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Abstract 
We study the uncertainty relation for three quantum systems in the N-dimensional space by using 
the virial theorem (VT). It is shown that this relation depends on the energy spectrum of the sys-
tem as well as on the space dimension N. It is pointed out that the form of lower bound of the in-
equality, which is governed by the ground state, depends on the system and on the space dimen-
sion N. A comparison between our result for the lower bound and recent results, based on infor-
mation-theoretic approach, is pointed out. We examine and analyze these derived uncertainties 
for different angular momenta with a special attention made for the large N limit. 
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1. Introduction 
Generally, uncertainty relations form an important part in the foundations of quantum mechanics and play a cru-
cial role in the development of quantum information and computation [1] [2]. These relations establish the exis-
tence of an irreducible lower bound for the uncertainty in the results of simultaneous measurements of non- 
commuting observables. In other words, the precision with which incompatible physical observables can be 
prepared is limited by an upper bound. In particular, the Heisenberg uncertainty principle (HUP) [3] represents 
one of the fundamental properties of a quantum system. It gives an irreducible lower bound on the uncertainty in 
the outcomes of simultaneous measurements of position and momentum. Originally, HUP came from a thought 
experiment about measurements of the position and momentum, but later Kennard [4] derived a mathematical 
formulation of HUP by considering inherent quantum fluctuations of position and momentum without any ref-
erence to measurement process and which was then generalized by Robertson [5] for arbitrary incompatible ob-
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servables. Recently, Fujikawa [6] proposed a universally valid uncertainty relation which incorporated both the 
intrinsic quantum fluctuations and measurement effects. There has been a continual interest in utilizing HUP in 
different settings. For example, it has been used in the study of central potentials [7]-[11] and others consider its 
connection to geometry [12] [13]. Furthermore, it has been generalized to describe a minimal length as a minim-
al uncertainty in position measurement [14]-[18] through the modification of Heisenberg commutation relation 
into a generalized form. The existence of a minimal length has long been suggested in quantum gravity and 
string theory [19]-[24], and has been proposed to describe, as an effective theory, non-point like particles like 
hadrons, quasi-particles or collective excitations [25]. In its original formulation, HUP is expressed in terms of 
variances of position and momentum of a particle. Such variances do not necessarily exist, and if they do, they 
describe the quantum probability distribution relative to a specific point of the probability domain. Therefore, 
various alternative formulations have been suggested by the use of information-theoretic uncertainty measures 
like the Shannon entropy [26] [27], Renyi entropies [28] [29], Tsallis entropies [30], entropic moments [31] [32] 
and Fisher information [32]-[36]. During the past years, the generalization of three dimensional quantum prob-
lems to higher space dimensions receives a considerable development in theoretical and mathematical physics. 
For example, the central potentials, as hydrogen-like atoms [37]-[42] and harmonic oscillators [43]-[46] are be-
ing used as prototypes for other purposes in N-dimensional physics. Furthermore, the confined harmonic oscil-
lator [45] and the confined hydrogen atom [47] have been discussed. The purpose of the present paper is to de- 
rive and discuss the uncertainty product 2 2r P  for three quantum systems in N-dimensional space: the 
harmonic oscillator, the hydrogen atom, and a confined particle in an impenetrable symmetrical spherical well. 
The lower bound for this product is analyzed and compared with other previous results that have been obtained 
by other methods. Our method is based on the virial theorem applied to the harmonic oscillator and the hydrogen 
atom systems to obtain the uncertainty product, while for the spherical well, the zeros of spherical Bessel func-
tions are used for finding numerical results for the uncertainty product. Over the last years, the virial theorem 
technique has been employed in the study of physical quantities [48] [49]. Interesting features for the lower 
bound are discussed with a special attention explored for the large space dimension limit for the spherical well 
system. The organization of the paper is as follows: In section 2, we outline theoretical background. Then, we 
evaluate the uncertainty product for the harmonic oscillator quantum system in Section 3, for the hydrogen atom in 
Section 4, and for the spherical well in Section 5. We present conclusions and discussion of our work in Section 6. 

2. Theoretical Background 
The quantum mechanical state of a particle in the N-dimensional space with a central potential ( )V r  is go-
verned by Schrödinger equation (setting 1m= = ) 

( ) ( ) ( )21
2 N V r r E rψ ψ − ∇ + =  

                              (1) 

where 2
N∇  is the Laplacian operator on NR  and is given by [50] 

2
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− −∂ ∂ Λ ∇ = + ∂ ∂ 
                               (2) 

with 2Λ  is a partial differential operator which depends on the angular coordinates 

( ) ( )1 2 3 1 1, , , , N Nθ θ θ θ − −= Ω  

as 

( )

( )
( )

1
112

21 1

1

sin
sin

i N
N iN i

ii i
i i

jj

θ
θ

θ θθ

+ −
− −−

= −

=

 ∂ ∂
Λ =  ∂ ∂ 

∑
∏

,                       (3) 

and satisfies [50] 

{ } ( ) ( ) { } ( )2
1 1, ,2N Nm mY N Y− −Λ + −Ω Ω=

 

  ,                        (4) 

where { } ( )1, NmY −Ω


 are the hyperspherical harmonics characterized by ( )1N −  quantum numbers 
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( )1 2 3 2, , , , Nm m m m −   with the condition 1 2 2 0Nm m m −≥ ≥ ≥ ≥ ≥  . The separation of variables yields the 
radial part of Schrödinger equation that satisfies 

( ) ( ) ( ) ( )
2

2 2

21 d 1 d ,
2 2 dd 2

NN V r R r ER r
r rr r

+ − −
− − + + = 
 

                     (5) 

which, by letting ( ) ( )
1

2
N

u r r R r
−

= , becomes 

( ) ( ) ( ) ( )
2

2 2

11 d
2 d 2

L L
V r u r Eu r

r r
+ 

− + + = 
 

.                        (6) 

The above equation is the analogue to the one-dimensional Schrödinger equation with the grand orbital angu-
lar momentum, L given by 

3
2

NL −
= +                                      (7) 

It is straight forward to write Equation (6) as 

( ) ( ) ( )
2

2
1 d
2 d effV r u r Eu r

r
 
− + = 
 

,                             (8) 

where the effective potential, ( )effV r  is given by 

( ) ( ) ( ) ( ) ( )
2 2

2 3 1
2 8eff

N N N
V r V r

r r
+ − − − 

= + + 
 

  .                      (9) 

It is worth to note, as seen from Equation (7), the isomorphism between the space dimension N and the orbital 
angular momentum ℓ, which means that an orbital angular momentum ( )1+  in space dimension N is equiva-
lent to an orbital angular momentum ℓ in a space dimension ( )2N + . It is interesting to realize, as seen from 
Equation (9), that a particle is subject to two additional forces besides the force due to the external potential 
( )V r : The centrifugal force coming from the angular momentum term ( first term in brackets of Equation (9)) 

and a quantum fictitious force associated with the quantum-centrifugal potential (second term in brackets of 
Equation (9)) which has a purely dimensional origin. This potential is attractive for 2N =  and repulsive for 

4N ≥ . 

3. Isotropic Harmonic Oscillator in N-Dimensions 
The potential for a harmonic oscillator is given by 

( ) 2 21
2

V r rω=                                     (10) 

The virial theorem states that 

2 T r V= ⋅∇


 ,                                   (11) 

where T is the kinetic energy and the average is taken over an energy eigenstate of the system. The substitution 
of Equation (10) into Equation (11) gives 

1
2 nNT V E= = ,                                  (12) 

where the energy eigenvalues, nNE  are given by [45], with ( )1=  

2
2 2nN r
N NE n nω ω   = + + = +   

   
 .                          (13) 

Using 2 2T P=  with 1m = , and with the help of Equations (12) and (13), we get 
2

2 2 21 1
2 2 4 nN

P r Eω =  
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and thus the uncertainty product is 
2

2 2

2
NP r n = + 

 
,                                 (14) 

which obviously increases with both the quantum number n and the space dimension N. It is observed that the 
above product does not depend on the strength of the potential. The lower bound corresponds for the ground 
state ( )0n =  and therefore, one may write the inequality for the uncertainty product, namely 

2
2 2

4
NP r ≥ ,                                    (15) 

which saturates (equality is achieved) for nodeless harmonic oscillator wave function (ground state). Our results 
in Equation’s (14) and (15) are the same as those obtained by means of the Fisher’s information entropies [32] 
[33], by Stamp’s principle [51] and by Shannon’s entropy [26]. Our method is more straight forward and simpler. 
The lower bound in Equation (15) reduces to the three-dimensional one, namely 9/4. Furthermore, our result in 
Equation (14) shows that the lower bound of the uncertainty product (for the ground state) in N-dimension is the  

same as the lower bound of the 3
2

thN − 
 
 

 excited state in the three-dimensional space. In addition, the uncer-  

tainty product for a state with angular momentum ( )1+  in N-dimension has the same value as that for a state 
with angular momentum ℓ in a space dimension ( )2N + . 

4. The Hydrogen Atom in N Dimensions 
In this case, the potential is the coulomb potential, 

( )
2

04π
eV r

rε
= −                                     (16) 

The application of the virial theorem gives 2V T= −  and using nNH E T V= = +  yields 
nNT E= −  and 2 nNV E= . Therefore, 

2 2
2

0

2
2 4π nN

P e E
rε

= − . 

The energy eigenvalues for the eigenstates of a hydrogen atom in N dimensions are given by [37] 

2 2
1 1

2 3
2

nNE
a Nn

= −
− + 

 

,                               (17) 

where a is Bohr radius. Therefore, 2P  is readily obtained, 

2
2 2

1 12 2
3

2

nNP T E
a Nn

= = − =
− + 

 

.                         (18) 

In order to find the average of the moments of position of different powers we use Kramer’s relation in N- 
dimensions [52] 

( ) ( )21 2 2 2
2

1 2 1 2 2
43

2

s s ss sr s a r N s a r
Nn

− −+  − + + + − − − + 
 

                (19) 

The successive application of the above relation for 0,1, 2s =  and after some algebra we get 

( ){ }
2 22

22 3 3 15 3 2 2 7
2 2 2 4
a N Nr n n N

 − −   = + + − + − −    
     

                  (20) 



S. M. AL-Jaber 
 

 
512 

The above relation and Equation (18) yield the uncertainty product for position and momentum; 

( ){ }
2

22 2 1 320 3 2 2 7
8 2

Nr P n N
 − = + − + − −  

   
                      (21) 

It is clear to notice that the uncertainty product increases as the quantum number n increases and decreases as 
the orbital angular momentum ℓ increases. One can easily verify that the uncertainty product increases as the 
space dimension increases. 

The lower bound of the above uncertainty is achieved by setting 1n =  and 0= , which means for ground 
state, with the result 

( )2 2 1 1
4

r P N N= +                               (21) 

In what follows, we will consider the uncertainty product given in Equation (20) for some special cases: 
1) For the three-dimensional case ( 3N = ), our result reduces to a previous reported result [48], namely 

( )( )2 2 21 5 1 3 1
2

r P n= + − +  .                          (22) 

2) For any state n with ℓ has its maximum value ( )1n − , the uncertainty product takes the form 

( )2 2 1 31
2 2

Nr P n N n − = + − + 
 

                         (23) 

In this case, the uncertainty product has its minimum value since ℓ has its maximum value, which means the 
certainty has its highest value. This result is a natural consequence of the quantum centrifugal potential which 
tries to repel the particle away from the nucleus. In fact, it was pointed out by AL-Jaber [37] that the radial 
probability density has its maximum value when the orbital angular momentum has its maximum value ( )1n − . 
This implies that the particle is more localized at this value of angular momentum and therefore the certainty is 
higher or the uncertainty is lower. 

3) For any state n with 0= , the uncertainty product takes the form, 

( ) ( ) ( )2 2 1 15 3 5 4
2 2

r P n n N N N = + − + − −  
,                   (24) 

which corresponds to the maximum value of the uncertainty product, since ℓ has its minimum value. One may 
expect this result in the light of what we mentioned in the previous case. 

4) The large space dimension limit: For large N, Equation (21) gives us the result 
2

2 2

4
Nr P = ,                                 (25) 

which is equal to the lower bound for the ground state of the harmonic oscillator in N-dimensions as we found in 
the previous section. This clearly shows that in the large N limit the lower bound for any state becomes saturated 
and equals to that of the ground state lower bound of the harmonic oscillator. 

5) The uncertainty product difference between a state with ( ), 0n =  and ( ), 1n n= − . This is achieved by 
subtracting Equation (23) from Equation (24) with the result 

( ) ( )2 2 2 2

, 0 , 1

3 1 3
2n n n

r P r P n n N
= = −

−=− + −
 

                  (26) 

The above equation gives, for a given state n, the uncertainty product difference between minimum and 
maximum angular momenta for that state. This difference increases with both n, and N. This shows how much 
the particle becomes delocalized due to maximum orbital angular momentum. 

6) Spherically symmetric infinite potential well 
In this section, we consider a particle that is confined in an infinite impenetrable spherical well so that the po-

tential is given by 
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( )
0 r a

V r
r a
≤

= ∞ >
                                (27) 

The substitution of the above potential into Equation (6) and letting 2 2K E= , gives 

( )
2

2 2 2
2

d 1 0
d

ur K r L L u
r

 + − + =  ,                         (28) 

whose solution is the spherical Bessel function of order L, (the second solution has been dropped out since it di-
verges at the origin) and thus, the radial wave function is 

( ) ( ) ( )3 2N
L LR r A r j Kr−= .                            (29) 

where AL is a normalization constant. The allowed energies can be obtained by requiring ( ) 0Lj Ka = , and thus  

nL nLK aχ= , with nLχ  being the thn  zero of the spherical Bessel function of order 3
2

NL − = + 
 
 . The  

successive zeros of Lj  depend on the order L, which depends on both ℓ and N. Therefore, the energies depend 
on ℓ and N, so that 

2

22
n N

n NE
a

χ
= 



.                                  (30) 

The integer n is the principal quantum number, which is the number of the root of spherical Bessel function in 
order of increasing magnitude. Since 2 2 2P T E= = , we get 

2
2

2
n NP
a
χ

=                                        (31) 

On the other hand, the average value, 2r  is given by 

( )2 2 4 2
0

2 2
0

2d dN
a a

r A u r r A r j Kr r= =∫ ∫ 

                          (32) 

Following Grypeos [48], we get 

( ) ( )2
2

2

2 3 2 1
1

3 2 nL

L Lar
χ

+ − 
= + 

 
,                             (33) 

which, upon the substitution for L from Equation (7), becomes 

( ) ( )2
2

2

4 2 411
3 2 n N

N N Nar
χ

 + − + − 
= +  

   

 

.                       (34) 

The uncertainty product is now readily obtained using Equations (31) and (34), namely 

( ) ( ){ }2 2 21 1 4 2 4
3 2n Nr P N N Nχ = + + − + −  



  .                    (35) 

Again, the uncertainty product increases with both ℓ and N. The lower bound limit corresponds to ground 
state, 0= , and the first zero of spherical Bessel function of order ( )3 2N − . In this case, we have 

( ) ( )2 2 2
3 2

1 1 4
3 2Nr P N Nχ −
 = + −  

.                           (36) 

The above result shows that the uncertainty product increases with space dimension N, but is independent of 
the size of the well. It is instructive to calculate the above lower limit for different values of space dimension 
and compare its values with those for the harmonic oscillator and the hydrogen atom. This is shown in Table 1. 

The numerical values for the lower bound for the three systems, presented in Table 1, show that the harmonic 
oscillator has the smallest values for all space dimension. We also note that the hydrogen atom has higher lower 
bound value than that of the spherical well for space dimension 3 and 4, but beyond that the spherical well has 
higher values than those for hydrogen atom. 
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Table 1. Lower bound for the uncertainty product for the spherical well, harmonic oscillator, and the hydrogen atom as func-
tion of space dimension N. 

N ( )3 2Nχ −  Spherical well Hydrogen atom Harmonic oscillator 

3 π 2.789 3 2.25 

4 3.8317 4.894 5 4 

5 4.4934 7.5635 7.5 6.25 

6 5.1356 10.7915 10.5 9 

7 5.7635 14.5725 14 12.25 

8 6.3802 18.9021 18 16 

9 6.9879 23.7770 22.5 20.25 

10 7.58834 29.1943 27.5 25 

15 10.5128 64.3398 60 56.25 

20 13.3543 112.7790 105 100 

30 18.9 249.07 232.5 225 

40 24.338 437.446 410 400 

50 29.7105 677.571 637.5 625 

100 56.0729 2648.056 2525 2500 

150 82.037 5893.356 2662.5 2625 

200 107.808 10407.52 10050 10000 

300 159.033 23230.498 22575 22500 

400 210.0113 41101.582 40100 40000 

 
It is interesting to check the large N limit of the lower bound of these systems: For the hydrogen atom, the 

lower bound behaves as 2 4N  which coincides with that of the harmonic oscillator. For the spherical well, the 
limit of the first zero for high order of jν  is ν . In our case, this limit is just 2N  and therefore, Equation (36) 
gives a limit of 2 4N , which is again the lower bound of the harmonic oscillator. We conclude that, in large N 
limit, both the hydrogen atom and the spherical well have lower bound values that converge to the same value 
which is equal to the lower bound of the harmonic oscillator. Therefore, the lower bound of the uncertainty 
product for those systems saturate in the large space dimension limit. 

5. Conclusion 
In this paper, we have derived the uncertainty product for position and momentum for harmonic oscillator, hy-
drogen atom, and spherically symmetric infinite well in N-dimensional space. We have found that this product 
depends on the orbital angular momentum and space dimension but independent of the strength of the potential. 
Our derivation relies on the virial theorem and Kramer’s relation for the harmonic oscillator and the hydrogen 
atom. Our results for the lower bound of the uncertainty product for each of the three systems agree with re-
ported results for the three dimensional case. An interesting feature of our results is that in the large space di-
mension limit, the lower bound of the product for the hydrogen atom and the spherical well converge to that for 
the harmonic oscillator, namely 2 4N , which means that the product saturate (for the ground state) in the large 
N limit. We have examined some features of the uncertainty product: For the harmonic oscillator, we have found  

that the lower limit of the product in N-dimensions has the same value as that for the 3
2

thN − 
 
 

 excited state in  

three dimensions. Furthermore, the product for a state with angular momentum ( )1+  in N-dimensions is the 



S. M. AL-Jaber 
 

 
515 

same as that for a state with angular momentum ℓ in ( )2N +  dimensions. For the hydrogen atom, we have 
found that the lower bound of the uncertainty product has the value ( )1 4N N + , which reduces to 3 in the 
three dimensional space. In addition, the lower bound decreases as ℓ increases, and reaches its lowest value 
when ℓ gets to its maximum value, ( )1n − . This is expected since the radial probability distribution function is 
maximum at the maximum value of angular momentum, and thus the particle is expected to be more localized. 
Furthermore, we have derived the difference between the lower bounds for a state with 0=  and another with 

1n= − . This difference gives how much the particle becomes localized as the angular momentum increases 
from its lowest value to its maximum one. For the spherical infinite well, the lower bound is calculated by find-
ing the first zero of spherical Bessel function of order ( )3 2N − . Due to the increase of the values of the zeros 
with the increase of the order of spherical functions, the lower bound of the product increases with the space 
dimension, N. It is observed that the value of the first zero approaches 2N  in the large N limit, and therefore, 
the lower bound becomes saturated with a value 2 4N . Numerical values of the lower bound for the three sys-
tems are calculated and presented in Table 1. 
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