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Abstract 
While there are many published data on the average properties of elasticity for metals, there is lit-
tle on the expected randomness. This is despite the known randomness of the elasticity of the 
grains that make up metals. It seems implicitly assumed that due to pseudo-isotropy, the average 
is all that is of concern. But how does one know if this is always the case? By creating a simple 
model of a metal, it is shown that for typical metal samples the randomness is negligible. However, 
as samples become smaller, it is possible to estimate the randomness based on information about 
the properties of grains within the metal. Further, due to the central limit theorem, which is im-
plied by the model, a Gaussian distribution can be expected. This can be used in an evolutionary 
approach to generating a distribution for further probabilistic analysis of a respective system. 
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1. Introduction 
Probabilistic design is a sub discipline of engineering design that concerns itself with the predication and man- 
agement of the effects of randomness in the values of key design variables and parameters. This discipline has 
been documented for some decades; now Haugen [1] is an example of the earliest texts on the topic. Much of the 
randomness that is experienced comes from manufacturing or material properties. For this reason, it is of value 
to have a realistic representation of the distribution for material properties. While Haugen argued that a Gaussian 
distribution can be assumed for all distributions, others, especially Siddall argued that a design engineer should 
use their understanding of the respective phenomena to intuitively determine a preliminary distribution [2]. This 
distribution would then be updated with data, as they came to hand, through an evolutionary method. It was 
considered by Siddall that the Bayesian approach was not flexible enough [3]. The limitation of the evolutionary 
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approach is that it ignores the value that could be had from applying probability theory to the theory of the re- 
spective phenomena to develop an as accurate as possible preliminary distribution for the evolutionary method. 
This has been the focus of the author of this paper for some time. The consideration of the elastic properties of 
metals is one application and is the one that will be considered here. 

2. Theoretical Background 
2.1. The Elastic Properties of Metal Grains 
Metals are constituted of grains. Within each grain, the atoms are arranged in a crystal structure. When a metal 
is compressed, twisted or expanded under force, the change in shape is initially accommodated by the movement 
of the subatomic particle (elections and the nucleus) within ach atom relative to each other.  

If the force becomes great enough to cause the atoms to move relative to each other, then the deformation had 
become plastic. This is not within the scope of this paper and these properties require separate analysis.  

The force required to cause a certain expansion is defined as the modulus of elasticity E. The modulus of elas- 
ticity for each grain is a function of the orientation of the crystals within. Thus, if the orientation of a grain is 
random, then the modulus of elasticity of in the direction of interest is also random. The grains within the typical 
sample of metal are random. This randomness can also vary depending upon treatments, which can affect the 
size of grains and their orientation. This random orientation of the grains within a metal sample is the source of 
randomness for the elastic properties in metals. 

The modulus for elasticity for a metal crystal at a set orientation can be found analytically with accurate re- 
sults. 

2.2. Elastic Properties of Macroscopic Metals 
Others have taken the models for the modulus of elasticity as a function of orientation and integrated them over 
all possible orientations to find the average modulus [4]. While these results have proven close to measured val- 
ues, they assume pseudoisotropy (the effective isotropy that comes from have a large number random samples 
that average each other out), and have paid little attention to the amount and nature of random variation that can 
be expected. 

By taking these models for a single grain and then creating a model for a larger sample, it will be possible to 
determine how the variability changes with the size of the sample and the average grain size. This will then pro- 
vide guidance to probabilistic designers on assumptions that they should make for design variables and parame- 
ters that are essentially elastic properties of metals. 

3. Analysis 
3.1. Model 
The first step in the analysis process is the development of a model for a metal sample. To create this model, the 
idealized metal sample was treated as a cube made of many other cubes as shown in Figure 1. 

Each smaller cube is a grain with a random modulus of elasticity. The sample is n1 grains wide n2 grains high 
and n3 grains long. 

In this case the modulus of elasticity in the horizontal direction is to be considered. First consider the left most 
plane consisting of n1 by n3 grains. If the grains are fixed to each other, then each grain will experience the same 
change in length X’ after being subjected to the force F. 

According to Hook’s Law, the relationship between force and elastic deformation is 
Eσ ε=                                           (1) 

where: 
• s is the stress F/A; 
• e is the engineering strain X/L; 
• A is the area over which the force is acting. 

If both X’ and L’ are the same for each grain in the left most plane, then it is only the modulus E’ and stress s’ 
that will change from grain to grain. The engineering strain for each grain throughout the plane considered is 
equal and given the symbol ep.  
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Figure 1. Simplified metal structure.                

 
Additionally, the total force that is experienced by the grains in the first plane will be the sum of the force 

from each grain F’ and be equal to the total force applied F. This is expressed mathematically in Equation (2). 
1 2

1 1
n nF F ′= ∑ ∑                                    (2) 

To take advantage of Hook’s law the expression must be in terms of stress and strain. Thus, both sides of Eq- 
uation (2) becomes 

1 2
1 1
n nA Aσ σ ′ ′= ∑ ∑                                  (3) 

Noting that A/A’ is equal to n1 n2, Equation (3) can be modified as 

( ) ( )1 2
1 21 1

n n n nσ σ ′= ∑ ∑                                (4) 

The stress s can now be replaced with modulus elasticity E and strain e by using Hook’s law 

( ) ( )1 2
1 21 1

n n
p p pE E n nε ε′= ∑ ∑                              (5) 

Note the use of Ep for the modulus of elasticity for the plane in question and the strain for the plane ep, which 
cancels out to give 

( ) ( )1 2
1 21 1

n n
pE E n n′= ∑ ∑                                 (6) 

With an expression for Ep, the next required step is to find a relationship between Ep and E.  
Consider n2 planes stacked next to each other to complete the metal sample. The area of each plane is the 

same and the force acting on each plane is the same. Therefore, the stress each plane is subjected to resulting 
from the force F is the same. The length L of the sample is equal to the summation of the length of the planes L’. 
Also, the total elastic deformation of the sample X is equal to the summation of the elastic deformation of the 
planes X’. These can be expressed as 

3
1
nL L′= ∑                                        (7) 

and 
3

1
nX X ′= ∑                                        (8) 

respectively. 
The strain for the sample e when subjected to the force F then becomes 

3 3
1 1
n nX Lε ′ ′= ∑ ∑                                    (9) 

The deflection X’ can be replaced with the strain for the respective plane ep multiplied by the length L’ 
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3 3
1 1
n n

P L Lε ε ′ ′= ∑ ∑                                  (10) 

In this simplified model L’ is a constant and can be removed from the summations to cancel out in Equation 
(10), leaving 

3 3 3
31 1 11n n n

p p nε ε ε= =∑ ∑ ∑                             (11) 

Returning to Hook’s law, the strain of the plane in Equation (11) can be replaced with the modulus of elastic- 
ity for that plane ep and the stress that all planes are equally subject to s. This results in 

( )3
31

n
pE nε σ= ∑                                   (12) 

The stress s, being constant, can be brought to the left of Equation (12). This will then bring about the overall 
strain e being divided by the overall stress s, which is equal to the reciprocal of modulus of elasticity for the 
sample being analysed: 

3
3 11 1 1n

pE n E= ∑                                  (13) 

Note that the number of grains along the length n3 has been brought out of the summation in Equation (13). 
Equation (13) can now be reciprocated to produce an expression for the modulus of elasticity E: 

( )3
3 1 1n

pE n E= ∑                                   (14) 

Together, Equation (6) and Equation (14) provide a model for the modulus of elasticity for a sample metal as 
a function of the random modulus of elasticity for each grain.  

By applying the moment method to Equation (6) the expected value Epd[ ] for Ep can be had, 

[ ]pEpd E Epd E′  =                                   (15) 

As can the standard deviation Std[ ] for Ep, 

[ ] 1 2pStd E Std E n n′  =                                 (16) 

Applying the moment method to Equation (14) the first order approximation for the expected value of E is 
found to be 

[ ] [ ].pEpd E Epd E Epd E′ = =                              (17) 

Thus the average value of elasticity for a metal sample is that of a single grain’s over its possible orientations. 
This has been done by others and good results (when compared to measurement were found). However, it is the 
standard deviation and the shape of the distribution that is of interest to the probabilistic designer. 

The moment method can be used again to find the first order approximation for the standard deviation of the 
modulus of elasticity as a function of the standard deviation of the modulus of elasticity of a plane. The outcome 
is 

[ ] 3pStd E Std E n =                                 (18) 

By substituting Equation (16) into Equation (18) a final expression can be had for the standard deviation of 
the modulus of elasticity for a large sample, made of a number N of grains. This expression is 

[ ] [ ] [ ]1 2 3 .Std E Std E n n n Std E N′ ′= =                       (19) 

3.2. Model Application 
To evaluate the application of this probabilistic model and to assess the insights it can provide, the case of tin 
will be considered. On a granular level the maximum modulus of elasticity for tin is 84.4 GPa and the minimum 
is 24.4 GPa. With only the maximum and minimum values available, a uniform distribution is the least biased 
assumption. Thus the mean and standard deviation of E’ in this case are 44 GPa and 17 GPa respectively. The 
observed average modulus elasticity for tin is 45.6 GPa [4], but the author was unable to find published values 
for the standard deviation. 
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With the above information it is possible to plot the standard deviation as a function of the number of grains 
for tin. However, it is impractical to specify a metal sample by the number of grains within. Instead, the basic 
dimension of the sample D and the average grain size d are easier to consider and specify. The relationship be- 
tween N, D and d is 

( )2N D d=                                       (20) 

By inserting Equation (20) into Equation (19), an expression for the standard deviation of the modulus of 
elasticity in terms of the grain size and sample size is at hand: 

[ ] [ ] ( )3 2 .Std E Std E D d′=                               (21) 

Using the values for tin above it is possible to plot Equation (21) as shown in Figure 2. 

3.3. Model Implications 
Because Equation (6) is a series of summations, via the central limit theorem the distribution for Ep can be as- 
sumed to be close to Gaussian. Equation (14) also has a series of additions. However, there is also a reciproca- 
tion. The reciprocal function is much like a linear function when the value of the input is large. Further, if the 
mean of the input is large in comparison to the standard deviation, then the effects of any minor non-linearity is 
minor, and the output distribution is much the same type as the input. Thus, if the standard deviation of Ep is 
small relative to the mean, then the distribution of the modulus of elasticity is likely very close to a Gaussian 
distribution. 

Typically, grains are less than a millimetre in size and can be as small as one one-hundredth of a millimetre. 
Typical engineered parts are from tens of millimetres to metres. Thus the ratio of D to d is around 100 or more. 
From inspection of Figure 2, this corresponds to a negligible standard deviation of the modulus of elasticity. 
This means further that the standard deviation is small compared to the mean, and that the distribution, while 
very narrow, is well approximated by a Gaussian distribution. 

Because the other elastic properties of metals have the same sources of randomness [4], the conclusions about 
the modulus of elasticity are valid for other properties such as the modulus of rigidity and Poisson’s ratio. 

4. Conclusions 
Through the application of a simple model it can be seen that the modulus of elasticity for a typical engineering 
metal sample will have negligible randomness. This is due to the large number of grains in a typical sample, the 
random orientation of the grains and the central limit theorem. This negligible value is likely the reason why 
there are little published data on the randomness of elastic properties of metals. 

However, as a sample becomes smaller, which is becoming more likely with advances in nano technology, it 
is likely that this assumption is no longer valid. In such cases though, an engineer can use the derived models 
(and published data about metal grains [4]) to provide an estimation of the expected randomness. It can also  
 

 
Figure 2. Grain size and standard deviation for tin.           
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likely still be assumed that the distribution will be Gaussian, as per the central limit theorem. The engineer can 
then use this distribution for further probabilistic analysis of the respective system being designed. 
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