On a Class of Supereulerian Digraphs

Khalid A. Alsatami¹, Xindong Zhang², Juan Liu², Hong-Jian Lai³

¹Department of Mathematics, College of Science, Qassim University, Buraydah, KSA
²College of Mathematics Sciences, Xinjiang Normal University, Urumqi, China
³Department of Mathematics, West Virginia University, Morgantown, WV, USA

Email: kaf043@gmail.com, liaoyuan1126@163.com, liujuan1999@126.com, hongjianlai@gmail.com

Received 4 January 2016; accepted 26 February 2016; published 29 February 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

The 2-sum of two digraphs \(D_1 \) and \(D_2 \), denoted \(D_1 \oplus D_2 \), is the digraph obtained from the disjunct union of \(D_1 \) and \(D_2 \) by identifying an arc in \(D_1 \) with an arc in \(D_2 \). A digraph \(D \) is supereulerian if \(D \) contains a spanning eulerian subdigraph. It has been noted that the 2-sum of two supereulerian (or even hamiltonian) digraphs may not be supereulerian. We obtain several sufficient conditions on \(D_1 \) and \(D_2 \) for \(D_1 \oplus D_2 \) to be supereulerian. In particular, we show that if \(D_1 \) and \(D_2 \) are symmetrically connected or partially symmetric, then \(D_1 \oplus D_2 \) is supereulerian.

Keywords

Supereulerian, Digraph 2-Sums, Arc-Strong-Connectivity, Hamiltonian-Connected Digraphs

1. Introduction

We consider finite graphs and digraphs, and undefined terms and notations will follow [1] for graphs and [2] for digraphs. Throughout this paper, the notation \((u, v)\) denotes an arc oriented from \(u \) to \(v \). A digraph \(D \) is strict if it contains no parallel arcs or loops; and is symmetric if for any vertices \(u, v \in V(D) \), if \((u, v) \in A(D)\), then \((v, u) \in A(D)\). If two arcs of \(D \) have a common vertex, we say that these two arcs are adjacent in \(D \). A directed path in a digraph \(D \) from a vertex \(u \) to a vertex \(v \) is called a \((u, v)\)-dipath. To emphasize the distinction between graphs and digraphs, a directed cycle or path in a digraph is often referred as a dicycle or dipath. A dipath \(P \) is a hamiltonian dipath if \(V(P) = V(D) \). A digraph \(D \) is hamiltonian if \(D \) contains a hamiltonian dicycle. An \((x, y)\)-hamiltonian dipath is a hamiltonian dipath from \(x \) to \(y \). A digraph \(D \) is hamiltonian-connected if \(D \) has an \((x, y)\)-hamiltonian dipath for every choice of distinct vertices \(x, y \in V(D) \).

As in [2], \(\lambda(D) \) denotes the arc-strong-connectivity of \(D \). A digraph \(D \) is strong if and only if \(\lambda(D) \geq 1 \). For \(X, Y \subseteq V(D) \), we define

\((X,Y)_D = \{(x,y) \in A(D) : x \in X \text{ and } y \in Y\}; \) and \(\partial_D^+(X) = (X, V(D) - X)_D \).

For a subset \(A' \subseteq A(D) \), the subdigraph is arc-induced by \(A' \) is the digraph \(D[A'] = (V', A') \), where \(V' \) is the set of vertices in \(V \) which are incident with at least one arc in \(A' \).

Let \(d_D^+(X) = \left| \partial_D^+(X) \right| \) and \(d_D^-(X) = \left| \partial_D^-(X) \right| \).

When \(X = \{v\} \), we write \(d_D^+(v) = \left| \partial_D^+(v) \right| \) and \(d_D^-(v) = \left| \partial_D^-(v) \right| \). Let \(N_D^+(v) = \{u \in V(D) - v : (v,u) \in A(D)\} \) and \(N_D^-(v) = \{u \in V(D) - v : (u,v) \in A(D)\} \) denote the out-neighbourhood and in-neighbourhood of \(v \) in \(D \), respectively. Vertices in \(N_D^+(v), N_D^-(v) \) are called the out-neighbours, in-neighbours of \(v \). Thus for a digraph \(D \) and an integer \(k \geq 0 \),

\[
\lambda(D) \geq k \text{ if and only if for any } W \text{ with } \emptyset \neq W \subset V(D), \left| \partial_D^+(W) \right| \geq k. \tag{1}
\]

Boesch, Suffel, and Tindell [3] in 1977 proposed the supereulerian problem, which seeks to characterize graphs that have spanning eulerian subgraphs. They indicated that this problem would be very difficult. Pulleyblank [4] later in 1979 proved that determining whether a graph is supereulerian, even within planar graphs, is NP-complete. Catlin [5] in 1992 presented the first survey on supereulerian graphs. Chen et al. [6] surveyed the reduction method associated with the supereulerian problem and their applications. An updated survey presenting the more recent developments can be found in [7].

It is natural to consider the supereulerian problem in digraphs. A digraph \(D \) is eulerian if it contains a closed ditrail \(W \) such that \(A(W) = A(D) \), or, equivalently, if \(D \) is strong and for any \(v \in V(D) \), \(d_D^+(v) = d_D^-(v) \). A digraph \(D \) is supereulerian if \(D \) contains a closed ditrail \(W \) such that \(V(W) = V(D) \), or, equivalently, if \(D \) contains a spanning eulerian subdigraph. Some recent developments on supereulerian digraphs are given in [8]-[12].

A central problem is to determine or characterize supereulerian digraphs. In Section 2, the \textbf{2-sum} \(D_1 \oplus D_2 \) of two digraphs \(D_1 \) and \(D_2 \) is defined, and some basic properties of 2-sums are discussed. We will observe that a 2-sum of two supereulerian (or even hamiltonian) digraphs may not be supereulerian. Thus it is natural to seek sufficient conditions on \(D_1 \) and \(D_2 \) for the 2-sum of \(D_1 \) and \(D_2 \) to be supereulerian. In the last section, we will present several sufficient conditions for supereulerian 2-sums of digraphs. In particular, we show that if \(D_1 \) and \(D_2 \) are either symmetrically connected or partially symmetric (to be defined in Section 3), then \(D_1 \oplus D_2 \) is supereulerian.

\section{The 2-Sums of Digraphs}

The definition and some elementary properties of the 2-sums of digraphs are presented in this section. A digraph is nontrivial if it contains at least one arc. Throughout this section, all digraphs are assumed to be nontrivial.

\textbf{Definition 2.1} Let \(D_1 \) and \(D_2 \) be two vertex disjoint digraphs, and let \(a_1 = (v_{11}, v_{12}) \in A(D_1) \) and \(a_2 = (v_{21}, v_{22}) \in A(D_2) \) be two distinguished arcs. The \textbf{2-sum} \(D_1 \oplus_{a_1,a_2} D_2 \) of \(D_1 \) and \(D_2 \) with base arcs \(a_1 \) and \(a_2 \) is obtained from the union of \(D_1 \) and \(D_2 - a_2 \) by identifying \(v_{11} \) with \(v_{21} \) and \(v_{12} \) with \(v_{22} \), respectively. When the arcs \(a_1 \) and \(a_2 \) are not emphasized or is understood from the context, we often use \(D_1 \oplus D_2 \) for \(D_1 \oplus_{a_1,a_2} D_2 \).

\textbf{Lemma 1} Let \(D_1 \) and \(D_2 \) be two vertex disjoint strong digraphs. Then

\[\lambda(D_1 \oplus D_2) \geq \min \{ \lambda(D_1), \lambda(D_2) \}. \]

\textbf{Proof.} Let \(k \geq 0 \) be an integer such that \(\min \{ \lambda(D_1), \lambda(D_2) \} = k \), and let \(\lambda(D_1 \oplus D_2) = k' \). We shall show that \(k' \geq k \). By (1), there exists a proper nonempty vertex subset \(X \subset V(D_1 \oplus D_2) \) such that \(\partial_{D_1 \oplus D_2}(X) = k' \). Let \(S = \partial_{D_1 \oplus D_2}(X) \). We argue by contradiction and assume that \(k' < k \).

By Definition 2.1, we have \(v_{11} = v_{21} \in V(D_1) \) and \(v_{12} = v_{22} \in V(D_2) \) in \(D_1 \oplus D_2 \). If \(X \cap V(D_i) \neq \emptyset \) and \(X \cap V(D_i) \neq \emptyset \), we obtain that \(v_{11} = v_{21} \notin X \) and \(v_{12} = v_{22} \notin X \), then \(X \cap V(D_i) \neq \emptyset \) and \(S = \partial_{D_i}(X) \). It follows by (1) that \(k' = |S| \geq \lambda(D_i) \geq k \), contrary to the assumption that \(k' < k \). Similarly, if \(X \cap V(D_i) = \emptyset \) and \(X \cap V(D_i) = \emptyset \), then \(X \subset V(D_1) \) and \(S = \partial_{D_2}(X) \), hence a contradiction to the assumption that \(k' < k \) is obtained from \(k' = |S| \geq \lambda(D_2) \geq k \).
Thus, we may assume that $X \cap V(D_1) \neq \emptyset$ and $X \cap V(D_2) \neq \emptyset$. Let $X' = X \cap V(D_1)$. Then X' is a proper nonempty subset of $V(D_1)$, and

$\partial D_1(X') \subseteq S$. It follows by (1) that $k' = |S| \geq \lambda D_1(X') \geq \lambda(D_1) \geq k$

contrary to the assumption that $k' < k$.

Example 2.1 The converse of Lemma 1 may not always stand, as indicated by the example below, depicted in Figure 1. Let $V(D_1) = \{v_{11}, v_{12}, v_{13}, v_{14}\}$ and $V(D_2) = \{v_{21}, v_{22}, v_{23}, v_{24}\}$. Let $A(D_1) = \{(v_{11}, v_{12}), (v_{13}, v_{12}), (v_{14}, v_{13}), (v_{14}, v_{12}), (v_{11}, v_{13})\}$ and

$A(D_2) = \{(v_{21}, v_{22}), (v_{23}, v_{22}), (v_{24}, v_{23}), (v_{24}, v_{22}), (v_{21}, v_{22})\}$. Let $a_1 = (v_{11}, v_{12})$ and $a_2 = (v_{21}, v_{22})$.

Then, it is routine to verify that $\lambda D_1(D_2) \geq 1$. While D_2 is strong, the digraph D_1 contains a vertex v_{11} with $d_{D_1}^+(v_{11}) = 0$, and so $\lambda(D_1) = 0$.

Lemma 2 A digraph D is not supereulerian if for some integer $m > 0$, $V(D)$ has vertex disjoint subsets $\{B_i\}_{i=1}^m$ satisfying both of the following:

i) $|N_D(B_i)| \leq m - 1$.

ii) $N_D(B_i) \subseteq B_i$, $\forall i \in \{1, 2, \cdots, m\}$.

Proof. By contradiction, we assume that both i) and ii) hold and D is supereulerian. Let S be a spanning eulerian subdigraph of D, then $B \subseteq V(S) = V(D)$ and $A(S) \subset A(D)$. Since S is eulerian, for any subset $X \subseteq V(S)$, it follows that $\partial D_1(X') = \partial D_2(X')$. Thus, by ii), we conclude that

$\partial D_1(B_j) \cap A(S) = \partial D_2(B_j) \cap A(S) \leq m - 1$. (2)

By i) and by (2), there must be a B_j with $j \in \{1, 2, \cdots, m\}$ such that $\partial D_1(B_j) \cap A(S) = \emptyset$, contrary to the assumption that $V(S) = V(D)$.

Lemma 2 can be applied to find examples of hamiltonian digraphs whose 2-sum is not supereulerian, as shown in Example 2.2 below.

Example 2.2 Let $n_1, n_2 \geq 3$ be integers and C_{n_1} and C_{n_2} be two vertex disjoint dicycles with length n_1 and n_2, respectively. We claim that $C_{n_1} \oplus C_{n_2}$ is not supereulerian. To justify this claim, we denote $V(C_{n_1}) = \{v_{11}, v_{12}, \cdots, v_{n_1}\}$, and $V(C_{n_2}) = \{v_{12}, v_{13}, \cdots, v_{2n_2}\}$. Without loss of generality, we assume that $a_1 = (v_{11}, v_{12})$ and $a_2 = (v_{21}, v_{22})$, and $C_{n_1} \oplus C_{n_2} = C_{n_1} \oplus C_{n_2}$. Let B_1 and B_2 be subdigraphs of $C_{n_1} \oplus C_{n_2}$ with $V(B) = \{v_{12}, v_{13}\}$, $V(B_1) = \{v_{12}, v_{13}\}$ and $V(B_2) = \{v_{21}, v_{22}\}$, respectively. By Lemma 2, we conclude that $C_{n_1} \oplus C_{n_2}$ is not supereulerian (see Figure 2).

3. Sufficient Conditions for Supereulerian 2-Sums of Digraphs

In this section, we will show several sufficient conditions on D_1 and D_2 to assure that the 2-sum $D_1 \oplus D_2$...
is supereulerian.

Proposition 1 Let \(D_1\) and \(D_2\) be two vertex disjoint supereulerian digraphs with \(a_1 = (v_{11}, v_{12}) \in A(D_1)\) and \(a_2 = (v_{21}, v_{22}) \in A(D_2)\), and let \(D_1 \oplus D_2\) denote \(D_1 \oplus a_{12} D_2\). Each of the following holds.

i) For some \(i \in \{1, 2\}\), if \(D_i\) has a spanning eulerian subdigraph \(S_i\) such that \(a_i \notin A(S_i)\), then \(D_1 \oplus D_2\) is supereulerian.

ii) If for some \(i \in \{1, 2\}\), \(D_i\) is hamiltonian-connected, then \(D_1 \oplus D_2\) is supereulerian.

Proof. i) Since \(D_1\) and \(D_2\) are supereulerian digraphs, \(D_1\) and \(D_2\) are strongly connected, and so by Lemma 1, \(D_1 \oplus D_2\) is also strongly connected. Without loss of generality, we assume that \(i = 1\) and \(D_1\) has a spanning eulerian subdigraph \(S_1\) such that \(a_1 \notin A(S_1)\). Since \(D_2\) is supereulerian, we can pick a spanning eulerian subdigraph \(S_2\) in \(D_2\). Then \(A(S_1) \cap A(S_2) = \emptyset\) and \(V(S_1) \cap V(S_2) \neq \emptyset\). It follows that \(D \left[A(S_1) \cup A(S_2) \right] \) is a spanning eulerian subdigraph in \(D_1 \oplus D_2\).

ii) Without loss of generality, we assume that \(i = 1\) and \(D_1\) is hamiltonian-connected, and so \(D_1\) has a \((v_{11}, v_{12})\)-hamiltonian dipath \(T_1\) and a \((v_{21}, v_{22})\)-hamiltonian dipath \(T_2\). Since \(D_2\) is supereulerian, \(D_2\) contains a spanning eulerian subdigraph \(S_2\). Define

\[
S = \left\{ D \left[A(T_1) \cup A(S_2 - \{(v_{21}, v_{22})\}) \right] \right\} \text{ if } (v_{21}, v_{22}) \in A(S_2) \],

\[
D \left[\left(A(T_2) \cup \{(v_{11}, v_{12})\} \right) \cup A(S_2) \right] \right\} \text{ if } (v_{11}, v_{12}) \notin A(S_2) .
\]

As in any case, \(S\) is strongly connected and every vertex \(v \in V(S)\) satisfies \(d^+_S(v) = d^-_S(v)\), and so \(S\) is eulerian. Since \(V(S) = V(T_1) \cup V(S_2) = V(D_1) \cup V(D_2)\), for \(i \in \{1, 2\}\), we conclude that \(S\) is a spanning eulerian subdigraph of \(D_1 \oplus D_2\), and so \(D_1 \oplus D_2\) is supereulerian.

Theorem 2 [13] If a strict digraph on \(n \geq 3\) vertices has \((n-1)^2 + 1\) or more arcs, then it is hamiltonian-connected.

Corollary 1 Let \(D_1\) be a strict digraph on \(n_1 \geq 3\) vertices and with \(\left| A(D_1) \right| \geq (n_1 - 1)^2 + 1\). If \(D_2\) is a supereulerian digraph, then \(D_1 \oplus D_2\) is supereulerian.

Proof. By Theorem 2, \(D_1\) is hamiltonian-connected. Then by Proposition 1 (ii), \(D_1 \oplus D_2\) is supereulerian.

Two classes of supereulerian digraphs seem to be of particular interests in studying supereulerian digraph 2-sums. We first present their definitions.

Definition 3.2 Let \(D\) be a digraph such that either \(D = K_1\) or \(A(D) \neq \emptyset\). If for any \(u, v \in V(D)\), \(D\) contains a symmetric dipath from \(u\) to \(v\), then \(D\) is called a **symmetrically connected** digraph.

Given a digraph \(D\), define a relation \(\sim \) on \(V(D)\) such that \(u \sim v\) if and only if \(u = v\) or \(D\) has a symmetrically connected subdigraph \(H\) with \(u, v \in V(H)\). By definition, one can routinely verify that \(\sim\) is an equivalence relation. Each equivalence class induces a symmetrically connected component of \(D\). Hence \(D\) is symmetrically connected if and only if \(D\) has only one symmetrically connected component. A symmetrically connected component of \(D\) is also called a maximal symmetrically connected subdigraph of \(D\). When \(D\) has more than one symmetrically connected components, we have the following definition.

Definition 3.3 Let \(D\) be a weakly connected digraph and \(\{H_1, H_2, \cdots, H_c\}\) be the set of maximal symmetrically connected subdigraphs of \(D\) with \(c \geq 2\). If for any proper nonempty subset \(J \subset \{H_1, H_2, \cdots, H_c\}\),

there exist an \(H_j \in J\), a vertex \(v \in V(H_j)\), and an \(H_j \notin J\) such that

\[
N^+_D(v) \cap V(H_j) \neq \emptyset \text{ and } N^-_D(v) \cap V(H_j) \neq \emptyset,
\]

then \(D\) is **partially symmetric**.

It is known that both symmetrically connected digraphs and partially symmetric digraphs are supereulerian.

Theorem 3 ([14] and [15]) Each of the following holds.

i) Every symmetrically connected digraph is supereulerian.

ii) Every partially symmetric digraph is supereulerian.

A main result of this section is to show that the digraph 2-sums of symmetrically connected or partially symmetric digraphs are supereulerian.

Lemma 3 Let \(D_1\) and \(D_2\) be two vertex disjoint digraphs with \(a_1 = (v_{11}, v_{12}) \in A(D_1)\) and \(a_2 = (v_{21}, v_{22}) \in A(D_2)\), and let \(D_1 \oplus D_2\) denote \(D_1 \oplus a_{12} D_2\). Each of the following holds.

i) If \(D_1\) and \(D_2\) are symmetrically connected, then \(D_1 \oplus D_2\) is symmetrically connected.
ii) If D_1 and D_2 are partially symmetric, then $D_1 \oplus D_2$ is partially symmetric.

iii) If D_1 is symmetric and D_2 is partially symmetric, then $D_1 \oplus D_2$ is partially symmetric.

Proof: i) For any vertices $x, y \in V(D_1 \oplus D_2)$, we shall show that $D_1 \oplus D_2$ always has a symmetric (x, y)-path. If for some $i \in \{1, 2\}$, we have $x, y \in V(D_i)$, then as D_i is symmetrically connected, D_i contains a symmetric (x, y)-path P. Since D_1 is a subdigraph of $D_1 \oplus D_2$, P is also a symmetric (x, y)-path of $D_1 \oplus D_2$. Hence we may assume that $x \in V(D_1)$ and $y \in V(D_2)$. Since D_1 and D_2 are symmetrically connected, D_i contains a symmetric (x, v_{i1})-path P_i and D_2 contains a symmetric (v_{i2}, y)-path P_2.

By Definition 2.1, v_{i1} and v_{i2} represent the same vertex in $D_1 \oplus D_2$, and so $D_1 \oplus D_2 [A(P_i) \cup A(P_2)]$ is a symmetric (x, y)-path in $D_1 \oplus D_2$.

ii) Fix $i \in \{1, 2\}$. Since D_i is partially symmetric, for some integer $c_i > 1$, let $\{H'_{i1}, H'_{i2}, \ldots, H'_{ic_i}\}$ be the set of all maximal symmetrically connected subdigraphs of D_i. Without loss of generality, we assume that $v_{i1} \in V(H'_{i1})$ and $v_{i2} \in V(H'_{i2})$; and for some s, t with $1 \leq s < c_i$ and $1 \leq t < c_i$, $v_{i1} \in V(H'_{is})$ and $v_{i2} \in V(H'_{it})$. (We allow the possibility that $s = 1$ and/or $t = 1$). Define, for $1 \leq h \leq c_i$ and $1 \leq j \leq c_i$,

$$H_{ih} = \begin{cases} H'_{ih} & \text{if } h \notin \{1, s\} \\ H'_{is} \cup H'_{it} & \text{if } h = 1 \text{ and } j = 1 \\ H'_{ih} \cup H'_{it} & \text{if } h = s \text{ and } j = t \\ H'_{ih} \cup H'_{it} & \text{if } j \notin \{1, t\} \end{cases}$$

Then, $\mathcal{H} = \{H_{i1}, H_{i2}, \ldots, H_{ic_i}, H_{i1}, H_{i2}, \ldots, H_{ic_i}\}$ is the set of all maximal symmetrically connected subdigraphs of $D_i \oplus D_2$. Note that $H_{i1} = H_{i2}$ and $H_{ic_i} = H_{ic_i}$. We shall show by definition that $D_1 \oplus D_2$ is partially symmetric. To do that, let \mathcal{J} be a nonempty proper subset of \mathcal{H}. We shall show that (3) holds.

Since $\mathcal{H} = \{H_{i1}, H_{i2}, \ldots, H_{ic_i}, H_{i1}, H_{i2}, \ldots, H_{ic_i}\}$, we either have $\mathcal{J} \cap \{H_{i1}, H_{i2}, \ldots, H_{ic_i}\} \neq \emptyset$ or $\mathcal{J} \cap \{H_{i1}, H_{i2}, \ldots, H_{ic_i}\} = \emptyset$. By symmetry, we may assume that $\mathcal{J} \cap \{H_{i1}, H_{i2}, \ldots, H_{ic_i}\} \neq \emptyset$.

Suppose first that $\{H_{i1}, H_{i2}, \ldots, H_{ic_i}\} - \mathcal{J} \neq \emptyset$. Let $\mathcal{J}' = \{H'_{ih} | H_{ih} \in \mathcal{J}\}$. Then $\{H'_{i1}, H'_{i2}, \ldots, H'_{ic_i}\} - \mathcal{J}' \neq \emptyset$. Since D_i is partially symmetric, there exists an $H'_{ih} \in \mathcal{J}'$, a vertex $v \in V(H'_{ih})$, and an $H'_{ih} \in \{H'_{i1}, H'_{i2}, \ldots, H'_{ic_i}\} - \mathcal{J}'$ such that

$$N_{D_i}(v) \cap V(H'_{ih}) \neq \emptyset \quad \text{and} \quad N_{D_i}(v) \cap V(H'_{ih}) \neq \emptyset.$$

This implies that the vertex $v \in V(H_{ih})$, $H_{ih} \in \mathcal{J}$, and $H_{ih} \not\in \mathcal{J}$ such that

$$N_{D_1 \oplus D_2}(v) \cap V(H_{ih}) \neq \emptyset \quad \text{and} \quad N_{D_1 \oplus D_2}(v) \cap V(H_{ih}) \neq \emptyset.$$

Thus (3) holds in this case.

Hence we may assume that $\{H_{i1}, H_{i2}, \ldots, H_{ic_i}\} \subset \mathcal{J}$. Since \mathcal{J} is a proper subset, we must have $\{H_{i1}, H_{i2}, \ldots, H_{ic_i}\} - \mathcal{J} \neq \emptyset$. Since $H_{i1} = H_{i1} \in \mathcal{J}$, we also have $\{H_{i2}, H_{i2}, \ldots, H_{ic_i}\} \cap \mathcal{J} \neq \emptyset$. With a similar argument, we conclude that (3) must also hold in this case.

iii) Let $H_0 = D_i$ and let $\{H'_1, H'_2, \ldots, H'_{ic_i}\}$ be the set of all maximal symmetrically connected subdigraphs of D_i with $v_{i1} \in V(H'_i)$ and for some $j \in \{1, 2, \ldots, c_i\}$, $v_{i2} \in V(H'_j)$. (We allow the possibility that $j = 1$). Define

$$H_{ij} = \begin{cases} H'_{i} \cup H'_0 & \text{if } i = 1 \text{ or } i = j \\ H'_{i} & \text{if } i \notin \{1, j\} \end{cases}$$

Then $\mathcal{H} = \{H_i, H_2, \ldots, H_{ic_i}\}$ is the set of all maximal symmetrically connected subdigraphs of $D_i \oplus D_2$. Note that $H_i = H_j$ with this notation. Let \mathcal{J} be a nonempty proper subset of \mathcal{H}. We shall show that (3) holds.

Let $\mathcal{J}' = \{H'_i | H_i \in \mathcal{J}\}$. Since \mathcal{J} is proper, \mathcal{J}' is a nonempty proper subset of $\{H'_1, H'_2, \ldots, H'_{ic_i}\}$. Since D_i is partially symmetric, by Definition 3.2, there exist an $H'_{ih} \in \mathcal{J}'$, a vertex $v \in V(H'_{ih})$, and an $H'_{ih} \in \{H'_1, H'_2, \ldots, H'_{ic_i}\} - \mathcal{J}'$ such that

$$N_{D_i}(v) \cap V(H'_{ih}) \neq \emptyset \quad \text{and} \quad N_{D_i}(v) \cap V(H'_{ih}) \neq \emptyset.$$
This implies that vertex \(v \in V(H_k) \), \(H_k \in \mathcal{F} \) and \(H_k \notin \mathcal{F} \) such that

\[
N_{\delta_D \oplus \delta_2}(v) \cap V(H_k) \neq \emptyset \quad \text{and} \quad N_{\delta_D \oplus \delta_2}^-(v) \cap V(H_k) \neq \emptyset.
\]

Thus (3) holds, and so by definition, \(D \oplus_2 D_2 \) is partially symmetric.

Theorem 4 Let \(D_1 \) and \(D_2 \) be two digraphs. Each of the following holds.

i) If \(D_1 \) and \(D_2 \) are symmetrically connected, then \(D_1 \oplus_2 D_2 \) is supereulerian.

ii) If \(D_1 \) and \(D_2 \) are partially symmetric, then \(D_1 \oplus_2 D_2 \) is supereulerian.

iii) If \(D_1 \) is symmetric and \(D_2 \) is partially symmetric, then \(D_1 \oplus_2 D_2 \) is supereulerian.

Proof. This follows from Theorem 3 and Lemma 3.

It is also natural to consider sufficient conditions on \(D_1 \) and \(D_2 \) for \(D_1 \oplus_2 D_2 \) to be hamiltonian.

Theorem 5 If \(D_1 \) is hamiltonian and \(D_2 \) is hamiltonian-connected digraphs, then \(D_1 \oplus_2 D_2 \) is hamiltonian.

Proof. Let \(V(D_1) = \{ v_1, v_2, \ldots, v_{n_1} \} \) with \(C = v_1 v_2 \cdots v_{n_1}v_1 \) be a hamiltonian dicycle of \(D_1 \) and \(V(D_2) = \{ v_{21}, v_{22}, \ldots, v_{2m_2} \} \). Let \(\alpha_1 = (v_{21}, v_{22}) \in A(D_2) \) and \(\alpha_2 = (v_{21}, v_{22}) \in A(D_2) \), and \(D_1 \oplus_2 D_2 = D_1 \oplus_0 D_2 \).

Since \(D_1 \) is hamiltonian-connected, \(D_2 \) contains a \((v_{21}, v_{22})\)-hamiltonian dipath \(P \). Thus \((C - \{ \alpha_1 \}) \cup \bar{P} \) is a hamiltonian dicycle in \(D_1 \oplus_2 D_2 \).

Theorem 6 (Thomassen [16]) If a semicomplete digraph \(D \) is 4-strong, then \(D \) is hamiltonian-connected.

By Theorem 5 and 6, we have the following corollary.

Corollary 2 Let \(D_1 \) and \(D_2 \) be two 4-strong semicomplete digraphs, then \(D_1 \oplus_2 D_2 \) is hamiltonian.

Acknowledgements

The research of Juan Liu was partially supported by grants NSFC (No. 61363020, 11301450) and China Scholarship Council, and the research of Xindong Zhang was supported in part by grants NSFC (No. 11461072) and the Youth Science and Technology Education Project of Xinjiang (No. 2014731003).

References

