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Abstract 
An ordered set W of vertices of a graph G is called a resolving set, if all the vertices of G are uni-
quely determined by the vector of distances to the vertices in W. The metric dimension of G is the 
minimum cardinality of a resolving set of G. A resolving set W for G is fault-tolerant if W\{v} is also 
a resolving set, for each v in W, and the fault-tolerant metric dimension of G is the minimum car-
dinality of such a set. In this paper we determine the metric dimension and fault-tolerant metric 
dimension problems for the graphs of certain crystal structures. 
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1. Introduction 
Let G be a connected graph with vertex set V and edge set E. The distance d(u, v) between two vertices u, v ∈ V is 
the length of a shortest path between them. Let { }1 2, , , kW w w w=   be an ordered set of vertices of G and let v be 
a vertex of G. The representation r(v|W) of v with respect to W is the k-tuple ( ) ( ) ( )( )1 2, , , , , , kd v w d v w d v w . 
Then W is a resolving set for G if and only if no two vertices of G have the same representation with respect to 
W. A resolving set of minimum cardinality is called a basis for G and this cardinality is the metric dimension of 
G, denoted by β(G). Note that wi is the only vertex of W for which the ith co-ordinate of its representation with 
respect to W is 0. Therefore, when checking if W is a resolving set for G, it suffices to consider pair of vertices x, 
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y ∈ V\W. A resolving set W for G is fault-tolerant if W\{v} is also a resolving set, for each v in W. A 
fault-tolerant resolving set of minimum cardinality is called a fault-tolerant metric basis for G and this cardinal-
ity is the fault-tolerant metric dimension of G, denoted by β′(G). 

Slater [1] introduced the concept of a resolving set for a connected graph which was also independently dis-
covered by Harary and Melter [2]. Melter et al. [3] studied the metric dimension problem for grid graphs in-
duced by lattice points in the plane when the distances are measured in the L1 and L∞ metrics. Khuller et al. [4] 
have proved that the metric dimension of a d-dimensional grid is d, generalizing the result of Melter et al. [3]. 
They have obtained a linear time algorithm to find the metric dimension of trees. They have considered graphs 
that require only a few landmarks and have shown that paths are the only graphs with β = 1. Further they have 
shown that a graph G with β(G) = 2 can have neither K5 nor K3;3 as a subgraph. By extending this they have 
stated that a graph G with β(G) = k cannot have 

2 1kK
+

 as a subgraph. Using these facts they have conjectured 
that graphs having β(G) = 2 might be planar, but have exhibited a non-planar graph with β(G) = 2. It is also 
shown that the metric dimension of a graph with n nodes can be approximated in polynomial time within a fac-
tor of O(logn). 

Hernando et al. [5] make a general study of the metric dimension of Cartesian products of graphs. Part of their 
motivation for studying the metric dimension of Cartesian products is that in two of the applications, namely 
Mastermind and coin weighing, the graphs that arise are Cartesian products. It was noted in [6] that determining 
the metric dimension of a graph is an NP-hard problem. Manuel et al. [7] have shown that the problem remains 
NP-complete for bipartite graphs. This problem has been studied for trees, multi-dimensional grids [4], Petersen 
graphs [8], torus networks [9], Benes networks [7], honeycomb networks [10], enhanced hypercubes [11], cir-
culant networks [12], circulant and Harary graphs [13]. 

The metric dimension concepts have some applications in chemistry for representing chemical components, 
the navigation of robots in networks [4], image processing and pattern recognition. Interconnection networks are 
designed for use at different levels within and across computer systems to meet the operational demands of var-
ious application areas. In Chapter 18 of Parallel and Distributed Computing Handbook, by Albert Y. Zomaya, 
Stojmenović [14] suggests a number of open problems for various interconnection networks. One of them is 
about designing new architectures. He writes: “Designing new architectures remains an area of intensive inves-
tigation given that there is no clear winner among existing ones”. Motivated by this statement we aim at defining 
and constructing new architectures and we begin our search in the field of chemical structures. 

In this paper we consider graphs of certain crystal structures and determine the metric dimension and fault to-
lerant metric dimension. 

2. Crystal Structures 
The physical structure of solid materials of engineering importance depends mainly on the arrangements of the 
atoms, ions, or molecules that make up the solid and the bonding forces between them. If the atoms or ions of a 
solid are arranged in a pattern that repeats itself in three dimensions, they form a solid that is said to have a 
crystal structure and is referred to as a crystalline solid or crystalline material. The atomic arrangement or crys-
talline structure of a material is important in determining the behavior and properties of a solid material. Exam-
ples of crystalline materials are metals, alloys, and some ceramic materials. The unit cell is the smallest structur-
al unit or building block that can describe the crystal structure. Repetition of the unit cell generates the entire 
crystal. In this paper, we investigate the metric dimension and fault-tolerant metric dimension problems for the 
graphs bismuth tri-iodide, lead chloride and quartz (crystalline SiO2). 

2.1. The Graph of Bismuth Tri-Iodide 
Bismuth tri-iodide (BiI3) is an inorganic compound. It is the product of the reaction of bismuth and iodine, 
which once was of interest in qualitative inorganic analysis. Layered BiI3 crystal is considered to be a 
three-layered stacking structure, where bismuth atom planes are sandwiched between iodide atom planes, which 
form the sequence I-Bi-I planes. The periodic stacking of three layers forms rhombohedral BiI3 crystal with R-3 
symmetry [15] [16]. The successive stacking of one I-Bi-I layer forms hexagonal structure with symmetry [17] 
[18]. A single crystal of BiI3 has been synthesized by Nason and Keller [19]. Figure 1 shows one unit of bis-
muth tri-iodide. 

The graph of a single unit of bismuth tri-iodide contains six 4-cycles of which two are on the top, two are in  
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Figure 1. One unit of bismuth tri-iodide.                 

 
the middle and two at the bottom. The unit cells of bismuth tri-iodide can be arranged either linearly or in a 
sheet form. A linear arrangement with m unit cells is called an m-bismuth chain; mn unit cells arranged into m 
rows and n columns is called an m × n bismuth sheet. 

We first obtain a lower bound for the metric dimension of an m-bismuth chain. 
Lemma 1. Let G be an m-bismuth chain. Then β(G) ≥ 7m + 5. 
Proof. The two 2-degree vertices of each 4-cycle are equidistant from every vertex of G. So one of them must 

belong to any resolving set. Similarly the two 1-degree vertices incident with a common vertex are equidistant 
from every vertex of G. So one of them must belong to any resolving set. Hence β(G) ≥ 7m + 5. 

Our next result realizes the lower bound obtained in Lemma 1. 
Theorem 1. Let G be an m-bismuth chain. Then β(G) ≤ 7m + 5. 
Proof. The cycles in an m-bismuth chain are listed as T

jC , M
kC  and B

jC , 1 2j m≤ ≤  and 1 1k m≤ ≤ + . 
Let pi, qi, 1 2i m≤ ≤ + , T

j jx C∈ , M
k ky C∈  and B

j jz C∈ , 1 2j m≤ ≤  and 1 1k m≤ ≤ +  be the vertices as 
indicated in Figure 2. We claim that { }, , , , :1 2,1 2 ,1 1i i j k jW p q x y z i m j m k m= ≤ ≤ + ≤ ≤ ≤ ≤ +  is a resolv-
ing set. Let u, v ∈ V\W. 

Case 1: , T
ju v C∈ , for some j, 1 2j m≤ ≤ . 

If u and v are adjacent, then T
j jx C∈  resolves them. If u and v are non-adjacent in T

jC , then they are equi-
distant from xj. In this case either xj–1 or xj+1 resolves u and v. This argument holds for 2 2 1j m≤ ≤ − . If j = 1 or 
2m, then 1 1

My C∈  or 1 1
M

m my C+ +∈  resolves u and v respectively. The argument is similar if , B
ju v C∈  or M

kC , 
1 2j m≤ ≤  and 1 1k m≤ ≤ + . 

Case 2: T
ju C∈  and M

kv C∈ . 
In this case u and v are resolved by qs, 1 2s m≤ ≤ + . The argument is similar if M

ku C∈  and B
jv C∈  or 

T
ju C∈  and B

jv C∈ . In both cases a leaf vertex resolves u and v. 
Lemma 1 and Theorem 1 solve the metric dimension problem for an m-bismuth chain completely. Thus we 

have the following result. 
Theorem 2. Let G be an m-bismuth chain. Then β(G) = 7m + 5. 

Fault-Tolerant Metric Dimension 
In the proof of Theorem 2, we constructed a metric basis W consisting of a 2-degree vertex from each 4-cycle 
and a leaf vertex from each of the pair of leaf incident with a 4-cycle. 

Let W* be the set of all 2-degree vertices and all the leaves vertices. Clearly W* is a resolving set being a su-
perset of the constructed resolving set W. 

It is easy to see that representations of any two vertices u, v ∈ V\W* will differ in at least two distinct places. 
Hence W* is a fault-tolerant metric basis. 

Theorem 3. Let G be an m-bismuth chain. Then ( ) 14 10G mβ ′ = + . 
We state the results for m × n-bismuth sheet. 
Theorem 4. Let G be an m × n-bismuth sheet. Then ( ) ( )3 4 1G mn m nβ = + + + . 
Theorem 5. Let G be an m × n-bismuth sheet. Then ( ) ( )6 8 2G mn m nβ ′ = + + + . 
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Figure 2. A 3-bismuth chain.                                             

2.2. The Graph of Lead Chloride 
Lead chloride is a halide crystal which occurs naturally in the form of mineral cotunnite. It is used in the pro-
duction of infra red transmitting glass and basic chloride of lead known as patteson’s white lead, perry, orna-
mental glass called aurene glass, stained glass. It is also used as an intermediate in refining bismuth (Bi) ore, it is 
used in the synthesis of organometallic, lead titanate and barium titanate. The structure of lead chloride is or-
thorhombic dipyramidal. 

The graph of a single unit of lead chloride is obtained from that of bismuth tri-iodide by joining just one 
2-degree vertex of each of the 4-cycles to a new vertex. 

As in the case of bismuth tri-iodide, chains and sheets of lead chloride are defined. 
Lemma 2. Let G be an m-lead chloride chain. Then ( ) 2 4G mβ ≥ + . 
Proof. Every pair of 1-degree vertices incident with a common vertex are equidistant from every vertex of the 

graph. Hence at least one vertex must belong to any resolving set. Hence ( ) 2 4G mβ ≥ + . 
We adopt a labeling scheme in which vertices are listed level wise (levels 1 to 7) from top to bottom. The no-

tation k
il  will depict the ith vertex in level k. 

Theorem 6. Let G be an m-lead chloride chain. Then ( ) 2 4G mβ ≤ + . 
Proof. Let pi, qi, 1 2i m≤ ≤ + , be the 1-degree vertices as shown in Figure 3. We claim that  
{ }, :1 2i iW p q i m= ≤ ≤ +  is a resolving set. Let u, v ∈ V\W. 

Case 1: u, v belong to the same level. 
In view of the symmetry of the graph, it is enough to consider vertices in levels 1 to 4. Any two vertices on 

level 1 are resolved by either 1
i ip l=  or 1

j jp l= . Now we consider any two vertices on level 2. Without loss of 
generality let us assume that 2

iu l= , 2 3i m≤ ≤  and 2
i jv l += , 1 3 1j m≤ ≤ + . In this case either 2

1 1p l=  or 
2

2 3 2m mp l+ +=  resolves u and v. In fact if i = 3s – 1, 1 ≤ s ≤ m, then ( ) ( )2
1, 4 2 3d u l i= −  and 

( ) ( ) ( )2 2
1 1, , ,d v l d u v d u l= + . Similar argument will hold if i = 3s or i = 3s +1. The argument is similar for any 

two vertices in the level 3 except for the pairs of vertices ( )3 3
1 3,l l  and ( )3 3

3 1 3 3,m ml l+ + . These pairs are equidistant, 
respectively, from 2

1l  and 2
3 2ml + . The pair ( )3 3

1 3,l l  is resolved by 2
3 2ml +  and the pair ( )3 3

3 1 3 3,m ml l+ +  is resolved 
by 2

1l . The similar argument holds for the level 4. 
Case 2: u, v belong to different levels. 
Different level vertices are resolved by any pi or qj, 1 ,i j m≤ ≤ . 
Lemma 2 and Theorem 6 solve the metric dimension problem for an m-lead chloride chain completely. Thus 

we have the following result. 
Theorem 7. Let G be an m-lead chloride chain. Then ( ) 2 4G mβ = + . 
Theorem 8. Let G be an m-lead chloride chain. Then ( ) 4 8G mβ ′ = + . 

2.3. The Graph of Quartz (Crystalline SiO2) 
Quartz is a crystalline form of silicon dioxide with formula SiO2. A quartz network can be built in various ways. 
The quartz network of dimension 1 is a 12-cycle. The quartz network of dimension n consists n2 number of 
12-cycles and these 12-cycles are arranged in the shape of a rhombus. Figure 4 depicts a quartz network of  
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Figure 3. One unit of lead chloride.                                           

 

 
Figure 4. A quartz network of dimension 3 with basis = {a, b}.                  

 
dimension 3. 

Theorem 2.11. Let G be the graph of quartz. Then β(G) = 2.  
Proof. It is easy to see that {a, b} is a resolving set. This follows by using the underlying binarytree structure 

rooted at a. Vertices at different levels are resolved by the root and vertices at the same level are resolved by b. 
Theorem 2.12. Let G be the graph of quartz. Then β′(G) = 4.  

3. Conclusion 
In this paper we have solved the metric dimension and fault-tolerant metric dimension problems for the graphs of 
certain crystal structures. This problem is under investigation for certain nanostructures.  
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