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Abstract

We establish the conditions for the compute of the stability restriction and local accuracy on the
time step and we prove the consistency and local truncation error by using & -scheme and 3-level

scheme for Heat Equation with smooth initial conditions and for some parameter 6 e [0, 1] .
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1. Introduction

In this paper we have considered the heat equation u, =u,, with 96[0,1]. Using &-scheme and 3-level
scheme in space we compute the order of local accuracy in space and time and stability restriction as a function
of & on the time step At. Much attention has been paid to the development, analysis and implementation of
accurate methods for the numerical solution of this problem in the literature. Many problems are modeled by
smooth initial conditions and Dirichlet boundary conditions. A number of procedures have been suggested (see,
for instance [1]-[3]). We can say that three classes of solution techniques have emerged for solution of PDE: the
finite difference techniques, the finite element methods and the spectral techniques (see [4] and [5]). The last
one has the advantage of high accuracy attained by the resulting discretization for a given number of nodes [6]-
[8].

We consider Scheme (1) for the 1D heat equation for some parameter 6 < [0,1]. We compute the order of lo-
cal accuracy in space and time as a function of @ and its the stability restriction. Until T =1, we compute the

How to cite this paper: Cardenas Alzate, P.P., Cardona, J.G. and Rojas, L.M. (2015) A Special Case on the Stability and Ac-
curacy for the 1D Heat Equation Using 3-Level and 9-Schemes. Applied Mathematics, 6, 476-483.
http://dx.doi.org/10.4236/am.2015.63045



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.63045
http://dx.doi.org/10.4236/am.2015.63045
http://www.scirp.org
mailto:ppablo@utp.edu.co
mailto:gerardo7@utp.edu.co
mailto:lmrojas@funandi.edu.co
http://creativecommons.org/licenses/by/4.0/

P. P. Cardenas Alzate et al.

solution with some fixed L” error with the smallest amount of CPU time, and finally we can see this findings
producing the relevant convergence and efficiency plot. For the 3-level scheme we consider (11) for the 1D heat
equation and we compute the local truncation error. For different values of 6 and g we find the stability
criterion of the scheme and its accuracy.

2. 0-Scheme
Let
ur_1+1 un n+1 2un+1+un+1 2U +U
' _ gt N Y 1
At sz (1-9) AX? @
be the & -scheme applied to the one-dimensional heat equation
U —u, =0 @)

Now for the order of local accuracy in space and time as a function of & we write the local truncation error.
In time we have

r= n+1 U n+l

where U™ represents the exact solution of the heat equation. Now we perform Taylor expansion of u;.”l at t .

ul* =u’ +At(u?)I +A—t2(u?)lt +A—t3(u?) +(9(At4)

2 V! 6 \ J/u
We can write the LHS of (1) as
n+1 3
u - -uf i[uT JrAt(u}‘)t +%At2(u?)“ +A?t(u?)m +0(At4)—uj'?j @)
1 At
=(u]), +5At(uj), +%(“?)m +o(at’) (4)

n

here (uj )t represents the derivative with respect to time, of u, (n) On the RHS, we have a centered differ-

ence approximating second derivative of u; (n)

L —2ut +ul N A, AXC
JlT_(uj ). +UT)/(2)<UJ )X(iv) +@(uj )X(Vi) +0(Ax) (5)
As we are solving the heat equation, the previous expression is
n A n A ¢ n
:(uj)t (4')/(2)(u >tt (6|/2)(u )m O(Axe) ©)
Now, attime n+1 we have
Ur-trl 2un+1+un+1 o A 2 e A s
i+l AXZ :(uj 1)xx+(4!)/(2) (uj 1>X " (6')/(2)(11 1)X(Vi)+(’)(Ax6) (7
n-+ AXZ n-+ AX4 n+
:(uj 1)t +(4!/2)(uj l)tt +(6!/2) (uj 1)m +O(Ax6) (8)

therefore, applying Taylor expansion with respect to At we can write
. At? At?
(U? 1): = (UT )t +At(U? )tt +T(u? )m +?(U? )t(iv) +O(AX4)

" " 0y At AT
(uj l)n :(uj>n +At(ui)n +T(uj)1(iv)+?(uj)t(v)+O(Ax4>
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X At
(U? 1)m - (UT )ttt +At(u?)t(iv) +T(u? )‘(V) +?<U? )t("i) +O(AX4)

So (8) becomes

n+l 2 n+l A ! n+1 6
(u] )ﬁ(j.)/(z)(”i )H(G.)/(Z)(“i ) +O(a)

A A
=(u} )+At(U) ( )m (U7 )) rO(ax")
AL (o A
(4Y2 [ (ui)t(iv)+?(ui)t(v)+O(Ax4)j
At2 . At
e ( L)+ (uj)t(v)+?(uj)t(vi)+(’)(Ax4)J+(’)(Ax4),

Here RHS of (1) becomes

©)

n+l n+l n+l
Ui —2u" +ujg (1_9) uj,, —2uj +uj.
2
AX

AX?
n A : n A ! n+l 6
=(1—9)[(uj)t ), (), v )j
+0[(u? )t +At(u';)tt +A7t2(u?)m +%t3(u?)t(iv) +O(Ax4)
AX? . " At At A
* (4!)/(2) ((uj )n +At(ui )m +T(ui )t(iv) +?(uj )t(v) +O(AX )J

A ) n n Atz n At3 n
i (6:/(2) [(uj )m +At(uj )1(iv) +T(uj )[(\,) +?(uj )l(vi) +O(AX4 )j+O(AX4 )j,

After the elimination of some terms we have
ny L Ay A
(uj)t +(4!)/(2)(uj)tt +(6!)/(2)(uj 1)m+(9(Ax5)
o A2 At AtAXC ([, At At?
+‘9(At(uj ), +T(“J ) +?(”J )t(iv) +O(ax")+ (4!/)2() ((”J ) +7(”i )t(iv) +T(”j )t(v) +O(AX3)]

AtAX? n At . At? )
" (6!/)2() [(“i I G R Y +0(AX3)J+0(AX4)J,
Now simplifying we obtain

(1), + 5 00), + ), +0()
n A n A ! n+l 6
:(uj )t (4:/(2)(U )n (6!)/(2)(uj )m +(9(AX )

W At At AtAXE ([, At At?
+0[At(ui )n +T(uj )m +?(ui )x(iv) +O(AX4)+ (4|/)2() [(uj )m +7(uj )t(iv) +?(uj )I(Vi) +O(AX3 )J

+(§l—)/(2)[(uln )t(iv) +%(U? >t(v) +%(U? )t(vi) +O(AX3 )j+O(AX4 )J,




P. P. Cardenas Alzate et al.

n

Cancelling (uj )[ and moving all terms to the right side, we get
. At AX . Ax* At? At?AtAX?
oz(uj)n[—? 9At+Tj+(uj)m[(ﬁ!/z)w——T +0 512 J+O(Ax2)+O(Ax4) (10)

Scheme (10) is first order in time, second order in space. If for example 6 =1/2, it becomes second order,
this is due to cancellation of the A7 .

Stability Restriction as a Function of 6

n+l

Here we will apply Von Neumann stability. Let u(x,t,)=e" and G(k)=——. Then Equation (1) can be
u
]

written as
OO (upt-aup a2 g ) e
Now dividing by u? we have
(O Dt B0 0 (- eupt)-(u -2 w01
G = artin ujzixw +u?§iz((“?ﬁ 2u} ™ Ut ) = (uf 2] +uf ))+1

. At . .
Therefore by using uf,, = ="k and r = g we can rewrite the expression as
X

G:r[( gk 2+ef.mx)+u£n((u?§ uf,)- 2(u?+1—u?)+(u?*ll—u?1))j+1
J
G(k):r((( |kA>< 2+e—|kAx)+H(G 1))( |kAx_2+e—ikAx))+1
G(k)= r(l—Q)(eikAX —2+e’”<Ax)+1+ r49G(eikAX —2+e’”<Ax)

G(k)(l— ra(eikAX —2+e’"‘“)) = r(l—e)(e"<AX —2+e’”‘AX)+1

1_9)(eikAx _2+e—ikA><)+1 I'( glkax 2+e—|kAx)
G (k) = " - =1+ :
1_r6(e|kAx _2+e—|kAx) 1_r€(e|kAx _2+e—|kAx)
By using the identity cosx =-—— 7 we have
-2r(1- kA
G(k) — r( COS( X))

1+ 2r9(1—cos(kAx))

We can say this scheme is stable only for |G (k)| <1. Now, let 2r(1—cos(kAx)) =c . The inequality is

G(k)=1- <1
| ( M ‘ 1+co
thus
14e0-¢ 1 g c>0
1+co
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Now multiplying by the denominator we have
[L+co—c|<1+co

L+c(0-1)<1+co, 0e[01]
The expression in the absolute value becomes

1+c(0-1)<1l+cH, c<2ch, %S 6

Therefore by the Von Neumann stability condition, the scheme is stable if %2 0.
In this case we can say the following about the best combination for At, AX and &. In order to have both

- . 1 . .
local accuracy and stability, the optimal value of & is > and therefore this scheme represents the Crank-Ni-

A
cholson scheme. Here Ax and At appear in the form:A—tz.
X

In Figure 1 the convergence plot equation (varying the radio r) is

[l—ﬂAjY“”{HﬂAJY”,
2 2
-1
ynml =(| —EA) (I +§AJY”.
2 2

with matrix A described in the heat equation. We can say the scheme is unconditionally stable. We can see in
Figure 1 that we have a linear convergence with respect to r.
3. Three-Level Scheme

We start by computing the stability restriction one has to impose on At . We apply Von Neumannstability analysis
to the scheme.

Let
AUt AU"
(1=)M, | =2 |=yM, | —L [—a[ BL U™ +(1- B) L,y | =0 (11)
At At
where
107" ¢
1072}
=
107°}
L=
10~ Lo e Order O(r)
107° 10™* 107° 1072 107"

Figure 1. E vs. r for 1D-heat equation, u(x,t)= e*"z‘sin(nx) with in-

itial temperature u(x,0)=sin(mx) on [0,1].
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Aur_1+1=ur_1+1_ur_1 Aun+1_ur_1_u_—1 Lu" _uJ+l_2uJ'+uJ'*1

j i j? i i i XX T Ax2 (12)
and
M,Au; = AU, , +(1-25)Au; +8Au, (13)
By using (12) and (13) we can rewrite (11) as
n+l n n+l n n+l n
(L-p)| 622 (1)L by s i
At At At
u", —ut u" -yt u", —unt
Y [ Sl = Bl = WA PP B Sl £ 14
4 ( a2 At (14)
B Jn:i 2u”*1+u (1 ﬁ) 1+l 2U +u 0
- -B)————— =0,
AX? sz

or as

n+1

n+. Aun
(l—;/)MX[ At J—aﬂLxxu 1—yMX£A—t’j+a(ﬂ—1)LXXuj_o

The local truncation error for this scheme y is as follow.

y = n+l U n+l

where U™ represents the exact solution of the heat equation. Therefore we have

Auf™ Au’
- —7 +1
Mx[ n j:l_ym [m}*l— (AL +(1-B) L) 15)
Now expanding M, operator on the left side, we can isolate the forward difference in time at u , then
+1 "
(1_25)U? _u?:_é‘ uifl_uj—l_i_u?ﬂ_u?ﬂ + 14 M Auj
At At At 1_}/ X At

n+l n+l n+l n n n
4 Uja —2U57 +Uj5 Uj,y —2U5 +Uj
+ +(1-4) ———— |,
1-y (ﬁ AX? (-5) AX?

Y. 3 i PN R S VY £
i X
1-26 At At (1-7)(1-25) At

alt um
T e

Expanded this expression becomes
n+1 5

however,

uj™ =uj At—l 25(u"f11—uj LUl - u;‘ﬁ)
+(1_}/;/(A;_25)(5(U?1—U?11)+(1—25)(U?—u )+5( J+1 T+i))

alt ™
“aa )

Finally we have
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y= n+1 Un+1 U?At_l—ié(u —UJ1+UTE UT+1)
A
O U (2000 o)

aAt (ﬂL umt (1 IB) )_Un+l,

) am2s)

4. Stability Criterion for the Three-Level Scheme and Its Accuracy When

1 1
0=— and —+
T B=<+ry
By using Equation (14) we have
n-1 n n-1

1uf-ul, 5Uj ] 1
(1 ;/) + +— y
12 At 6 At 12 At 12 At 6 At 12 At
u”
=—1 and

. [ij UTI%—2“"+1+“T+11+[E_y Lt R N | S
2 AX? 2 AX? '
~.,n-1

Now applying Von Neumann stability again, the aim is to use u(x,t,,)=¢e", G(k)
u"
J

n+l n n+l n n n-1 n
—uf 1 uli- UHJ {1 Up—Up BUf-up 1 U U

n

uly = e therefore

(1_7)eika (G _1) (ie—ikAx +§+ieikAx)_ ye'™ (G _1) (ie—ikAx +E+ieimj
At 12 6 12 At 12 6 12

=L|:(1+7j(uﬁll 2un+l+un+1) (%_7]( [ —-u" -i—UJ 1)i|

A\ 2

Multiplying both sides by % and write r = % we obtained
e X

1 5 1 1 5 1 ;
1— 2 _ = aikax | ¥ & ikAX -1 —lkAx M= alkAx
(1-7)(c G)(lze 24t ) (G- )(12 24 te J

n+l

Glr 1 n+l n+l
|k><l:12(uj+1+ul+l 2(uj™ +u] )+ujl+u”1) 7(uj+1— "

a{w(eim —2+e")+7G(G-1)(e" —2+e™ )}

-l =2(uft —uf )+ ul —uf 1)}

2

|

Using the cosine identity that 2cosx = e*** +e ™ we have

G? ((cos(kAx)+5)(1—7)+120”(1—C°S(kAX))(%+7D

+G (—y(cos(kAx) +5)+12ar(1- cos(kAx))(%— ;/D +(cos(kAx)+5) =0

We have a quadratic equation in G, where G” <1, therefore
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(cos(kAx)+5)(1-y)+12ar (1- COS(kAX))(%-F )/)

+G (—7(cos(kAx) +5)+12ar(1- cos(kAx))(%— ;/D +(cos(kAx) +5) <0,

After some cancellations, we can write

0 < cos(kAx)+5+12ar (1-cos(kAx)) 8 <G (7(cos(kAx)+5)+12ar(1—cos(kAx))(1—,B))

Here, ifall B, y €[0,1] we need

(7(cos(kax)+5)) > 12ar (1-cos(kax))(1- )

(7(cos(kax)+5))
12a(1—cos(kAx))(1—ﬁ)
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