Lattices Associated with a Finite Vector Space

Mengtian Yue
Office of Scientific Research, Langfang Teachers’ College, Langfang, China
Email: ymtxyz@126.com

Received 23 December 2013; revised 23 January 2014; accepted 30 January 2014

Abstract

Let F_q^n be a n-dimensional row vector space over a finite field F_q. For $1 \leq d \leq n-1$, let W_0 be a d-dimensional subspace of F_q^n. $L(n,d)$ denotes the set of all the spaces which are the subspaces of F_q^n and not the subspaces of W_0 except $\{0\}$. We define the partial order on $L(n,d)$ by ordinary inclusion (resp. reverse inclusion), and then $L(n,d)$ is a poset, denoted by $L_0(n,d)$ (resp. $L_R(n,d)$). In this paper we show that both $L_0(n,d)$ and $L_R(n,d)$ are finite atomic lattices. Further, we discuss the geometricity of $L_0(n,d)$ and $L_R(n,d)$, and obtain their characteristic polynomials.

Keywords
Vector Space; Geometric Lattice; Characteristic Polynomial

1. Introduction

Let P be a poset. For $a, b \in P$, we say a covers b, denoted by $b <\cdot a$, if $b < a$ and there doesn’t exist $c \in P$ such that $b < c < a$. If P has the minimum (resp. maximum) element, then we denote it by 0 (resp. 1) and say that P is a poset with 0 (resp. 1). Let P be a finite poset with 0. By a rank function on P, we mean a function r from P to the set of all the integers such that $r(0) = 0$ and $r(a) = r(b) + 1$ whenever $b \leq a$. Observe the rank function is unique if it exists. P is said to be ranked whenever P has a rank function.

Let P be a finite ranked poset with 0 and 1. The polynomial $\chi(P, x) = \sum_{a \in P} \mu(0, a)x^{r(a)}$ is called the characteristic polynomial of P, where μ is the Möbius function on P and r is the rank function of P. A poset P is said to be a lattice if both $a \lor b = \sup\{a, b\}$ and $a \land b = \inf\{a, b\}$ exist for any two elements $a, b \in P$. $a \lor b$ and $a \land b$ are called the join and meet of a and b, respectively. Let P be a finite lattice with 0. By an
atom in P, we mean an element in P covering 0. We say P is atomic if any element in $P \setminus \{0\}$ is the join of atoms. A finite atomic lattice P is said to be a geometric lattice if P admits a rank function r satisfying $r(a \land b) + r(a \lor b) \leq r(a) + r(b), \forall a, b \in P$. Notations and terminologies about posets and lattices will be adopted from books [1] [2].

The special lattices of rough algebras were discussed in [3]. The lattices generated by orbits of subspaces under finite (singular) classical groups were discussed in [4] [5]. Wang et al. [6]-[8] constructed some sublattices of the lattices in [4]. The subspaces of a d-bounded distance-regular have similar properties to those of a vector space. Gao et al. [9]-[11] constructed some lattices and posets by subspaces in a d-bounded distance-regular graph. In this paper, we continue this research, and construct some new sublattices of the lattices in [4], discussing their geometricity and computing their characteristic polynomials.

Let F_q be a finite field with q elements, where q is a prime power. For a positive integer n, let F_q^n be the n-dimensional row vector space over F_q. Let $1 \leq d \leq n-1$. For a fixed d-dimensional subspace W_0 of F_q^n, let $L(n,d) = \{ P | P$ is a subspace of F_q^n and is not of $W_0 \cup \{0\} \}$. If we define the partial order on $L(n,d)$ by ordinary inclusion (resp. reverse inclusion), then $L(n,d)$ is a poset, denoted by $L_0(n,d)$ (resp. $L_\text{r}(n,d)$). In the present paper we show that both $L_0(n,d)$ and $L_\text{r}(n,d)$ are finite atomic lattices, discuss their geometricity and compute their characteristic polynomials.

2. The Lattice $L_0(n,d)$

In this section we prove that the lattice $L_0(n,d)$ is a finite geometric lattice, and compute its characteristic polynomial. We begin with a useful proposition.

Proposition 2.1. ([12], Lemma 9.3.2 and [13], Corollaries 1.8 and 1.9) For $0 \leq k \leq m \leq n$, the following hold:

1) The number of k-dimensional subspaces contained in a given m-dimensional subspace of F_q^n is
\[
\binom{m}{k}_q = \prod_{i=m-k+1}^{m} (q^i - 1) / \prod_{i=1}^{k} (q^i - 1).
\]

2) The number of m-dimensional subspaces containing a given k-dimensional subspace of F_q^n is
\[
\binom{n-k}{m-k}_q.
\]

3) Let P be a fixed m-dimensional subspace of F_q^n. Then the number of k-dimensional subspaces Q of F_q^n satisfying $\dim(P \cap Q) = t$ is
\[
q^{(m-t)(k-t)} \binom{n-m}{k-t} \binom{m}{t}_q.
\]

Theorem 2.2. $L_0(n,d)$ is a geometric lattice.

Proof. For any two elements $P, Q \in L_0(n,d)$,
\[
P \lor Q = P + Q, P \land Q = \begin{cases} \{P \cap Q\} & \text{if } P \cap Q \neq \emptyset; \\ \{0\} & \text{otherwise.} \end{cases}
\]

Therefore $L_0(n,d)$ is a finite lattice. Note that $\{0\}$ is the unique minimum element. Let $P(n,d;j)$ be the set of all the j-dimensional subspaces of $L_0(n,d)$, where $1 \leq j \leq n$. Then $P(n,d;1)$ is the set of all the atoms in $L_0(n,d)$. In order to prove $L_0(n,d)$ is atomic, it suffices to show that every element of $P(n,d;j)$ is a join of some atoms. The result is trivial for $j = 1$. Suppose that the result is true for $j = l > 1$. Let $U \in P(n,d;l+1)$. By Proposition 2.1 and $\dim(W_e \cap U) \leq l$, the number of l-dimensional subspaces of $L_0(n,d)$ contained in U at least is
\[
\left(\frac{l+1}{l}_q\right) - 1 = \frac{q^{l+1} - 1}{q-1} \geq 2.
\]

Therefore there exist two different l-dimensional subspaces $U', U'' \subseteq U$ of $L_0(n,d)$ such that $U = U' \lor U''$.

By induction \(U \) is a join of some atoms. Hence \(L_0(n,d) \) is a finite atomic lattice. For any \(U \in L_0(n,d) \), define \(r_0(U) = \dim U \). It is routine to check that \(r_0 \) is the rank function on \(L_0(n,d) \). For any \(U, V \in L_0(n,d) \), we have

\[
r_0(U \lor V) + r_0(U \land V) = \dim(U + V) + \dim(U \land V) \\
\leq \dim(U + V) + \dim(U \cap V) \\
= \dim U + \dim V = r_0(U) + r_0(V).
\]

Hence \(L_0(n,d) \) is a geometric lattice. \(\square \)

Lemma 2.3. For any \(P, Q \in L_0(n,d) \), suppose that \(\dim P = t \), \(\dim Q = t + s \) and \(\dim(W \cap Q) = m \). Then the Möbius function of \(L_0(n,d) \) is

\[
\mu(P,Q) = \begin{cases}
(-1)^{l} q^{\frac{s}{2}} & \text{if } \{0\} \neq P \leq Q \text{ or } P = Q = \{0\}; \\
\sum_{j=1}^{n} (-1)^{l-1} \left(\begin{bmatrix} s \\ l \end{bmatrix} - \begin{bmatrix} m \\ l \end{bmatrix} \right) q^{\frac{t-j}{2}} & \text{if } \{0\} = P < Q; \\
0 & \text{otherwise.}
\end{cases}
\]

Proof: The Möbius function of \(L_0(n,d) \) is

\[
\mu(P,Q) = \begin{cases}
(-1)^{l} q^{\frac{s}{2}} & \text{if } \{0\} \neq P \leq Q \text{ or } P = Q = \{0\}; \\
\sum_{j=1}^{n} -\mu(U,Q) & \text{if } \{0\} = P < Q; \\
0 & \text{otherwise.}
\end{cases}
\]

By Proposition 2.1, we have

\[
\sum_{\{0\} \subset U \subset Q} -\mu(U,Q) = \sum_{j=1}^{n} \left(\begin{bmatrix} s \\ l \end{bmatrix} - \begin{bmatrix} m \\ l \end{bmatrix} \right) q^{\frac{t-j}{2}}.
\]

Thus, the assertion follows. \(\square \)

Theorem 2.4. The characteristic polynomial of \(L_0(n,d) \) is

\[
\chi(L_0(n,d),x) = x^n + \sum_{j=1}^{n} \left(\begin{bmatrix} n \\ j \end{bmatrix} - \begin{bmatrix} d \\ j \end{bmatrix} \right) q^{\frac{n-j}{2}} \\
+ \sum_{j=1}^{n} \sum_{l=0}^{\min(d,j-1)} (-1)^{l-1} q^{\frac{d-j}{2}} \left(\begin{bmatrix} d \\ l \end{bmatrix} - \begin{bmatrix} n-d \\ j \end{bmatrix} \right) x^{n-j}.
\]

Proof: By Proposition 2.1 and Lemma 2.3, we have

\[
\chi(L_0(n,d),x) = \sum_{P \in L_0(n,d)} \mu(P) x^{\alpha_0(P)} \\
= x^n + \sum_{\{0\} \subset P \subset L_0(n,d)} \mu(P) x^{\alpha_0(P)} \\
= x^n + \sum_{j=1}^{n} \left(\begin{bmatrix} n \\ j \end{bmatrix} - \begin{bmatrix} d \\ j \end{bmatrix} \right) q^{\frac{n-j}{2}} \\
+ \sum_{j=1}^{n} \sum_{l=0}^{\min(d,j-1)} (-1)^{l-1} q^{\frac{d-j}{2}} \left(\begin{bmatrix} d \\ l \end{bmatrix} - \begin{bmatrix} n-d \\ j \end{bmatrix} \right) x^{n-j}.
\]
3. The Lattice \(L_R(n,d) \)

In this section we prove that the lattice \(L_R(n,d) \) is a finite atomic lattice, classify its geometricity and compute its characteristic polynomial.

Theorem 3.1. The following hold:
1) \(L_R(n,d) \) is a finite atomic lattice.
2) \(L_R(n,d) \) is geometric if and only if \(n = 2 \).

Proof.
1) For any two elements \(P, Q \in L_R(n,d) \), \(P \cap Q = P + Q \) and
\[
P \lor Q = \begin{cases} \{P \cap Q\} & \text{if } P \cap Q \not\subseteq W; \\ \{0\} & \text{otherwise.} \end{cases}
\]

Therefore \(L_R(n,d) \) is a finite lattice. Note that \(\{0\} \) is the unique minimum element. Let \(\{0\} \subseteq P \subseteq W_0 \) be the set of all the \(j \)-dimensional subspaces of \(L_R(n,d) \), where \(0 \leq j \leq n-1 \). Then \(P(n,d;n-1) \) is the set of all the atoms in \(L_R(n,d) \). In order to prove \(L_R(n,d) \) is atomic, it suffices to show that every element of \(P(n,d); 0 \leq j \leq n-1 \) is a join of some atoms. The result is trivial for \(j = n-1 \). Suppose that the result is true for \(j = n-l \). Let \(U \subseteq P(n,d;n-l-1) \). By Proposition 2.1, the number of \(n-l \)-dimensional subspaces of \(L_R(n,d) \) containing \(U \) is equal to
\[
|n-l\rangle - |d-1\rangle |1\rangle = \frac{q^{d-l} - q^{d-1} - 1}{q-1} \geq 2.
\]

Then there exist two different \((n-l) \)-dimensional subspaces \(U \subseteq U', U'' \subseteq L_R(n,d) \) such that \(U = U' \lor U'' \). By induction \(U \) is a join of some atoms. Therefore \(L_R(n,d) \) is a finite atomic lattice.

2) For any \(U \subseteq L_R(n,d) \), we define \(r(U) = n - \dim U \). It is routine to check that \(r(U) \) is the rank function on \(L_R(n,d) \). It is obvious that \(L_R(2,1) \) is a geometric lattice. Now assume that \(n \geq 3 \). Let \(P \) be a \(1 \)-dimensional subspace of \(n^* \) and \(P \subseteq W_0 \). By Proposition 2.1, the number of \(2 \)-dimensional subspaces of \(L_R(n,d) \) containing \(P \) is equal to
\[
|n-l\rangle - |d-1\rangle |1\rangle = \frac{q^{d-l} - q^{d-1} - 1}{q-1} \geq 2.
\]

Therefore, there exist two different \(2 \)-dimensional subspaces \(P \subseteq P', P'' \subseteq L_R(n,d) \) such that \(P = P' \lor P'' \).

Lemma 3.2. For any \(P, Q \subseteq L_R(n,d) \), suppose that \(\dim P = t+s \), \(\dim Q = t \) and \(\dim(W_0 \cap P) = m \). Then the Möbius function of \(L_R(n,d) \) is
\[
\mu(P,Q) = \begin{cases} (-1)^t q^{\frac{s}{2}} & \text{if } P \leq Q \neq \{0\} \text{ or } P = Q = \{0\}; \\ \sum_{l=1}^s (-1)^{l-1} \left(\begin{array}{c} s \cr l \end{array} \right) q^{l-1} & \text{if } P < Q = \{0\}; \\ 0 & \text{otherwise.} \end{cases}
\]

Proof. The Möbius function of \(L_R(n,d) \) is
\[
\mu(P,Q) = \sum_{P \subseteq U \subseteq \{0\}} -\mu(P,U) & \text{if } P \leq Q = \{0\} \text{ or } P = Q = \{0\}; \\ 0 & \text{otherwise.}
\]

Proposition 2.1 implies that
\[
\sum_{P \in \mathcal{U} < [0]} -\mu(P, U) = \sum_{j=1}^{s} (-1)^{s-j} \left(\begin{bmatrix} n \cr j \end{bmatrix} - \begin{bmatrix} d \cr j \end{bmatrix} \right) q^{\frac{n-j}{2}}.
\]

Theorem 3.3. The characteristic polynomial of \(L_{n}(n, d) \) is
\[
\chi(L_{n}(n, d), x) = x^n - 1 + \sum_{j=1}^{n} (-1)^{n-j} \left(\begin{bmatrix} n \cr j \end{bmatrix} - \begin{bmatrix} d \cr j \end{bmatrix} \right) q^{\frac{n-j}{2}} (x^j - 1).
\]

Proof. By Proposition 2.1, we have
\[
\chi(L_{n}(n, d), x) = \sum_{P \in \mathcal{U}^*} \mu(F_q^n, P) x^{\deg(P)}
\]
\[
= x^n + \sum_{P \in \mathcal{U}^*} \mu(F_q^n, P) x^{\text{dim}(P)}
\]
\[
= x^n + \sum_{j=1}^{n} (-1)^{n-j} \left(\begin{bmatrix} n \cr j \end{bmatrix} - \begin{bmatrix} d \cr j \end{bmatrix} \right) q^{\frac{n-j}{2}} x^j + \sum_{j=1}^{n} (-1)^{n-j} \left(\begin{bmatrix} n \cr j \end{bmatrix} - \begin{bmatrix} d \cr j \end{bmatrix} \right) q^{\frac{n-j}{2}} (x^j - 1).
\]

References

