)

"(t) _ dg’(t) _i f (X) _ d f'(x)%_ f”(x)qxqfl_ f,(X)(qufl) .
T e e (o) gt

From the formulas (4), (5), we obtain the next theorem.
Theorem 1.3. The curvature of the cure y=¢ (X) at the point x* is formulas (6)
and (7).

xf"(x)+(1-q) f'(x) X#0 (6)

f(x
These become the curvature ()= #3/2 of f(x) if g=1 inparticular.
(24 £/(x)7)
Proof. Formula (6) is obtained by substituting the formulas (4) and (5) for
g'(t),g"(t) in the curvature (t) O
Theorem 1.4. A necessary and sufficient condition for
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‘f"(x)+ (1_Q)Xf '(x)

e

()’ {1{‘” X)TT/Z (e (x)"

gx

() =

=|,u(x)|(x¢0) (8)

is that formula (9) holds.

. 2N\¥2
(o) (H( Eﬁ)J J
'(x)1-q| ax
1+— < 72 9
t(x) x (1+f’x))
Proof. Formula (9) is obtained from (8). ]

Proposition 1.5. If « is a simple root (m(>1) multiple root resp.) of f (X) =0,

then a" becomes the simple root (m multiple root resp.) of @ (X)

2. Halley’s Method and Extension of Halley’s Method

Definition 2.1. The recurrence formula to approximate a root of the equation

f(x)=0

X1 = X — , (k=0,1,2,--) (10)

is called Halley’s method'.
Halley’s method is obtained by improving the Newton’s method (11) (Ref. [5]).

f(x)
Xy =X ——%, (k=0,1,2,--- 11
k+1 k f I(Xk ) ( ) ( )
They are methods of giving the initial value X,, calculating X, X,,--- one after

another, and to determine for a root.
From now on we omit the notation (k =0,1,2,-- ) in recurrence formulas. Applying
the Halley’s method to ¢ (t) , we get
g (tk )
, 1g(tk)g”(tk)
g'(t)-———
2 g (tk )

If we express this by formula (1) in f (Xk ) , then we get the next definition.

t, =t - (12)

Definition 2.2. Let a be a root of the equation f(X)zO. (13) is the recurrence
formula to approximate «". We call this the ¢ -th power of the extension of Halley’s
method (EH-method).

X0, = X0 - ) : (13)
f (%) ] (% )+ (@-a)— (%)
o2 /(%)

Here,if g=1 then the formula (13) becomes Halley’s method.

'Edmond Halley (1656-1742) is the British astronomer, and famous for Halley’s comet of research.

2396
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Calculation formula of ¢ -th power of EA-method is this.

f(x q
X =| X — X3 (%) (14)

3. Formulas to Compare the Convergences for Extensions of
Halley’s Method

Theorem 3.1. Let o be a simple root for f (X)=0, Le, f'(a) # 0. Then Halley’s
method becomes the following third-order convergence.

S (@) =2 (@) ()

X, —a= X —a (15)
o 21 (a)’ (%)
If ¢ is m (m(=2)) multiple root, then it becomes the following linearly convergence.
. 2

Xeq —a=1- X —a 16

k+1 ( m +1j( k ) ( )

Proof. There is a brief proof of (15) in wikipedia [4]. Therefore we go to the proof of
(16).

We merely sketch f(x), f'(x), f"(x) with f,f' f". Since f(xX) is represented

as

f(x)=(x=a)"h(x), h(a)=0, (17)
f/,f" 2, ff" is as follows, respectively.
fr:m(x_a)m—l h+(X—a)m h'

£7=(x=a)"*(m(m-1)h+2mh’(x-a)+(x-a)'h")

(18)
f'2=m? (x—oz)zm_2 h? +2m(x—oc)zm_1 hh’+(X—a)2m h'?
ff":h(x—a)z””(m(m—l)h+2mh'(x_a)+h"(x_a)z)
From these formulas, we obtain the following linearly convergence.
X —a =X —Q_Lf,_x —a
k+1 - 2f'2—ﬁ"_ K
h(x —a)" (2mh+2h'(x, - ))
(m?h® +mh®)(x, =)™ +2mhh’(x, )" +(2h"” =hh") (%, —a)"" 19)
2mh?
=N e % )
2
= l—_ —
(12 -a)
O

Lemma 3.2. In the sequence {Xn} , let Jim X, =a, and ¢, r an arbitrary real
—>00
constant number that is not 0, respectively. In this case following formula holds for
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large enough integer n.

g o
X —a="at (X —a) (20)
Proof. Applying L’Hospital’s rule to (xq -at ) / (Xr -a' ) , formula (20) is obtained.

O
Theorem 3.3. Let the condition be the same as Theorem 3.1. If X, sufficiently close
to a(#0), then q-th power of EH-method (Extended Halley’s method) becomes the

third-order convergence of the following formula.
1., 1., " '
L) -2 1 (@)(17(@)+(2a-1)(a-1) F («)
2 ' "
+(q4_]2') f/(a)z_(q_l)f (Ol)f (a) ,
Xy — = e @ X —a (21)
k+1 f'(a)2 ( k )

If ¢ is m (m(=2)) multiple root, then it will be linearly convergence of the fol-

lowing formula.

. 2
Xk+l—a=.[l—mj(xk—a) (22)

Proof. If « isasimple root for f (X) =0, then t=a" also becomes a simple root
for ¢ (t) =0. In this case Halley’s method for ¢ (t) becomes the third-order convergence

1 2 1
790 q _79' q gm q
t,—a'=2 () 6 (j{ Jorle )(tk—aq)3 (23)
g'(a")
"2 "

Here 9',9"°,9",9"%,9",9'9” become the followings.

of the following formula.

g =i dx ., 1
Coodt o gxet
2 _ 1 2 1
_q_ 2o
9"= q—lz( f% 22 _(q-1) fk’(zq’l))
) (24)
"2_f”2 1 1 " 1 1 f/q_l 1 fIZ (q_l) 1
g = ?W_ ?qufz qz XZq—1+ q-  x@D
"7 1 "
=_3(f +(29-1)(q-1) £/)x ¥ (39 -3) f %)
Ty M 1 " 1 f”
g9 =q—4f ((f +(29-1)(q- 1)f) (3q 3) 4q3j

Therefore we obtain

1(0-1° ., 1 1 v
s e qu_l
1(1 " 1 4 " ' L
+qz(4f - P (2a-)(a-D)f )szqz ]
X g o = (-a®) @5
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By lemma 3.2, we get
X —at =02 (X, —a). X —af =qa" (X - ). (26)
Therefore, formula (25) becomes

qaqil (Xk+1 - a)

1(g-1° ., 1 1 .1
4(qz)f ZXTq_?(q—l) ff NI o)
1 1 14 l ’ m ’ 1
+qz(4f L@y 1)) 2 3
7z (qaq’l) qa’ (X —a) .

By changing the independent variable X of the functions f', f”, f” and X in
numerator to « , we obtain (21).

In case that «® is m multiple root, by (16), (1) and (20) we obtain

t., —aq'z.(l—%)(tk ~a‘)
Xfﬂ—aq':.(l—%j(xf ~af). (28)

Xyt —a'?[l—%j(xk -a)

O
Theorem 3.4. Let a(;t 0) be a simple root of f (X) =0. Then a necessary and suf-
ficient condition for the convergence to o of (-th power of EH-method is equal to

or faster than Halley’s method is that g satisfies the following conditions.

1

(1-q) '(a){(G(Zq—l)+::;?j f’(a)+f”(a)}

L@ £ (@) (@)

1+

<1 (29)

That is

(30)
1 " 2 _1 ! "
Ltay -3 () (@)

Proof. Compare the coefficient of (X, — a)3 of the third-order convergence of q-th
power of EH-method and that in the case of Halley’s method. Then the necessary and
sufficient condition is equivalent to the next formula.

L@ = v(@)(f7(@)+(20-D(a-D (@)
-1)° ) 1) f'(a)f"(a 1., 2 1., m
+(q4a2) t'(a) _(a-n)f 5[ ) () S @ - (@) "(e)

t'(a) f'(a)
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The formula (29) is obtained from this. O
Corollary 3.5. (1) If f ”(a) =0, f'"(a) #0 then (30) becomes

(1-q) f'(“)Kz_ 2:/ jq_“ 222} <2

0< a) <2. (32)
() If f"(a)#0,f"(a)=0 then (30) becomes
(ol (A1), 2, 1 4"(e)
@y ey |(§- & a2 S ipie)
0< <2. (33)

t(a)
We transform the equation f(X)=0 into h(x)=0. That is, two equations have
the same root. r -th power of EH-method for h(X) is

h
X[ = X - O : (%) . (34)
h<xk>{r_lh"<xk>+<1—r>xh'<xk>J
w(x)-L P ‘
2 h'(x,)

and if o (;t 0) is a simple root, then it becomes the third-order convergence (35).

(r_l)z h'(a)z _ (r_l)h,(a)h”(a) +£h"(0{)2

4a? o 4
| B @)+ (2r-2) (- (@) :
Xes1 -a= (Xk —0!) (35)

' (a)’

We get the following by comparing the coefficient of (x, —a)3 of formula (21) and
(35).

Proposition 3.6. Let f(a)=h(a)=0, and a(#0) a simple root. Then a neces-
sary and sufficient condition for the convergence to « of ¢ -th power of EA-method
(Extended Halley’s method) (13) of f(X) to be equal to or faster than that r-th
power of EH-method (34) of h(X) is that the real numbers q and r satisfy the
following condition (36).

L (@ =2 F(@)(1"(a) +(29-1)(a-1) F'(«))

LD gy (@D () F7(a)

4o a
- - '(a)° <1 (36)
Zh"(fl)2 —sM(@)(h"(a)+(2r-1)(r-2)h'(a))

(1) gy (DN (@) ()

2400
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Theorem 3.7. Let a(#0) be a simple root for f(x)=0, ie, f'(a)=0.Inequa-
lity (29) is represented by the second derivative
xf"(x)+(1—q) f'(x

q2X2q71

which distinguishes the convex-concave of the curve ( (X) It shows the next com-
plicated inequalities (38), (39).

(1) @f'(a)>0

(e - @ (o) SN B ug v
s )
) « (38)
(4a*)
“ia) f'<a>(q;1) i e
+‘%f”(a)z—%f’(a)f"’(a)‘—(—%1;2q+%J(l—q)f'(a)z}

a (39)

IN

" 1 ' " 31- q 2q -1 '
@ -t @ el B e e
Proof. We lead inequalities (38), (39) from (29). Let

A:% t"(a) _% t(a)1"(a),

(40)
(1-qf ., 2 (1-a)f'(a)f"(a) 1 Y
B= 107 f'(a) + . +E(2q_1)(1_q)f (a)".
Then inequality (29) becomes
2401

KD
+%%, Scientific Research Publishing



S. Horiguchi

B

1+—| <1
A

(41)
~A-|A/<B<-A+|[A].

We transform the formula B.

B:(l_—qf’(a)+%a)+%(2q—l)f’(a)](l—q)f’(a)
_ (1—q)f'(a)+af”(a) 1 _ ' 2 _2q-2
(et = L gy o)
+(_§1—q , 1

(@) @) @) )00 1 (@)

Therefore inequality (29) becomes (44).

(42)

(43)

~A-|A

S((l—q) f'(a)+af"(a)

1 , )
q2a2q71 };(1—q)f (a)qzazq 2

(44)
(2t @ -y (@) -0 @)

Furthermore, we transform the inequality.

| A A28 (o) 2 (20-1) £ (@) |1-0) (@)
g A AT @ Jo-a) )
P [(1—q) f(;gzzq:afn(a)jé(l_q) (a)

1 31-q
Sw[—"\ﬂﬂ—(—z "

(45)

’ 1 ! ’
F(a) 5200 F'(a)J1-a) (@)
From (45), we get (38), (39) according to plus, minus number of (1—q) f'(a)/a
respectively.

O
Theorem 3.8. Let the condition be the same as the above Theorem. Inequality (29) is

represented by the curvature

vy, =) (%)
" f(x)+————=
q(t): AU 77 = M (X)) = X

. (46)
11\2 f' X) 2\
(ax*) 1+ wE

Those are the next complicated inequalities (47) and (48).
1—
i LDt (a)>0
a

2402
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a 1 1 2 1
-0 (@) | ziHZf"(“) “§ 1@ )
(qa™*)’ {1+( ;a(qal)] j
el grae @5 G jaar]
7(q)+ L9 F(@)
(qa )2 (1+[ ;;{(ﬁ)jzf
a 1 1 2 1
S — zHzfﬂ(a) _gf'(a)f"’(a)j
(ga") {“[ ;a(fl)] J
+%fv(a)z_%f'(a)fM(a)‘—(—gl;zq+§<2q—1>j(1—q)f'(a)ﬂ )
(ii) @f’( )<0
a 1 1 2 1
) (@) —— i )
(Qaq’l)z [1+( ;a(qal)] ]
Jrr@ @@ ey oo e
f”(a)+(1—qzxf'(a)
(qa) {1{ ;;fl)ﬂz
a 1 1 2 1
e ’ e e @)
(qa) [1+[ ;a(qal)j J
_‘%f”(a)z—%f’(a)f'"(a)—(—%j;;zq+%(2q_1))(1_(])f,(0‘)2} s

32
Proof. We get (47), (48) by dividing formula (38), (39) in (1+( f '(X)/qxq_l)z) ,

respectively.

4. Convergence Comparisons by the Numerical Calculations of
Halley’s Method and Extensions of Halley’s Method

We perform numerical calculations by the calculation formula (14) in the standard

2
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format in Excel 2013 of Microsoft. We perform numerical calculations for various equ-
ations such as n-th order equations (N >2), equations of trigonometric, exponential,
logarithmic function, respectively.

In the examples of the followings, there are cases where some numerical calculations
do not fit in with the inequality (30) a little. Those are probably due to the formula (21)
the approximate formula, choosing the initial value X;, and the accuracy of using the
standard format in Excel is insufficient. However, the results to fit the theories generally
have been obtained.

Example 4.1. A quadratic equation
f(x)=(x-1)(x-2)=x*-3x+2=0 (49)

The roots of (49) are @ =12. Because f'(x)=2x-3, f"(x)=2, f"(x)=0, in

case of o =1, condition (33) becomes

0< (q—1)($q +%—2) <2< about-0.041<q<1 23<q<24.042.  (50)

We choose real numbers ¢ and initial values X, such as Table 1, Table 2, and do
numerical computations. We explain how to read Table 1. The first column represents
the initial value X, and the absolute error, and the first row represents the real num-
ber q of X, .

Two numbers 1 and 1.11022E-16 of intersection of two row and two column mean
the following.

Number 1 indicates the number of iterations that Halley’s method (q =1) to con-
verge to the root 1. 1.11022E-16 indicates the absolute error |the value x, =1 of the
convergence of the numerical calculation—root 1|. If two iteration numbers are the
same for the same initial value X;, then we evaluate the convergences by the absolute
errors. In the Table 1, Table 2, all q-th power of EH-method (Extension of Halley’s
method) converge in root 1 at iteration number k =1. But, for the same initial value
X, > each column of EA-method (q # l) has the absolute errors (at least one) that are
equal to or smaller than Halley’s method (q = 1) in the ranges of (50).

We confirm Theorem 3.7. Because (1— q) f '(1)/a =0-1<0 in -0.041<qg<1,
inequality (39) is applied. In this case (39) becomes the following inequality.

3 1 1 3 2 1
Z(q-1)+g(2q—1)sq+1sﬁ[—2+z(q—l) +g(2q—l)(q—1)} (51)

The results are Table 3. The range of g which satisfies (51) becomes —0.041<q<1.

Example 4.2. A cubic equation
f(x)=x"-8=0 (52)
Because the root of (52) is 2, the condition (30) becomes

0<(q-1)[0.125(13q-5)+3) | <2 <> -1.8875<q<-1.462, 1<q<14262. (53)

We choose real numbers ¢ and initial values X, such as Table 4, Table 5, and do

numerical computations. All iteration numbers are 2 or 3. But, for the same initial value

2404
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Table 1. Calculations of (14) for root 1, —0.041 < ¢ < 1.

\\\\ 9 1 —0.041 —0.025 —0.01 0.1 0.2 0.4 0.8
X —
0.999999993 k=1 1 1 1 1 1 1 1
Absolute errors 1.11022E-16 0 0 0 0 0 0 2.22045E-16  1.11022E-16  2.22045E-16
1.000000003 1 1 1 1 1 1 1 1
Absolute errors 2.22045E-16 0 0 0 0 0 4.44089E-16 2.22045E-16  2.22045E-16
Table 2. Calculations of (14) for root 1, 23 < ¢ < 24.042.
\\\\\ 7 1 23.1 233 235 237 24.042 24.1
%o T~
0.999999992 1 1 1 1 1 1
Absolute errors 2.22045E-16 0 0 0 0 0
1.000000015 1 1 1 1 1 1
Absolute errors 2.22045E-16 0 0 0 0 0
Table 3. Calculations of (51) for root 1, —0.041 < g< 1.
q (1-g@fla)a=qg-1 Left-hand side of g'(9) gl)=q+1 Right-hand side of g(#)
-0.4 -14 -1.35 0.6 0.078571429
-0.3 -1.3 —1.241666667 0.7 0.296794872
-0.2 -1.2 —1.133333333 0.8 0.533333333
—0.1 -1.1 -1.025 0.9 0.793181818
—0.042 —1.042 —0.962166667 0.958 0.95721913
—0.041 —1.041 —0.961083333 0.959 0.960146254
0 -1 —0.916666667 1 1.083333333
0.1 -0.9 —0.808333333 1.1 1.413888889
0.2 -0.8 -0.7 1.2 1.8
0.3 -0.7 —0.591666667 1.3 2.26547619
0.4 -0.6 —0.483333333 1.4 2.85
0.5 -0.5 —0.375 1.5 3.625
0.6 0.4 ~0.266666667 1.6 4733333333
0.7 -0.3 —0.158333333 1.7 6.508333333
0.8 -0.2 —0.05 1.8 9.95
0.9 —0.1 0.058333333 1.9 20.05833333
0.9999 ~1E-04 0.166558333 1.9999 20000.16656
1 0 #DIV/0! 2 #DIV/0!
1.001 0.001 0.16775 2.001 —1999.83225
1.1 0.1 0.275 2.1 —19.725
1.2 0.2 0.383333333 2.2 —9.616666667

2
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Table 4. Calculations of (14) for root 2, —1.8875 < g< —1.462.

T 9 -1.8875 -1.7 -16 -15 -1.462 1
1.999 2 2 2 2 2 2
Absolute errors 5.28466E~14 5.28466E—14 5.24025E~14 5.28466E~14 5.28466E~14 5.28466E~14
2.05 3 3 3 3 3 3
Absolute errors 4.26326E-14 4.26326E-14 43520714 4.30767E-14 4.35207E-14 4.39648E-14
2.1 3 3 3 3 3 3
Absolute errors 1.12594E~11 1.14033E~11 1.14744E~11 1.15419E~11 1.15663E~11 1.18154E~11
2.15 3 3 3 3 3 3
Absolute errors 2.92275E-10 2.97491E-10 3.00076E-10 3.02517E-10 3.03407E-10 3.12511E-10

Table 5. Calculations of (14) for root 2, 1 < ¢ < 1.4262.

— q

1 1.001 1.1 1.2 1.3 1.4262
X
1.999 2 2 2 2 2 2
Absolute errors 5.28466E—14 5.24025E-14 5.24025E~14 5.28466E—14 5.24025E-14  5.24025E-14
2.05 3 3 3 3 3 3
Absolute errors 4.39648E~14 4.39648E~14 4.35207E~14 4.35207E~14 4.35207E-14  4.30767E—14
2.1 3 3 3 3 3 3
Absolute errors 1.18154E-11 1.18154E-11 1.17693E-11 1.17186E-11 1.1664E-11  1.15885E~11
2.15 3 3 3 3 3 3
Absolute errors 3.12511E-10 3.12495E-10 3.10816E~10 3.08966E~10 3.06965E-10  3.04226E-10

X, > each column of EA-method (q # 1) has the absolute errors (at least one) that are
equal to or smaller than Halley’s method (q = 1) in the ranges of (53).
Example 4.3. A cubic equation

f (x)=(x—1)(x—2)(x—3)=0 (54)
In case of the root 1, the condition (30) becomes

0< %(q ~1)(q-35)<2 < -0.1934<q <1, 35<(<36.1934, (55)

We choose real numbers ¢ and initial values X, such as Table 6, Table 7, and do
numerical computations. Each initial value X,, iteration number of EH-method
(q il) and Halley’s method (q :1) are the same. But, for the same initial value X,
each column of EH-method (q # 1) has the absolute errors (at least one) that are
smaller than Halley’s method (q = 1) in the ranges of (55).

Example 4.4.

f(x)=sinx=0 (56)

The roots of (56) are nn(n =0,41, i2,---). The condition (30) becomes
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M <2 (n=%1,%2,--)

0<(q-1)| 29-1- 2(nn)2

(57)

If we take the root in n'=-3.141592654(n = 1) , then (57) becomes

0<(q —1)(2q —1—gq—_21j <2< -0.3455< (<0458 1<q<1.8043.  (58)
T

We do numerical computations for the real numbers ¢ and initial values X, in Ta-
ble 8, Table 9. All iteration numbers in Table 8 are 1. But, for the same initial value X,
each column of EH-method (q # 1) has the absolute errors (at least one) that are smaller
than Halley’s method (q=1) in -0.3455<(<0.458. In case of 1<q<1.8043,
number of iterations of £ZH-methods (q #1) are small than Halley’s method.

Table 6. Calculations of (14) for root 1, —0.1934 < ¢< 1.

—

T _ 7 —0.1934 0.1 0.3 0.5 0.7 0.99 1
% ~
0.875 3 3 3 3 3 3 3
Absolute error 0 0 0 4.44089E-16 2.22045E-16 2.22045E-16 4.44089E-16
0.99999741 1 1 1 1 1 1 1
Absolute error 0 0 0 2.22045E-16 1.11022E-16 2.22045E-16 2.22045E-16
1.000001 1 1 1 1 1 1 1
Absolute error 4.44089E-16 0 0 4.44089E-16 2.22045E-16 2.22045E-16 4.44089E-16
1.1 3 3 3 3 3 3 3
Absolute error 1.11022E-15 0 3.33067E-16 0 1.11022E-16 2.22045E-16 3.33067E-16
Table 7. Calculations of (14) for root 1, 35 < ¢ < 36.
\\‘;\\\\\\q 1 34 35 35.2 354 35.6 35.8 36.1934
0.999999256 \ 1 1 1 1 1 1 1 1
Absolute error 5.55112E-16 4.44089E-16 4.44089E-16 4.44089E-16 4.44089E-16 4.44089E-16 4.44089E-16  4.44089E-16
1.000001 1 1 1 1 1 1 1 1
Absolute error 4.44089E-16 2.22045E-16 2.22045E-16 2.22045E-16 2.22045E-16 2.22045E-16 2.22045E-16  2.22045E-16
Table 8. Calculations of (14) for root 1, -0.3455 < g < 0.458.
9 ~0.3455 -03 -0.1 0.1 0.3 0.458 1
X0
3.1415 1 1 1 1 1 1 1
Absolute errors 4.04578E-10 4.04076E-10 3.95939E-10 4.21089E-10 4.12902E-10 4.11561E-10 4.10339E-10
3.141585 1 1 1 1 1 1 1
Absolute errors 4.10203E-10 4.10203E-10 4.10198E-10 4.10209E-10 4.10208E-10  4.10208E-10 4.10207E-10
3.1417 1 1 1 1 1 1 1
Absolute errors 4.18962E-10 4.19741E-10 4.32396E—-10 4.06015E-10 3.93276E-10  4.08099E-10 4.1E-10
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Example 4.5.

f(x)=tanx=0 (59)

The roots of (59) are nn(n =0,41, J_r2,~~). The condition (30) becomes

0= _%(q—l)Hz— 2(:1r)2 Jq—1+ 2(n3n)2 } w2 e 0

If we take the root in n'=-3.141592654(n = l) , then (60) becomes

1 3 3
0<-—(g-1)||2-—— |q-1+—|£2<=046<q<l 61
,(d )H anjq an} q (61)

Table 10 gives numerical computations. In case of X, =3.142, EH-methods (q ¢1)
have better approximate degrees than Halley’s method (= 1) in 046<qg<1.
Example 4.6.

f(x)=e*—e=0 (e: Napier's constant) (62)
The root of (62) is 1. The condition (30) becomes

0<(q-1)(q+13)<2<>—13.14142<q<-13,1< q<1.14142. (63)

Table 11 and Table 12 give the numerical values to almost adapt to Theorem 3.4.
Example 4.7.

f(x)=logx=0 (64)
The root of (64) is 1. The condition (30) becomes
0<(1-0)(g-11) <2 <> 1< <1.2041684,10.795834 < q <11. (65)
Table 13 and Table 14 give the numerical values to almost adapt to Theorem 3.4.

Table 9. Calculations of (14) for root 1, 1 < g < 1.8043.

—

T . 7 0.8 1 1.2 1.4 1.6 1.8043 2

X0 —~
3.14005 2 2 1 1 1 1 2
4.5 6 5 4 4 3 4 5

Table 10. Calculations of (14) for root 7, 0.46 < ¢< 1.

;{0\ T~ ] 0.4 0.46 0.6 0.7 0.8 0.9 1
3.14 2 2 2 2 2 2 2
Absolute errors  4.10207E-10 4.10207E-10 4.10207E-10 4.10207E-10 4.10206E-10 4.10206E-10 4.10207E-10
3.142 1 1 1 1 1 1 1
Absolute errors 2.8809E-11 9.20344E-11 1.86697E-10 2.28724E-10 2.58712E-10 2.80826E-10 2.97554E-10
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Table 11. Calculations of (14) for root 1, -13.14142 < g < —13.

— 1 -13.2 —13.14142 -13.1 —-13.08 —13.05 —-13.02 -13
% —
0.999999998 1 1 1 1 1 1 1
Absolute errors 1.11022E-16 0 0 0 0 0 0
1.000000009 1 1 1 1 1 1 1
Absolute errors 1.11022E-16 0 0 0 0 0 2.22045E-16
Table 12. Calculations of (14) for root 1,1 < ¢ < 1.14142.
1 0.9 1 1.02 1.04 1.06 1.08 1.14142 1.15
Xo T~
0.99999996 1 1 1 1 1 1 1 1
Absolute errors 2.22045E-16 1.11022E-16 0 1.11022E-16 1.11022E-16 0 0 0
1.00000004 1 1 1 1 1 1 1 1
Absolute errors 2.22045E-16 1.11022E-16 0 0 1.11022E-16 1.11022E-16 0 1.11022E-16
Table 13. Calculations of (14) for root 1,1 < ¢ < 1.2041684.
Xz\\\\q 0.9 1 1.04 1.08 1.12 1.16 1.2 1.2041684
0.96 3 3 3 3 3 3 3 3
Absolute errors  6.73195E—12 4.75153E—-12 4.19242E-12 3.72524E-12 3.33122E-12 2.9966E-12 2.70994E-12 2.67797E-12
1.01 3 3 3 3 3 3 3 3
Absolute errors 2.22045E-16 1.11022E-16 1.11022E-16 1.11022E-16 0 1.11022E-16 0 1.11022E-16
Table 14. Calculations of (14) for root 1, 10.795834 < g < 11.
\\\\\ g 1 10 10.795834 109 10.94 10.98 11 12
X —
0.9 4 3 3 3 3 3 3 4
1.15 4 4 4 4 4 4 4 5
Absolute errors 1.10389E—-12 1.66533E-15 2.20934E-14 8.53762E-14 1.36779E-13 2.14606E-13 2.67009E-13
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