Explicit Solutions of the Coupled mKdV Equation by the Dressing Method via Local Riemann-Hilbert Problem

Ting Su*, Guohua Ding, Zhiwei Wang

Department of Mathematical and Physical Science, Henan Institute of Engineering, Zhengzhou, China
Email: *suting1976@163.com

Abstract
We study the coupled mKdV equation by the dressing method via local Riemann-Hilbert problem. With the help of the Lax pairs, we obtain the matrix Riemann-Hilbert problem with zeros. The explicit solutions for the coupled mKdV equation are derived with the aid of the regularization of the Riemann-Hilbert problem.

Keywords
Coupled mKdV Equations, Riemann-Hilbert Problem, the Dressing Method

1. Introduction
The coupled mKdV equation
\[
\begin{align*}
 u_t - u_{xxx} + 6uvu_x &= 0, \\
 v_t - v_{xxx} + 6vvv_x &= 0
\end{align*}
\]
(1)
is an important member of the AKNS hierarchy [1]. Moreover, it has various applications in mathematical and physical fields. In [2], Prof. Geng has given its quasi-periodic solution by using algebra-geometric methods. The equation can be solved by the method of the inverse scattering transformation, Hirota direct method, Lax pairs non-linearization approach and others [3]-[6]. There are a lot of references for the topic [7]-[14].

In this paper, we study the Equation (1) with the help of the Riemann-Hilbert method following [15] [16]. The present paper is organized as follows. In section 2, we give the Jost solution of the spectral equation. In section 3, we discuss the analytic property of the Jost solution. In section 4, we give the Matrix Riemann-Hilbert Problem. In section 5, we obtain the soliton-solution of the coupled KdV Equation (2), and we drop

DOI: 10.4236/am.2016.715150
the curve of the solutions with the aid of the Matlab.

2. Jost Solution

First, we consider the coupled KdV equation

\[\begin{align*}
 u_t &= u_{xxx} - 6uvu_x, \\
 v_t &= v_{xxx} - 6uvv_x.
\end{align*} \tag{2} \]

As is well known \cite{2}, the Equation (2) can be derived as the compatibility of the system

\[\begin{align*}
 \Psi_x &= U\Psi, \\
 U &= \begin{pmatrix} 0 & u \\ v & 0 \end{pmatrix} \tag{3} \\
 \Psi_x &= V\Psi, \\
 V &= \frac{1}{2}(ik\sigma_3 - k^2 Q - ikQ^2 \sigma_3 + Q_{xx} + QQ_x - Q - 2Q^3) \tag{4} \\
\end{align*} \]

where \(k \) is an arbitrary constant spectral parameter.

When \(u = 0, v = 0 \), we obtain the special solution of Equation (3). For convenience, we denote the special solution as \(F = \exp\left(-\frac{1}{2}ikx\sigma_3\right) \). Then, the spectral Equation (3) is transformed into

\[\begin{align*}
 H_x &= -\frac{1}{2}ik[\sigma_3, H] + QH, \tag{6} \end{align*} \]

where, \(H = \Psi F^{-1} \).

In what follows, we study the Jost solutions \(H_\pm(x,k) \) of the Equation (6) satisfying the asymptotic conditions \(H_\pm \to I \), at \(x \to \pm\infty \). Since \(tr U = 0 \), these boundary conditions guarantee that \(\det H_\pm = 1 \) for all \(x \).

In fact, the Jost functions \(H_\pm \) are not mutually independent. They are interconnected by the scattering matrix \(S(k) \):

\[H_\pm = H_\pm FSF^{-1}, S(k) = \begin{pmatrix} a(k) & -\bar{b}(k) \\ b(k) & \bar{a}(k) \end{pmatrix}, \det S(k) = 1. \tag{7} \]

3. Analysis Solutions

Let us rewrite the spectral Equation (6) with the boundary conditions in the integral form:

\[\begin{align*}
 (H_{-})_{11}(x,k) &= I + \int_{-\infty}^{x} u(\xi)(H_{-})_{21}(\xi,k)d\xi, \\
 (H_{-})_{21}(x,k) &= \int_{-\infty}^{x} v(\xi)(H_{-})_{11}(\xi,k)\exp[ik(x-\xi)]d\xi, \tag{8} \end{align*} \]

for the first column entries of the Jost matrix \(H_- \).

It is easy to know that the exponent in (8) decreases for \(Im k > 0 \). The first column \(H_{-}^{[1]} \) of the matrix \(H_- \) is analytic in the upper half plane and continuous on the real axis \(Im k = 0 \). Similarly, we know that the second column \(H_{-}^{[2]} \) of the matrix \(H_- \) is
analytic as well in the same domain. Then, we give a solution of Equation (6):

$$\Omega_+(x,k) = \left(H^{[1]}_+, H^{[2]}_+ \right).$$

It can be seen that it is analytic as a whole in the upper half plane. The analytic solution \(\Omega_+(x,k) \) can be expressed in terms of the Jost function. In view of (7), we derive

$$\Omega_+(x,k) = \left(H^{[1]}_+, H^{[2]}_+ \right) = \left(aH^{[1]}_+ + b(k) e^{\alpha x} H^{[2]}_+, H^{[2]}_+ \right) = \left(H^{[1]}_+, H^{[2]}_+ \right) \begin{pmatrix} a(k) \\ b(k) e^{\alpha x} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

(9)

with

$$S_+ = \begin{pmatrix} a(k) & 0 \\ b(k) & 1 \end{pmatrix}.$$

(10)

In the same way,

$$\Omega_+ = H_+ F S_+ F^{-1}, \quad S_+ = \begin{pmatrix} 1 & \overline{b}(k) \\ 0 & a(k) \end{pmatrix}, \quad S_+ = S \Omega_+.$$

(11)

It follows from the above formal as that

$$\det \Omega_+(x,k) = a(k).$$

(12)

In what follows, we define a function \(\Omega_-(x,k) = \Omega_+(x,\overline{k}) \). It is obvious that

$$\Omega_+^{-1} = \begin{pmatrix} (H^+)^{-1}_{[1]} \\ (H^+)^{-1}_{[2]} \end{pmatrix}.$$

Then, \(\Omega_-(x,k) \) is a solution of the adjoint spectral problem. On the real axis

$$\Omega_-(x,k) = \Omega_+(x,\overline{k}) = F S_+ F^{-1} H_+^{-1} = FS_+ F^{-1} H_+^{-1},$$

and \(\det \Omega_-(x,k) = \overline{a}(\overline{k}) \), \(\Omega_-(x,k) \) has an asymptotic expansion as follows:

$$\Omega_-(x,k) = 1 + \frac{1}{k} \Omega_-(x,k) + O\left(\frac{1}{k^2} \right).$$

(13)

and substitute it into the spectral Equation (6). Comparing with powers of \(k \), we derive

$$Q = i [\sigma_3, \Omega_-(x,k)].$$

(14)

In order to solve the coupled KdV Equation (2), we should find the analytic solution \(\Omega_+ \).

4. Matrix RH Problem

Through tedious calculation, we obtain RH problem

$$\Omega_-(x,k) \Omega_+(x,k) = F \Lambda_+ (k) F^{-1}, \quad \Lambda_+ = S_+^* S_+ = \begin{pmatrix} 1 & \overline{b} \\ a & 1 \end{pmatrix},$$

(15)

with \(|a|^2 + |b|^2 = 1 \), \(\text{Im} k = 0 \).

It is easy to know that \(\Omega_-(x,k) \Omega_+(x,k) \) only depends on \(k \), the \(x \)-dependence
being given by the simple exponential function F. Moreover, it is obvious that $\Omega_z(x,k) \to F$ for $k \to \infty$, in view of (12).

In order to obtain the soliton solution of the coupled KdV equation, we suppose that the zeros of $a(k)$ and $\Omega(k)$ are simple and finite number. We know that determinants of the matrices Ω_z and Ω_z^{-1} are given by $a(k)$ and $\Omega(k)$. We assume that

$$\det \Omega_z(k) = 0, \quad \text{Im} k_j > 0, \quad j = 1, 2, \cdots, N,$$

$$\det \Omega_z^{-1}(\tilde{k}) = 0, \quad \text{Im} \tilde{k}_l < 0, \quad l = 1, 2, \cdots, N.$$

In this case, the RH problem (15) with zeros can be solved in view of its regulation. To obtain the relevant regular problem, let us introduce a rational matrix function

$$\chi_j^{-1} = I + \frac{k_j - \tilde{k}_j}{k - \tilde{k}_j} Y_j, \quad Y_j = \begin{bmatrix} Y_j^1 \\ Y_j^2 \end{bmatrix},$$

where the eigenvector $\begin{bmatrix} Y_j^1 \\ Y_j^2 \end{bmatrix}$ solves $\Omega_z(k_j) \begin{bmatrix} Y_j^1 \\ Y_j^2 \end{bmatrix} = 0$.

Here Y_j is the rank 1 projector $Y_j^2 = Y_j$, and $\begin{bmatrix} Y_j^1 \\ Y_j^2 \end{bmatrix} = \begin{bmatrix} Y_j^1 \end{bmatrix}^*$.

In view of (11), we know that $\det \Omega_z(k) (k - k_j) = 0$ near the point k_j. We obtain $\det \Omega_z(\chi_j^{-1}) \neq 0$ at the point k_j. The matrix function Ω_z^{-1} will be regularized by the rational function

$$\chi_1 = I - \frac{k_1 - \tilde{k}_1}{k - \tilde{k}_1} Y_1,$$

it is easy to know that the matrix $\chi_1 \Omega_z^{-1}$ has no zeros in \tilde{k}_1.

The regularization of all the other zeros is performed similarly, and eventually we obtain the following representation for the analytic solutions:

$$\Omega_z = \omega_0 \Gamma = \chi_N \chi_{N-1} \cdots \chi_1,$$ (16)

where the rational matrix function $\Gamma(x,k)$ accumulates all zeros of the RH problem, while the matrix functions ω_0 solve the regular RH problem (without zeros)

$$\omega_0^{-1}(x,k) \omega_0(x,k) = \Gamma(x,k) F \Lambda_0(k) F^{-1} \Gamma^{-1}(x,k),$$ (17)

with $\Lambda_0(k) = I$, thus $\Omega_z = \Gamma(x,k)$.

The matrix Γ will be called the dressing factor. It follows from (16) that the asymptotic expansion for the dressing factor is written as

$$\Gamma(x,k) = I + \frac{1}{k} \Gamma^{(1)}(x) + O\left(\frac{1}{k^2}\right).$$ (18)

We note that the dress matrix $\Gamma(k)$ can be written as

$$\Gamma(k) = \begin{pmatrix} I - \frac{k_N - \tilde{k}_N}{k - \tilde{k}_N} Y_N \\ \vdots \\ I - \frac{k_1 - \tilde{k}_1}{k - \tilde{k}_1} Y_1 \end{pmatrix},$$

where

$$\Gamma^{-1}(k) = \begin{pmatrix} I + \frac{k_N - \tilde{k}_N}{k - \tilde{k}_N} Y_N \\ \vdots \\ I + \frac{k_1 - \tilde{k}_1}{k - \tilde{k}_1} Y_1 \end{pmatrix}.$$ (19)
Thus, we derived $2N$ vectors $\{x_j\}$ and $\{y_j\}$ instead of N vectors $\{Y_j\}$. It is obvious that $\Gamma(k)\Gamma^{-1}(k) = I$ at the point $k = k_j$. To avoid divergence at $k \to k_j$, we should pose $\Gamma(k_j)\{y_j\}\{x_j\} = 0\}$, that is

$$I - \frac{k_j - \bar{k}_j}{k_j - \bar{k}_j} \{y_j\}\{x_j\} = 0. \tag{21}$$

We note that the matrix $\Gamma(k)$ can be decomposed into the following form:

$$\Gamma(k) = I - \sum_{j=1}^{N} \frac{1}{k_j - \bar{k}_j} \{j\}\{D^{-1}\}_j\{l\}, \tag{22}$$

where $D = D_j = \{y_j\} - \frac{1}{k_j - \bar{k}_j} \{y_j\}$. Similarly,

$$\Gamma(k) = I - \sum_{j=1}^{N} \frac{1}{k_j - \bar{k}_j} \{j\}\{D^{-1}\}_j\{l\}, \tag{23}$$

where $\{j\} \equiv \{y_j\}$. In what follows, we rewrite (13) as

$$Q = i[\sigma_3, \Gamma^{(l)}(x)]. \tag{24}$$

Let us differentiate the equation $\Omega_x \{k_j\}\{j\} = 0$ in x, and in view of (6), we derive

$$\frac{\partial}{\partial x} \Omega_x (x, k_j)\{j\} + \Omega_x (x, k_j)\{j\}_x = i\frac{k_j}{2} \Omega_x (x, k_j)\{j\} + \Omega_x (x, k_j)\{j\}_x = 0,$$

thus, we have

$$\{j\}_x = -\frac{1}{2}ik_j \sigma_3 \{j\}. \tag{25}$$

In the same way, we obtain the evolutionary equation

$$\{j\}_t = \frac{1}{2}ik_j^2 \sigma_3 \{j\}. \tag{26}$$

In this end, we establish explicitly the vector $\{j\}$ as

$$\{j\} = \exp \left[\left(-i\frac{1}{2}k_j x + i\frac{1}{2}k_j^2 t \right) \sigma_3 \right] \{j_0\}, \tag{27}$$

where $\{j_0\}$ is a vector integration constant.

Similarly, according to $\langle \tilde{j}\Omega^{-1}(\tilde{k}_j) = 0$, we obtain the solution

$$\langle \tilde{j}\rangle = \exp \left[\left(-i\frac{1}{2}\tilde{k}_j x + i\frac{1}{2}\tilde{k}_j t \right) \sigma_3 \right] \langle \tilde{j}_0\rangle, \tag{28}$$

where $\langle \tilde{j}_0\rangle$ is a vector integration constant.

5. One Soliton Solution

We consider the case $N = 1$ and pose $k_i = \xi + i\eta$, $\bar{k}_i = \bar{\xi} + i\bar{\eta}$. Then, we have
where, are components of the constant vector .

where, are components of the constant vector .

The dress formula (19) reduced to

At the same time, we have , from which, we obtain

Denoting , , thus

In the same way, defining , thus

Substituting (31) and (32) into (30), we have

Moreover, , hence,

From which, we have the solutions of the coupled KdV Equation (2)
\[u = (\tilde{\eta} + \eta) e^{i\tilde{\phi} + \phi} \sec(z + \tilde{z}), \quad v = -(\tilde{\eta} + \eta) e^{-i\tilde{\phi} + \phi} \sec(z + \tilde{z}). \quad (35) \]

Here, \(\xi, \tilde{\xi}, \eta \) and \(\tilde{\eta} \) determine the soliton velocity and amplitude, respectively, while \(\alpha, \beta, \tilde{\alpha} \) and \(\tilde{\beta} \) give the initial position and phase of the soliton. In what follows, we plot the graph for \(u(x,t) \) in order to analyze the solutions (35). Figure 1 and Figure 2 are the imaginary part and real part of \(u(x,t) \), respectively. From the two solution curves, we can see that the difference between the real and imaginary part.

In the same way, we drop the solution curves of \(v \) for Figure 3 and Figure 4.

Figure 1. The soliton solution curve of imaginary part of \(u(x,t) \) for \(\eta = 0.01, \tilde{\eta} = 0.5, \xi = 0.05, \tilde{\xi} = 0.07, \alpha = 0.2, \tilde{\alpha} = 0.4, \beta = 0.6, \tilde{\beta} = 0.9, x \in [-2,2], t \in [-6,6] \).

Figure 2. The soliton solution curve of real part of \(u(x,t) \) for \(\eta = 0.01, \tilde{\eta} = 0.5, \xi = 0.05, \tilde{\xi} = 0.07, \alpha = 0.2, \tilde{\alpha} = 0.4, \beta = 0.6, \tilde{\beta} = 0.9, x \in [-2,2], t \in [-6,6] \).
Figure 3. The soliton solution curve of imaginary part of $v(x,t)$ for $\eta = 0.01$, $\bar{\eta} = 0.5$, $\xi = 0.05$, $\bar{\xi} = 0.07$, $\alpha = 0.2$, $\bar{\alpha} = 0.4$, $\beta = 0.6$, $\bar{\beta} = 0.9$, $x \in [-2,2]$, $t \in [-6,6]$.

Figure 4. The soliton solution curve of real part of $v(x,t)$ for $\eta = 0.01$, $\bar{\eta} = 0.5$, $\xi = 0.05$, $\bar{\xi} = 0.07$, $\alpha = 0.2$, $\bar{\alpha} = 0.4$, $\beta = 0.6$, $\bar{\beta} = 0.9$, $x \in [-2,2]$, $t \in [-6,6]$.

From the graphs, it is shown that u and v have the similar solution form. The difference exists between the real and imaginary part. In fact, we chose different parameters, and the solution curves between the real part and imaginary part had corresponding changes.

Acknowledgements

The authors acknowledge the support by National Natural Science Foundation of Chi-
na (Project No: 11301149), Henan Natural Science Foundation For Basic Research under Grant No: 162300410072, doctor Foundation (D2015001) and Young backbone teachers in Henan province.

References
Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact am@scirp.org