Regular Elements of the Complete Semigroups $B_X(D)$ of Binary Relations of the Class $\Sigma_2(X,8)$

Nino Tsinaridze, Shota Makharadze

Department of Mathematics, Faculty of Mathematics, Physics and Computer Sciences, Shota Rustaveli Batumi State University, Batumi, Georgia
Email: ninocinaridze@mail.ru, shota_59@mail.ru

Received 10 February 2015; accepted 28 February 2015; published 3 March 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
As we know if D is a complete X-semilattice of unions then semigroup $B_X(D)$ possesses a right unit iff D is an XI-semilattice of unions. The investigation of those α-idempotent and regular elements of semigroups $B_X(D)$ requires an investigation of XI-subsemilattices of semilattice D for which $V(D,\alpha) = Q \in \Sigma_2(X,8)$. Because the semilattice Q of the class $\Sigma_2(X,8)$ are not always XI-semilattices, there is a need of full description for those idempotent and regular elements when $V(D,\alpha) = Q$. For the case where X is a finite set we derive formulas by calculating the numbers of such regular elements and right units for which $V(D,\alpha) = Q$.

Keywords
Semilattice, Semigroup, Binary Relation

1. Introduction
In this paper we characterize the elements of the class $\Sigma_2(X,8)$. This class is the complete X-semilattice of unions every elements of which are isomorphic to Q. So, we characterize the class for each element which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of D.

How to cite this paper: Tsinaridze, N. and Makharadze, S. (2015) Regular Elements of the Complete Semigroups $B_X(D)$ of Binary Relations of the Class $\Sigma_2(X,8)$. Applied Mathematics, 6, 447-455. http://dx.doi.org/10.4236/am.2015.63042
Let X be an arbitrary nonempty set, recall that the set of all binary relations on X is denoted B_X. The binary operation "" on B_X defined by for $\alpha, \beta \in B_X$, $(x, z) \in \alpha \circ \beta \iff (x, y) \in \alpha$ and $(y, z) \in \beta$, for some $y \in X$ is associative and hence B_X is a semigroup with respect to the operation "". This semigroup is called the semigroup of all binary relations on the set X. By \emptyset we denote an empty binary relation or empty subset of the set X.

Let D be a X-semilattice of unions, i.e. a nonempty set of subsets of the set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbitrary mapping from X into D. To each such a mapping f there corresponds a binary relation α_f on the set X that satisfies the condition $(x) = \bigcup \{f(x) \times x\}$. The set of all such α_f $(f : X \to D)$ is denoted by $B_X(D)$. It is easy to prove that $B_X(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by a X-semilattice of unions D (see ([1], Item 2.1), ([2], Item 2.1)).

Let $x, y, z \in X$, $Y \subseteq X$, $\alpha \in B_X(D)$, $T \subseteq D$, $\emptyset \neq D' \subseteq D$ and $t \in \bar{D} = \bigcup_{y \in D} Y$. We use the notations:

$\gamma \alpha = \{x \in X | y x \} \subseteq \alpha \subseteq \gamma \beta$, $Y \alpha = \bigcup_{y \in Y} \gamma \alpha$, $\nu(D, \alpha) = \{Y \alpha | Y \subseteq D\}$, $\gamma_0 = \{x \in X | \alpha x = T\}$, $\gamma_T = \{x \in X | \alpha x = T\}$, $\gamma_T' = \{x \in X | \alpha x = T\}$, $\gamma_T = \gamma_0 \cup \{0\}$, $\gamma_T = \nu(D, \alpha)$, $\nu(D, \alpha) \subseteq \gamma_0$ and $\nu(D, \alpha) \subseteq \gamma_T$.

In general, a representation of a binary relation α of the form $\alpha = \bigcup_{x \alpha \subseteq} (\nu_x \times T)$ is called quasinormal.

Note that for a quasinormal representation of a binary relation α, not all sets Y_α ($T \in \nu[\alpha]$) can be different from an empty set. But for this representation the following conditions are always fulfilled:

(a) $Y_\alpha \cap Y_\beta = \emptyset$, for any $T, \alpha = T' \subseteq$;

(b) $X = \bigcup_{\alpha \subseteq T} Y_\alpha$ (see ([1], Definition 1.11.1), ([2], Definition 1.11.1)).

Let $\varepsilon \in B_X(D)$. ε is called right unit of the semigroup $B_X(D)$. If $\alpha \circ \varepsilon = \alpha$ for any $\alpha \in B_X(D)$. An element α taken from the semigroup $B_X(D)$ called a regular element of the semigroup $B_X(D)$ if in $B_X(D)$ there exists an element β such that $\alpha \circ \beta \circ \alpha = \alpha$ (see [1]-[3]).

In [1] [2] they show that β is regular element of $B_X(D)$ iff $V[\beta] = V(D, \beta)$ is a complete XI-semilattice of unions.

A complete X-semilattice of unions D is an XI-semilattice of unions if it satisfies the following two conditions:

(a) $\bigwedge(D, D_t) \subseteq D$ for any $t \in \bar{D}$;

(b) $Z = \bigwedge_{t \in Z} (D, D_t)$ for any nonempty element Z of D (see ([1], Definition 1.14.2), ([2], Definition 1.14.2) or [4]). Under the symbol $\bigwedge(D, D_t)$ we mean an exact lower bound of the set D_t in the semilattice D.

Let D' be an arbitrary nonempty subset of the complete X-semilattice of unions D. A nonempty element T is a nonlimiting element of the set D' if $T \cap \nu(D', T) \neq \emptyset$ and a nonempty element T is a limiting element of the set D' if $T \cap \nu(D', T) = \emptyset$ (see ([1], Definition 1.13.1 and Definition 1.13.2), ([2], Definition 1.13.1 and Definition 1.13.2)).

Let $D = \{D_1, D_2, \ldots, D_{m-1}\}$ be some finite X-semilattice of unions and $C(D) = \{P_0, P_1, P_2, \ldots, P_m\}$. be
the family of sets of pairwise nonintersecting subsets of the set \(X \). If \(\varphi \) is a mapping of the semilattice \(D \) on the family of sets \(C(D) \) which satisfies the condition \(\varphi(D) = P_0 \) and \(\varphi(Z_i) = P_i \) for any \(i = 1, 2, \cdots, m-1 \) and \(\tilde{D}_z = D \setminus \{ T \in D \mid Z \subseteq T \} \), then the following equalities are valid:

\[
\tilde{D} = P_0 \cup P_1 \cup P_2 \cup \cdots \cup P_{m-1}, \quad Z_i = P_0 \cup \bigcup_{T \in D_{z}} \varphi(T)
\]

\[\bullet\]

In the sequel these equalities will be called formal.

It is proved that if the elements of the semilattice \(D \) are represented in the form \(\bullet \), then among the parameters \(P_i \) \((i = 0, 1, 2, \cdots, m-1)\) there exist such parameters that cannot be empty sets for \(D \). Such sets \(P_i \) \((0 < i \leq m-1)\) are called basis sources, whereas sets \(P_j \) \((0 \leq j \leq m-1)\) which can be empty sets too are called completeness sources.

It is proved that under the mapping \(\varphi \) the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping \(\varphi \) the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see ([1], Item 11.4), ([2], Item 11.4) or [5]).

The one-to-one mapping \(\varphi \) between the complete \(X \)-semilattices of unions \(\varphi(Q) \) and \(D' \) is called a complete isomorphism if the condition

\[\varphi(D') = \bigcup_{T \in D'} \varphi(T)\]

is fulfilled for each nonempty subset \(D' \) of the semilattice \(D' \) (see ([1], definition 6.3.2), ([2], definition 6.3.2) or [6]) and the complete isomorphism \(\varphi \) between the complete semilattices of unions \(Q \) and \(D' \) is a complete \(\alpha \)-isomorphism if (b)

(a) \(Q = V(D,\alpha) \);

(b) \(\varphi(\emptyset) = \emptyset \) for \(\emptyset \in V(D,\alpha) \) and \(\varphi(T) \alpha = T \) for all \(T \in V(D,\alpha) \) (see ([1], Definition 6.3.3), ([2], Definition 6.3.3)).

Lemma 1.1. Let \(D \) be a complete \(X \)-semilattice of unions. If a binary relation \(\varepsilon \) of the form \(\varepsilon = \bigcup_{i \in D} \big((i \times (D, D_1)) \cup ((X \setminus D) \times D)\big) \) is right unit of the semigroup \(B_X(D) \), then \(\varepsilon \) is the greatest right unit of that semigroup (see ([1], Lemma 12.1.2), ([2], Lemma 12.1.2)).

Theorem 1.1. Let \(D_j = \{ T_1, \cdots, T_j \} \), \(X \) and \(Y \) be three such sets, that \(\emptyset \neq Y \subseteq X \). If \(f \) is such mapping of the set \(X \), in the set \(D_j \), for which \(f(y) = T_j \) for some \(y \in Y \), then the numbers of all those mappings \(f \) of the set \(X \) in the set \(D_j \) is equal to \(s = j^{j-1} \left(j^{j-1} - (j-1)^{j-1} \right) \) (see ([1], Theorem 1.18.2), ([2], Theorem 1.18.2)).

Theorem 2.1. Let \(D \) be a finite \(X \)-semilattice of unions and \(\alpha \circ \sigma \circ \alpha = \alpha \) for some \(\alpha \) and \(\sigma \) of the semigroup \(B_X(D) \); \(D(\alpha) \) be the set of those elements \(T \) of the semilattice \(Q = B_X(D) \setminus \{ \emptyset \} \) which are nonlimiting elements of the set \(Q_T \). Then a binary relation \(\alpha \) having a quasinormal representation of the form \(\alpha = \bigcup_{T \in V(D,\alpha)} Y_T^{\alpha} \times T \) is a regular element of the semigroup \(B_X(D) \) iff the set \(V(D,\alpha) \) is a \(XI \)-semilattice of unions and for \(\alpha \)-isomorphism \(\varphi \) of the semilattice \(V(D,\alpha) \) on some \(X \)-subsemilattice \(D' \) of the semilattice \(D \) the following conditions are fulfilled:

(a) \(\varphi(T) = T \sigma \) for any \(T \in V(D,\alpha) \);

(b) \(\bigcup_{T \in D(\alpha)} Y_T^{\alpha} \supseteq \varphi(T) \) for any \(T \in D(\alpha) \);

(c) \(Y_T^{\alpha} \cap \varphi(T) \neq \emptyset \) for any element \(T \) of the set \(\tilde{D}(\alpha) \) (see ([1], Theorem 6.3.3), ([2], Theorem 6.3.3) or [6]).

Theorem 3.1. Let \(D \) be a complete \(X \)-semilattice of unions. The semigroup \(B_X(D) \) possesses a right unit iff \(D \) is an \(XI \)-semilattice of unions (see ([1], Theorem 6.1.3), ([2], Theorem 6.1.3) or [7]).
2. Results

Let \(D \) is any \(X \)-semilattice of unions and \(Q = \{T_7, T_6, T_5, T_4, T_3, T_2, T_1, T_0\} \subseteq D \), which satisfies the following conditions:

\[
\begin{align*}
T_7 &\subseteq T_6 \subseteq T_5 \subseteq T_4 \subseteq T_3 \subseteq T_2 \subseteq T_1 \subseteq T_0, \\
T_6 &\subseteq T_4 \subseteq T_3 \subseteq T_2 \subseteq T_1 \subseteq T_0, \\
T_7 \cup T_6 &\subseteq T_4, \\
T_7 &\cap T_6 \neq \emptyset, \\
T_7 &\cap T_5 \neq \emptyset, \\
T_7 &\cap T_3 \neq \emptyset, \\
T_7 &\cap T_1 \neq \emptyset,
\end{align*}
\]

(1)

The semilattice \(Q \), which satisfying the conditions (1) is shown in Figure 1. By the symbol \(\Sigma_\{X,8\} \) we denote the set of all \(X \)-semilattices of unions whose every element is isomorphic to \(Q \).

Let \(C(Q) = \{P_7, P_6, P_5, P_4, P_3, P_2, P_1, P_0\} \) is a family sets, where \(P_7, P_6, P_5, P_4, P_3, P_2, P_1, P_0 \) are pairwise disjoint subsets of the set \(X \) and

\[
\psi = \left(\begin{array}{c}
T_7 \\
T_6 \\
T_5 \\
T_4 \\
T_3 \\
T_2 \\
T_1 \\
T_0 \\
P_7 \\
P_6 \\
P_5 \\
P_4 \\
P_3 \\
P_2 \\
P_1 \\
P_0
\end{array} \right)
\]

is a mapping of the semilattice \(Q \) into the family sets \(C(Q) \). Then for the formal equalities of the semilattice \(Q \) we have a form:

\[
\begin{align*}
T_0 &= P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_6 \cup P_7, \\
T_1 &= P_0 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_6 \cup P_7, \\
T_2 &= P_0 \cup P_1 \cup P_3 \cup P_4 \cup P_5 \cup P_6 \cup P_7, \\
T_3 &= P_0 \cup P_1 \cup P_2 \cup P_4 \cup P_5 \cup P_6 \cup P_7, \\
T_4 &= P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_5 \cup P_6 \cup P_7, \\
T_5 &= P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_6 \cup P_7, \\
T_6 &= P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_7, \\
T_7 &= P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_6.
\end{align*}
\]

(2)

here the elements \(P_1, P_2, P_3, P_5 \) are basis sources, the element \(P_0, P_4, P_6, P_7 \) are sources of completenes of the semilattice \(Q \). Therefore \(|X| \geq 4 \) and \(\delta = 4 \).

Theorem 2.1. Let \(Q = \{T_7, T_6, T_5, T_4, T_3, T_2, T_1, T_0\} \in \Sigma_\{X,8\} \). Then \(Q \) is \(XI \)-semilattice, when \(T_5 \cap T_7 = \emptyset \).

Proof. Let \(t \in T_0 \), \(Q_t = \{T \in Q \mid t \in T\} \) and \(\land(Q_t, Q_t) \) is the exact lower bound of the set \(Q_t \) in \(Q \). Then of the formal equalities (2) follows, that

\[
Q_t = \begin{cases}
\emptyset, & \text{if } t \in P_0, \\
\{T_7, T_2, T_0\}, & \text{if } t \in P_1, \\
T_7, & \text{if } t \in P_2, \\
\{T_5, T_4, T_3, T_1, T_0\}, & \text{if } t \in P_3, \\
\{T_6, T_4, T_2, T_1, T_0\}, & \text{if } t \in P_4, \\
\{T_6, T_5, T_4, T_2, T_1, T_0\}, & \text{if } t \in P_5, \\
\{T_6, T_5, T_4, T_3, T_2, T_1, T_0\}, & \text{if } t \in P_6, \\
\{T_6, T_5, T_4, T_3, T_2, T_1, T_0\}, & \text{if } t \in P_7,
\end{cases}
\]

\[
\land(Q_t, Q_t) = \begin{cases}
T_7, & \text{if } t \in P_1, \\
T_6, & \text{if } t \in P_2, \\
T_7, & \text{if } t \in P_3, \\
T_6, & \text{if } t \in P_4, \\
T_6, & \text{if } t \in P_5, \\
T_6, & \text{if } t \in P_6, \\
T_7, & \text{if } t \in P_7.
\end{cases}
\]
We have $Q^\ast = \{ \land (Q, Q) | t \in T_0 \} = \{ T_7, T_6, T_5, T_4 \}$ and $\land (Q, Q) \not\in Q$ if $t \in P_0 \cup P_2 \cup P_6 \cup P_3$. So, from the definition, XI-semilattice follows that Q is not XI-semilattice.

If $P_0 = P_2 = P_6 = P_3 = \emptyset$ (since they are completeness sources), then $\land (Q, Q) \in Q$ for all $t \in T_0$ and $T_4 = T_5 \cup T_6$, $T_1 = T_7 \cup T_8$, $T_2 = T_9 \cup T_3$. Of the last conditions and from the Definition XI-semilattice follows that Q is XI-semilattice. Of the equality $P_0 = P_2 = P_6 = P_3 = \emptyset$ follows that Q is XI-semilattice.

Theorem is proved.

Lemma 2.1. Let $Q = \{ T_7, T_6, T_5, T_4, T_3, T_2, T_1, T_0 \} \in \Sigma_2 (X, 8)$ and $T_9 \cap T_3 = \emptyset$. Then following equalities are true:

$$P_1 = T_7, \quad P_2 = T_8, \quad P_3 = T_9 \setminus T_2, \quad P_4 = T_1 \setminus T_1$$

Proof. The given Lemma immediately follows from the formal equalities (2) of the semilattice Q. The lemma is proved.

Lemma 2.2. Let $Q = \{ T_7, T_6, T_5, T_4, T_3, T_2, T_1, T_0 \} \in \Sigma_2 (X, 8)$ and $T_9 \cap T_3 = \emptyset$. Then the binary relation

$$\varepsilon = (T_7 \times T_1) \cup (T_6 \times T_6) \cup ((T_5 \setminus T_1) \times T_1) \cup ((T_5 \setminus T_2) \times T_2) \cup ((X \setminus T_0) \times T_0)$$

is the largest right unit of the semigroup $B_X (D)$.

Proof. By preposition and from Theorem 2.1 follows that Q is XI-semilattice. Of this, from Lemma 1.1, from Lemma 2.1 and from Theorem 1.3 we have that the binary relation

$$\varepsilon = \bigcup_{i \in \mathbb{N}} (\{ i \} \times \land (Q, Q)) \cup ((X \setminus T_0) \times T_0) = (P_1 \times T_7) \cup (P_2 \times T_6) \cup (P_3 \times T_5) \cup (P_4 \times T_4) \cup (P_5 \times T_3) \cup (P_6 \times T_2) \cup (P_7 \times T_1)$$

is the largest right unit of the semigroup $B_X (D)$.

The lemma is proved.

Lemma 2.3. Let $Q = \{ T_7, T_6, T_5, T_4, T_3, T_2, T_1, T_0 \} \in \Sigma_2 (X, 8)$ and $T_9 \cap T_3 = \emptyset$. Binary relation α having quasi-normal representation of the form

$$\alpha = \{ Y_1 \times T_7 \} \cup \{ \ldots \}$$

where $Y_1, Y_2, Y_3 \not\in \emptyset$ and $V (D, \alpha) = Q \in \Sigma_2 (X, 8)$ is a regular element of the semigroup $B_X (D)$ isomorphic for some complete α-isomorphism $\varphi = \{ T_7, T_6, T_5, T_4, T_3, T_2, T_1, T_0 \}$ of the semilattice Q on some X-subsemilattice $Q' = \{ T_7, T_6, T_5, T_4, T_3, T_2, T_1, T_0 \}$ (see Figure 2) of the semilattice Q satisfies the following conditions:

$$Y_1 \not\subseteq T_7, \quad Y_2 \not\subseteq T_6, \quad Y_3 \not\subseteq T_5, \quad Y_4 \not\subseteq T_4, \quad Y_5 \not\subseteq T_3, \quad Y_6 \not\subseteq T_2, \quad Y_7 \not\subseteq T_1, \quad Y_8 \not\subseteq \emptyset, \quad Y_9 \not\subseteq \emptyset$$

Proof. It is easy to see, that the set $Q (\alpha) = \{ T_7, T_6, T_5, T_4, T_3, T_2, T_1 \}$ is a generating set of the semilattice Q.

Then the following equalities are hold:
By Statement b) of the Theorem 1.2 follows that the following conditions are true:

\[Y^a_7 \supseteq \bar{T}_1, \quad Y^a_6 \supseteq \bar{T}_6, \quad Y^a_5 \cup Y^a_6 \supseteq \bar{T}_5 \cup \bar{T}_6, \quad Y^a_7 \cup Y^a_6 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \cup \bar{T}_6 \cup \bar{T}_4 \cup \bar{T}_2, \quad Y^a_7 \cup Y^a_6 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \cup \bar{T}_6 \cup \bar{T}_4 \cup \bar{T}_2, \]

\[Y^a_7 \cup Y^a_6 \cup Y^a_5 \cup Y^a_4 \cup Y^a_2 = (Y^a_7 \cup Y^a_5) \cup (Y^a_7 \cup Y^a_6 \cup Y^a_4) \cup Y^a_2 \supseteq \bar{T}_7 \cup \bar{T}_5 \cup \bar{T}_6 \cup \bar{T}_2, \quad Y^a_7 \cup Y^a_6 \cup Y^a_5 \cup Y^a_4 \cup Y^a_2 = \bar{T}_7 \cup \bar{T}_5 \cup \bar{T}_6 \cup \bar{T}_2, \]

i.e., the inclusions \(Y^a_7 \cup Y^a_6 \cup Y^a_5 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \), \(Y^a_7 \cup Y^a_6 \cup Y^a_5 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \), \(Y^a_7 \cup Y^a_6 \cup Y^a_5 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \), \(Y^a_7 \cup Y^a_6 \cup Y^a_5 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \) are always hold. Further, it is to see, that the following conditions are true:

\[l(\bar{T}_7 \setminus \{T_1\}) = \emptyset, \quad \bar{T}_7 \setminus l(\bar{T}_6 \setminus \{T_1\}) = T_6 \setminus \emptyset \neq \emptyset; \]

\[l(\bar{T}_7 \setminus \{T_5\}) = \emptyset, \quad \bar{T}_7 \setminus l(\bar{T}_6 \setminus \{T_5\}) = T_6 \setminus \emptyset \neq \emptyset; \]

\[l(\bar{T}_7 \setminus \{T_4\}) = \emptyset, \quad \bar{T}_7 \setminus l(\bar{T}_6 \setminus \{T_4\}) = T_6 \setminus \emptyset \neq \emptyset; \]

\[l(\bar{T}_7 \setminus \{T_2\}) = \emptyset, \quad \bar{T}_7 \setminus l(\bar{T}_6 \setminus \{T_2\}) = T_6 \setminus \emptyset \neq \emptyset; \]

\[l(\bar{T}_7 \setminus \{T_1\}) = \emptyset, \quad \bar{T}_7 \setminus l(\bar{T}_6 \setminus \{T_1\}) = T_6 \setminus \emptyset \neq \emptyset; \]

i.e., \(T_7, T_6, T_5, T_3 \) are nonlimiting elements of the sets \(\bar{Q}(\alpha)_{T_7} \), \(\bar{Q}(\alpha)_{T_6} \), \(\bar{Q}(\alpha)_{T_5} \) and \(\bar{Q}(\alpha)_{T_3} \) respectively. By Statement c) of the Theorem 1.2 it follows, that the conditions \(Y^a_7 \cap \bar{T}_7 \neq \emptyset \), \(Y^a_6 \cap \bar{T}_6 \neq \emptyset \), \(Y^a_5 \cap \bar{T}_5 \neq \emptyset \) and \(Y^a_4 \cap \bar{T}_4 \neq \emptyset \) are hold. Since \(Z_7 \subset Z_5 \), \(Z_6 \subset Z_3 \) we have \(Y^a_5 \cap \bar{T}_5 \neq \emptyset \) and \(Y^a_4 \cap \bar{T}_4 \neq \emptyset \).

Therefore the following conditions are hold:

\[Y^a_7 \supseteq \bar{T}_1, \quad Y^a_6 \supseteq \bar{T}_6, \quad Y^a_5 \cup Y^a_6 \supseteq \bar{T}_5, \quad Y^a_7 \cup Y^a_6 \cup Y^a_4 \supseteq \bar{T}_7 \cup \bar{T}_6 \cup \bar{T}_4, \quad Y^a_7 \cup Y^a_6 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \cup \bar{T}_6 \cup \bar{T}_4 \cup \bar{T}_2, \quad Y^a_7 \cup Y^a_6 \cup Y^a_4 \cup Y^a_2 \supseteq \bar{T}_7 \cup \bar{T}_6 \cup \bar{T}_4 \cup \bar{T}_2, \]

The lemma is proved.

Definition 2.1. Assume that \(Q' \in \Sigma_7(X,8) \). Denote by the symbol \(R(Q') \) the set of all regular elements \(\alpha \) of the semigroup \(B_X(D) \), for which the semilattices \(Q' \) and \(Q \) are mutually \(\alpha \)-isomorphic and \(V(D,\alpha) = Q' \).

It is easy to see the number \(q \) of automorphism of the semilattice \(Q \) is equal to 2.

Theorem 2.2. Let \(\bar{Q} = \{T_7, T_6, T_5, T_1, T_3, T_2, T_4, T_0\} \in \Sigma_7(X,8) \), \(T_5 \cap \bar{T}_3 = \emptyset \) and \(|\Sigma_7(X,8)| = m_0 \). If \(X \) be finite set, and the \(XI \)-semilattice \(Q \) and \(Q' = \{\bar{T}_7, \bar{T}_6, \bar{T}_5, \bar{T}_3, \bar{T}_2, \bar{T}_1, \bar{T}_0\} \) are \(\alpha \)-isomorphic, then
\[|R(Q)| = 2 \cdot m_0 \cdot \left(2^{|T|} - 1\right) \cdot \left(2^{|T|} - 1\right) \cdot 8^{|T|} \]

Proof. Assume that \(\alpha \in R(Q) \). Then a quasinormal representation of a regular binary relation \(\alpha \) has the form

\[\alpha = (Y_a \times T_a) \cup (Y_a \times T_b) \cup (Y_a \times T_c) \cup (Y_a \times T_d) \cup (Y_a \times T_e) \cup (Y_a \times T_f) \cup (Y_a \times T_g) \]

where \(Y_a, Y_b, Y_c, Y_d, Y_e, Y_f, Y_g \) and by Lemma 2.3 satisfies the conditions: \(X \)

\[Y_a \supseteq T_a, \ Y_a \supseteq T_b, \ Y_a \cup Y_a \supseteq T_c, \ Y_a \cup Y_a \supseteq T_d, \ Y_a \cup T_a \supseteq T_e, \ Y_a \cup T_a \supseteq T_f, \ Y_a \cup T_a \supseteq T_g \] (3)

Let \(f_\alpha \) is a mapping the set \(X \) in the semilattice \(Q \) satisfying the conditions \(f_\alpha(t) = \alpha t \) for all \(t \in X \).

\(f_{1a}, f_{2a}, f_{3a}, f_{4a}, f_{5a} \) are the restrictions of the mapping \(f_\alpha \) on the sets \(T_a, T_b, T_c, T_d, T_e, X \setminus T_a \) respectively. It is clear, that the intersection disjoint elements of the set \(\{T_a, T_b, T_c, T_d, T_e, X \setminus T_a\} \) are empty set and \(T_a \cup T_b \cup (T_c \setminus T_a) \cup (T_d \setminus T_a) \cup (X \setminus T_a) = X \).

We are going to find properties of the maps \(f_{1a}, f_{2a}, f_{3a}, f_{4a}, f_{5a} \).

1) \(t \in T_a \). Then by Property (3) we have \(t \in T_a \subseteq Y_a \), i.e., \(t \in Y_a \) and \(t \alpha = T_a \) by definition of the set \(Y_a \). Therefore \(f_{1a}(t) = T_a \) for all \(t \in T_a \).

2) \(t \in T_b \). Then by Property (3) we have \(t \in T_b \subseteq Y_b \), i.e., \(t \in Y_b \) and \(t \alpha = T_b \) by definition of the set \(Y_b \). Therefore \(f_{2a}(t) = T_b \) for all \(t \in T_b \).

3) \(t \in T_c \setminus T_a \). Then by Property (3) we have \(t \in T_c \setminus T_a \subseteq Y_b \cup Y_a \), i.e., \(t \in Y_b \cup Y_a \) and \(t \alpha \in \{T_c, T_a\} \) by definition of the sets \(Y_b \) and \(Y_a \). Therefore \(f_{3a}(t) \in \{T_c, T_a\} \) for all \(t \in T_c \setminus T_a \).

Preposition we have that \(Y_c \cap T_a \neq \emptyset \), i.e. \(t \alpha = T_a \) for some \(t \in T_a \). If \(t \in T_a \), then \(t \alpha = T_a \cap T_a \neq \emptyset \), i.e. \(t \alpha = T_a \) and \(t \alpha = T_a \) by definition of the sets \(Y_c \cap T_a \neq \emptyset \), i.e. \(t \alpha = T_a \cap T_a \neq \emptyset \). Therefore \(f_{3a}(t) = T_c \) for some \(t \in T_c \).

4) \(t \in T_c \setminus T_b \). Then by Property (3) we have \(t \in T_c \setminus T_b \subseteq Y_c \cup Y_b \), i.e., \(t \in Y_c \cup Y_b \) and \(t \alpha \in \{T_c, T_b\} \) by definition of the sets \(Y_c \) and \(Y_b \). Therefore \(f_{4a}(t) \in \{T_c, T_b\} \) for all \(t \in T_c \setminus T_b \).

Preposition we have that \(Y_b \cap T_c \neq \emptyset \), i.e. \(t \alpha = T_b \) for some \(t \in T_c \). If \(t \in T_c \), then \(t \alpha = T_b \cap T_c \neq \emptyset \), i.e. \(t \alpha = T_b \) and \(t \alpha = T_c \) by definition of the sets \(Y_b \cap T_c \neq \emptyset \), i.e. \(t \alpha = T_b \cap T_c \neq \emptyset \). Therefore \(f_{4a}(t) = T_b \) for some \(t \in T_b \).

5) \(t \in X \setminus T_0 \). Then by definition quasinormal representation binary relation \(\alpha \) and by Property (3) we have \(t \in X \setminus T_0 \subseteq X = Y_a \cup Y_b \cup Y_c \cup Y_d \cup Y_e \cup Y_f \cup Y_g \), i.e. \(t \alpha \in \{T_0, T_1, T_2, T_3, T_4, T_5, T_6, X \} \) by definition of the sets \(Y_a, Y_b, Y_c, Y_d, Y_e, Y_f, Y_g \). Therefore \(f_{5a}(t) \in \{T_0, T_1, T_2, T_3, T_4, T_5, T_6, X \} \) for all \(t \in X \setminus T_0 \).

Therefore for every binary relation \(\alpha \in R(Q) \) exist ordered system \((f_{1a}, f_{2a}, f_{3a}, f_{4a}, f_{5a}) \). It is obvious that for different binary relations exist different ordered systems.

Let \(f_1 : T_1 \rightarrow \{T_1\}, \ f_2 : T_2 \rightarrow \{T_2\}, \ f_3 : T_3 \setminus T_2 \rightarrow \{T_3, T_2\}, \ f_4 : T_3 \setminus T_1 \rightarrow \{T_3, T_1\}, \ f_5 : X \setminus T_0 \rightarrow Q \) are such mappings, which satisfying the conditions:

6) \(f_1(t) \in \{T_1\} \) for all \(t \in T_1 \);

7) \(f_2(t) \in \{T_2\} \) for all \(t \in T_2 \);
8) $f_i(t) \in \{T_e, T_i\}$ for all $t \in \overline{T_i} \setminus T_i$ and $f_i(t_i) = T_i$ for some $t_i \in \overline{T_i} \setminus T_i$;
9) $f_4(t) \in \{T_e, T_i\}$ for all $t \in \overline{T_i} \setminus T_i$ and $f_4(t_4) = Z_4$ for some $t_4 \in \overline{T_i} \setminus T_i$;
10) $f_3(t) \in \{T_e, T_0, T_2, T_3, T_4, T_5, T_6, T_7, T_8\}$ for all $t \in X \setminus \overline{T_0}$.

Now we define a map f of a set X in the semilattice Q, which satisfies the following condition:

$$f(t) = \begin{cases} f_1(t), & \text{if } t \in T_0, \\
 f_2(t), & \text{if } t \in \overline{T_2} \setminus T_2, \\
 f_3(t), & \text{if } t \in \overline{T_3} \setminus T_3, \\
 f_4(t), & \text{if } t \in \overline{T_4} \setminus T_4, \\
 f_5(t), & \text{if } t \in \overline{T_5} \setminus T_5.
\end{cases}$$

Now let $\beta = \bigcup_{x \in X} (\{x\} \times f(x))$, $Y_\beta^i = \{t \in T_i \mid Y \subseteq T_i\}$ for all $i = 1, 2, \ldots, 5$. Then binary relation β is written in the form

$$\beta = \bigcup \bigcup Y_\beta^i \times T_i \cup \bigcup \bigcup Y_\beta^i \times T_i$$

and satisfying the conditions:

$$Y_\beta^i \supseteq T_i, \quad Y_\beta^i \supseteq T_i, \quad Y_\beta^i \cup Y_\beta^i \supseteq T_i, \quad Y_\beta^i \cup Y_\beta^i \supseteq T_i, \quad Y_\beta^i \cap T_i \cap \emptyset = \emptyset, \quad Y_\beta^i \cap T_i \neq \emptyset$$

From this and by Lemma 2.3 we have that $\beta \in R(Q')$.

Therefore for every binary relation $\alpha \in R(Q')$, and ordered system $(f_{1a}, f_{2a}, f_{3a}, f_{4a}, f_{5a})$ exist one to one mapping.

By Theorem 1.1 the number of the mappings $f_{1a}, f_{2a}, f_{3a}, f_{4a}, f_{5a}$ are respectively:

$$1, 1, 2^{|T_1|} - 1, 2^{|T_2|} - 1, 8^{|T_5|}$$

(see ([1], Corollary 1.18.1), ([2], Corollary 1.18.1)).

The number of ordered system $(f_{1a}, f_{2a}, f_{3a}, f_{4a}, f_{5a})$ or number regular elements can be calculated by the formula

$$|R(Q')| = 2^{|T_1|} \cdot \left(2^{|T_2|} - 1\right) \cdot \left(2^{|T_3|} - 1\right) \cdot 8^{|T_5|}$$

(see ([1], Theorem 6.3.5), ([2], Theorem 6.3.5)).

The theorem is proved.

Corollary 2.1. Let $Q = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8\} \subseteq \Sigma_2(X, 8)$, $T_3 \cap T_6 = \emptyset$. If X be a finite set and $E^{(e)}(Q)$ be the set of all right units of the semigroup $B_X(Q)$, then the following formula is true

$$|E^{(e)}(Q)| = \left(2^{|T_1|} - 1\right) \cdot \left(2^{|T_2|} - 1\right) \cdot 8^{|T_5|}$$

Proof: This corollary immediately follows from Theorem 2.2 and from the ([1], Theorem 6.3.7) or ([2], Theorem 6.3.7).

The corollary is proved.

References

