The Schultz Index and Schultz Polynomial of the Jahangir Graphs $J_{5,m}$

Mohammad Reza Farahani1*, Wei Gao2

1Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Iran
2School of Information Science and Technology, Yunnan Normal University, Kunming, China

Received 13 November 2015; accepted 28 December 2015; published 31 December 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).

Abstract

Let G be simple connected graph with the vertex and edge sets $V(G)$ and $E(G)$, respectively. The Schultz and Modified Schultz indices of a connected graph G are defined as

$$Sc(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_u + d_v)d(u,v) \quad \text{and} \quad Sc^*(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_u \times d_v)d(u,v),$$

where $d(u,v)$ is the distance between vertices u and v; d_v is the degree of vertex v of G. In this paper, computation of the Schultz and Modified Schultz indices of the Jahangir graphs $J_{5,m}$ is proposed.

Keywords

Wiener Index, Schultz Index, Modified Schultz Index, Distance, Jahangir Graphs

1. Introduction

Let G be simple connected graph with the vertex set $V(G)$ and the edge set $E(G)$. For vertices u and v in $V(G)$, we denote by $d(u,v)$ the topological distance i.e., the number of edges on the shortest path, joining the two vertices of G.

A topological index is a numerical quantity derived in an unambiguous manner from the structure graph of a molecule. As a graph structural invariant, i.e. it does not depend on the labelling or the pictorial representation of a graph. Various topological indices usually reflect molecular size and shape.

As an oldest topological index in chemistry, the Wiener index was first introduced by Harold Wiener [1] in 1947 to study the boiling points of paraffin. It plays an important role in the so-called inverse structure-property relationship problems. The Wiener index of G is defined as [1]-[7]:

*Corresponding author.
The Hosoya polynomial was introduced by Haruo Hosoya, in 1988 \[8\] and defined as follows:

\[
W(G) = \frac{1}{2} \sum_{v \in V(G)} \sum_{u \in V(G)} d(v, u) \]

The number of incident edges at vertex \(v\) is called degree of \(v\) and denoted by \(d_v\).

The Schultz index of a molecular graph \(G\) was introduced by Schultz [9] in 1989 for characterizing alkanes by an integer as follow:

\[
Sc(G) = \frac{1}{2} \sum_{[u,v] \in E(G)} (d_u + d_v) d(u,v).
\]

The Modified Schultz index of a graph \(G\) was introduced by S. Klavžar and I. Gutman in 1996 as follow [10]:

\[
Sc^*(G) = \frac{1}{2} \sum_{[u,v] \in E(G)} (d_u \times d_v) d(u,v).
\]

Also the Schultz and Modified Schultz polynomials of \(G\) are defined as:

\[
Sc(G,x) = \frac{1}{2} \sum_{[u,v] \in E(G)} (d_u + d_v) x^{d(u,v)}
\]

\[
Sc^*(G,x) = \frac{1}{2} \sum_{[u,v] \in E(G)} (d_u \times d_v) x^{d(u,v)}
\]

where \(d_u\) and \(d_v\) are degrees of vertices \(u\) and \(v\).

The Schultz indices have been shown to be a useful molecular descriptors in the design of molecules with desired properties, reader can see the paper series [11]-[29].

In this paper computation of the Schultz and Modified Schultz indices of the Jahangir graphs \(J_{5,m}\) are proposed. The Jahangir graphs \(J_{5,m}\) \(\forall m \geq 3\) is defined as a graph on \(5m + 1\) vertices and \(6m\) edges i.e., a graph consisting of a cycle \(C_{5m}\) with one additional vertex (Center vertex \(c\)) which is adjacent to \(m\) vertices of \(C_{5m}\) at distance 5 to each other on \(C_{5m}\). Some example of the Jahangir graphs and the general form of this graph are shown in Figure 1 and Figure 2 and the paper series [30]-[35].

Figure 1. Some examples of the Jahangir graphs \(J_{5,3}, J_{5,4}, J_{5,5}, J_{5,6}\) and \(J_{5,8}\).
2. Results and Discussion

In this present section, we compute the Schultz and Modified Schultz indices and the Schultz and Modified Schultz polynomials of the Jahangir graphs \(J_{n,m} \) for all integer numbers \(\forall m \geq 3 \) as.

Theorem 1. Let \(J_{5,m} \) be the Jahangir graphs for all integer numbers \(\forall m \geq 3 \). Then, the Schultz, Modified Schultz indices and indices are as:

The Schultz index and polynomial are equal to

\[
Sc(J_{5,m}, x) = \left[m^2 + 27m \right] x^1 + \left[7m^2 + 23m \right] x^2 + \left[12m^2 + 16m \right] x^3 \\
+ \left[20m^2 - 24m \right] x^4 + \left[16m^2 - 24m \right] x^5 + \left[8m^2 - 20m \right] x^6,
\]

\[
Sc(J_{5,m}) = 259m^2 - 215m.
\]

The Modified Schultz index and polynomial are equal to:

\[
Sc^*(J_{5,m}, x) = \left[3m^2 + 24m \right] x^1 + \left[17m^2 + 19m \right] x^2 \left(\frac{2}{2} \right) + \left[16m^2 + 12m \right] x^3 \\
+ \left[24m^2 - 32m \right] x^4 + \left[16m^2 - 24m \right] x^5 + \left[8m^2 - 20m \right] x^6,
\]

\[
Sc^*(J_{5,m}) = 292m^2 - 289m.
\]

Proof. Let \(J_{5,m} \) be Jahangir graphs \(\forall m \geq 3 \) with \(5m + 1 \) vertices and \(6m \) edges. From Figure 1 and Figure 2, we see that \(4 \) \(m \) vertices of \(J_{5,m} \) have degree two and \(m \) vertices of \(J_{5,m} \) have degree three and one additional vertex (Center vertex) of \(J_{5,m} \) has degree \(m \). Thus we have three partitions of the vertex set \(V(J_{5,m}) \) as follow

\[
V_2 = \{ v \in V(J_{5,m}) \left| d_v = 2 \right. \} \rightarrow |V_2| = 4m
\]

\[
V_3 = \{ v \in V(J_{5,m}) \left| d_v = 3 \right. \} \rightarrow |V_3| = m
\]

\[
V_m = \{ c \in V(J_{5,m}) \left| d_c = m \right. \} \rightarrow |V_m| = 1
\]

Obviously, \(V(J_{5,m}) = V_2 \cup V_3 \cup V_m \) and \(V_2 \cap V_3 \cap V_m = \emptyset \), thus

\[
|E(J_{5,m})| = \frac{1}{2} \left[2 \times |V_2| + 3 \times |V_3| + m \times |V_m| \right] = 6m.
\]

Now, for compute the Schultz and Modified Schultz indices and the Schultz and Modified Schultz polynomials of the Jahangir graphs \(J_{n,m} \), we see that for all vertices \(u, v \) in \(V(J_{5,m}) \), \(\exists d(u,v) \in \{1, 2, \cdots, 6\} \) and the diameter of the Jahangir graph \(J_{5,m} \) is equal to \(d(J_{5,m}) = 6 \).

Now, we compute all cases of \(d(u,v) \)-edge-paths \(d(u,v) = 1, 2, \cdots, 6 \) of \(J_{5,m} \) in Table 1.
Table 1. All cases of $d(u,v)$-edge-paths $d(u,v) = 1, 2, \ldots, 6$ of the Jahangir graph $J_{5,m}$.

<table>
<thead>
<tr>
<th>The distance $d(u,v) = i$</th>
<th>degrees of d_u & d_v</th>
<th>Number of i-edges paths</th>
<th>Term of Schultz polynomial</th>
<th>Term of Modified Schultz polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 & 2</td>
<td>$3m = 2</td>
<td>V_i</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2 & 3</td>
<td>$2m = 2</td>
<td>V_i</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>3 & 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3 & m</td>
<td>$m =</td>
<td>V_i</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>2 & 2</td>
<td>$2</td>
<td>V_i</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>2 & 3</td>
<td>$2</td>
<td>V_i</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>3 & 3</td>
<td>$\frac{1}{2}</td>
<td>V_i</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 & m</td>
<td>$2m = 2</td>
<td>V_i</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>3 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2 & 2</td>
<td>$2</td>
<td>V_i</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2 & 3</td>
<td>$2</td>
<td>V_i</td>
<td>+ 2</td>
</tr>
<tr>
<td>3</td>
<td>3 & 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2 & m</td>
<td>$2m =</td>
<td>V_i</td>
<td>$</td>
</tr>
<tr>
<td>3</td>
<td>3 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2 & 2</td>
<td>$m +</td>
<td>V_i</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 & 3</td>
<td>$</td>
<td>V_i</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 & 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2 & m</td>
<td>$2m = 2</td>
<td>V_i</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>3 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2 & 2</td>
<td>$2m + \frac{1}{2}</td>
<td>V_i</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 & 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3 & 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2 & 2</td>
<td>$\frac{1}{2}</td>
<td>V_i</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2 & 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3 & 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3 & m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
For example, in case \(d(u,v) = 1, \forall v, u \in V(J_{5,m}) \); one can see that there are \(|V_j| = m \) 1-edges paths between the vertex \(c \) and vertices from \(V_j \) (where \(d_c + d_v = m + 3, d_c \times d_v = 3m \)). There exist two 1-edges paths starts every vertex \(u \in V_j \) until \(v \in V_j \) (where \(d_u + d_v = 5, d_u \times d_v = 6 \)). There are 3 \(m \) 1-edges paths between two vertices \(u, v \in V_j \subset V(J_{5,m}) \) (two adjacent vertices or edges), such that \(d_u + d_v = d_u \times d_v = 4 \). Thus, the first terms of the Schultz and Modified Schultz polynomials of \(J_{5,m} \) are equal to
\[
(12m + 10m + (m + 3)m)x^1 = (m^2 + 27m)x^1 \text{ and } (12m + 12m + 3m^2)x = (3m^2 + 24m)x \text{ respectively.}
\]

Also, in case \(d(u,v) = 2, \forall v, u \in V(J_{5,m}) \); there are two 2-edges paths between Center vertex \(c \in V(J_{5,m}) \) and other vertices of vertex set \(V_j \subset V(J_{5,m}) \). \(\frac{1}{2}|V_j| = (m-1) \) 2-edges paths between all vertices of \(u, v \in V_j \subset V(J_{5,m}) \) and \(2|V_j| = 2 \) 2-edges paths start from vertices of \(V_j \) until vertices of \(V_j \) and \(V_2 \subset V(J_{5,m}) \). Thus, the second terms of the Schultz and Modified Schultz polynomials of \(J_{5,m} \) are equal to
\[
(12m + 10m + 3m(m - 1) + 2m(m + 2))x^2 \text{ and } (12m + 12m + m(m - 1) + 4m^2)x^2 \text{ respectively.}
\]
By using the definition of the Jahangir graphs and Figure 1 and Figure 2, we can compute other terms of the Schultz and Modified Schultz polynomials of \(J_{5,m} \). We compute and present all necessary results on based the degrees of \(d_u \) & \(d_v \) for all cases of \(d(u,v) \)-edge-paths \(d(u,v) = 1, 2, \cdots, 6 \) in following table.

Now, we can compute all coefficients of the Schultz \(Sc(J_{5,m}, x) \) and Modified Schultz \(Sc'(J_{5,m}, x) \) polynomials and indices of \(J_{5,m} \) by using all cases of the \(d(u,v) \)-edge-paths \(d(u,v) = 1, 2, \cdots, 6 \) of the Jahangir graph \(J_{5,m} \) in Table 1 and alternatively

\[
Sc(J_{5,m}, x) = \frac{1}{2} \sum_{u,v \in V(J_{5,m})} (d_u + d_v) x^{d(u,v)} = \left[12m + 12m + 0 + 0 + m(m+3) \right] x^1
\]
\[
+ \left[12m + 10m + 3(m(m-1) + 2m(m+2)) + 0 \right] x^2
\]
\[
+ \left[8m(m-1) + 10m(m-2) + 0 + 2m(m+2) + 0 \right] x^3
\]
\[
+ \left[8m(2m-3) \right] x^4
\]
\[
+ \left[4m(2m-5) \right] x^5
\]
\[
= \left[m^2 + 27m \right] x^1 + \left[7m^2 + 23m \right] x^2 + \left[12m^2 + 16m \right] x^3 + \left[20m^2 - 24m \right] x^4
\]
\[
+ \left[16m^2 - 24m \right] x^5 + \left[8m^2 - 20m \right] x^6.
\]

From the definition of Schultz index and the Schultz Polynomial of \(G \), we can compute the Schultz index of the Jahangir graph \(J_{5,m} \) by the first derivative of Schultz polynomial of \(J_{5,m} \) (evaluated at \(x = 1 \)) as follow:

\[
Sc(J_{5,m}) = \frac{\partial Sc(J_{5,m}, x)}{\partial x} \bigg|_{x=1} = \frac{\partial}{\partial x} \left(m^2 + 27m \right) x + \left(7m^2 + 23m \right) x^2 + \left(12m^2 + 16m \right) x^3
\]
\[
+ \left(20m^2 - 24m \right) x^4 + \left(16m^2 - 24m \right) x^5 + \left(8m^2 - 20m \right) x^6 \bigg|_{x=1}
\]
\[
= \left[m^2 + 27m \right] x + \left[7m^2 + 23m \right] x^2 + \left[12m^2 + 16m \right] x^3 + \left[20m^2 - 24m \right] x^4
\]
\[
+ \left[16m^2 - 24m \right] x^5 + \left[8m^2 - 20m \right] x^6 \bigg|_{x=1}
\]
\[
= 259m^2 - 215m.
\]

And also Modified Schultz polynomial of \(J_{5,m} \) is equal to

\[
Sc'(J_{5,m}, x) = \frac{1}{2} \sum_{u,v \in V(J_{5,m})} (d_u \times d_v) x^{d(u,v)} = \left[12m + 12m + 0 + 0 + 3m^2 \right] x^1
\]
\[
+ \left[12m + 12m + m(m-1) + 4m^2 + 0 \right] x^2
\]
\[
+ \left[8m(m-1) + 12m(m-2) + 0 + 4m^2 + 0 \right] x^3
\]
\[
+ \left[8m(2m-3) \right] x^4
\]
\[
+ \left[4m(2m-5) \right] x^5
\]
\[
= \left[3m^2 + 24m \right] x^1 + \left[\frac{17}{2} m^2 + \frac{19}{2} m \right] x^2 + \left[16m^2 + 12m \right] x^3 + \left[24m^2 - 32m \right] x^4
\]
\[
+ \left[16m^2 - 24m \right] x^5 + \left[8m^2 - 20m \right] x^6.
\]
And from the first derivative of Schultz Modified polynomial of the Jahangir graph $J_{5,m}$ (evaluated at $x = 1$), the Modified Schultz index of $J_{5,m}$ is equal to:

$$Sc^*(J_{5,m}) = \left. \frac{\partial Sc^*(J_{5,m}, x)}{\partial x} \right|_{x=1}$$

$$= \frac{\partial}{\partial x} \left(3m^2 + 24m)x^2 + (m^2 + m)x^2 + (16m^2 + 12m)x^3 + (24m^2 - 32m)x^4 + (16m^2 - 24m)x^5 + (8m^2 - 20m)x^6 \right)_{x=1}$$

$$= 292m^2 - 289m.$$

Here these completed the proof of Theorem 1. ■

Acknowledgements

The authors are thankful to Professor Emeric Deutsch from Department of Mathematics of Polytechnic University (Brooklyn, NY 11201, USA) for his precious support and suggestions. The research is also partially supported by NSFC (No. 11401519).

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

