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ABSTRACT 
This paper extends Slutsky’s classic work on consumer theory to a random horizon stochastic dynamic frame- 
work in which the consumer has an inter-temporal planning horizon with uncertainties in future incomes and 
life span. Utility maximization leading to a set of ordinary wealth-dependent demand functions is performed. A 
dual problem is set up to derive the wealth compensated demand functions. This represents the first time that 
wealth-dependent ordinary demand functions and wealth compensated demand functions are obtained under 
these uncertainties. The corresponding Roy’s identity relationships and a set of random horizon stochastic dy-
namic Slutsky equations are then derived. The extension incorporates realistic characteristics in consumer the- 
ory and advances the conventional microeconomic study on consumption to a more realistic optimal control 
framework. 
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1. Introduction 
In a ground-breaking analysis by Slutsky [1], the foundation for rigorous analysis of optimal consumption deci-
sion was laid. This masterpiece which brought mathematical rigor to demand analysis is undisputedly an integral 
part of contemporary mainstream economics. It allows the problem of the consumer to be analyzed in terms of a 
utility maximization problem subject to a budget constraint. A dual problem to the utility maximization problem is 
the minimization of the budget (income) subject to maintaining the utility level achieved before. In particular, 
the effect of a price change on the demand of goods can be decomposed into tractable terms from the primal and 
dual problems yielding significant economic implications. This prominent contribution in consumer theory, 
known as the Slutsky equation, was christened by John Hicks as the “Fundamental Equation of Value Theory”. 
An important economic implication of the Slutsky equation is the now famous Hicksian decomposition which 
separates the effect of a change in price on demand into a pure substitution effect and an income effect. The pa- 
pers [2-7] propagated Slutsky’s classic work. Yeung [8] extends Slutsky’s work to a dynamic framework in 
which the consumer has a T-period life span with future incomes being uncertain. 

Another milestone in consumer theory is the Roy’s identity [9] which provides an often invoked mathematical 
result in consumer theory. The identity is also instrumental to prove the Slutsky equation. In this paper, uncer- 
tainties in future incomes and the consumer’s life span are incorporated to reflect the realities in consumer 
choice. In particular, optimal consumption choice under these two types of uncertainties is examined. Inter- 
temporal wealth-dependent ordinary demand functions and wealth compensated demand functions are  
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obtained. Two of the most crucial foundations in consumer theory—Roy’s identity and Slutsky equation—are 
derived in a random horizon stochastic dynamic framework. 

The paper is organized as follows. We first present a model of utility maximization by a consumer with an 
uncertain life span and an uncertain inter-temporal budget in Section 2. In Section 3, a set of wealth-dependent 
ordinary demands is characterized. The Roy’s identity in a random horizon stochastic dynamic framework is de-
rived in Section 4. The dual problem is formulated in Section 5 and wealth compensated demand functions are 
obtained. Stochastic dynamic Slutsky equations for the consumer with an uncertain life span are formulated in 
Section 6. An illustration with explicit utility functions is given in Section 7. Section 8 concludes the paper. 

2. Utility Maximization under Random Life Span and Uncertain Income 
Consider the case of a consumer whose life-span involves T̂  periods where T̂  is a random variable with 
range { }1,2, ,T  and corresponding probabilities { }1 2, , , Tγ γ γ . Conditional upon the reaching of period τ , 
the probability of the consumer’s life-span would last up to periods , 1, ,Tτ τ +   becomes respectively 

1, , , .T
T T T

τ τ
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                                   (1) 

We use ( )1 2, , , kn
k k k kx x x x=   to denote the quantities of goods consumed and ( )1 2, , , kn

k k k kp p p p=   the 
corresponding prices in period { }1,2, ,k T∈  . The consumer maximizes his expected inter-temporal utility 
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subject to the budget constraint characterized by the wealth dynamics 
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where r  is the interest rate; 1kθ +  is the random income that the consumer will receive in period 1k + ; and 
kθ , for { }2,3, ,k T∈  , is a set of statistically independent random variables, and 

2 2 1, , , T
Eθ θ θ +

 is the expecta- 
tion operation with respect to the statistics of 2 3 1, , , Tθ θ θ + . The random variable kθ  has a non-negative range 
{ }1 2, , , km

k k kθ θ θ  with corresponding probabilities { }1 2, , , km
k k kλ λ λ . 

Again, the time preference factor is embodied in the utility function the random variable 1Tθ +  has a value of 
zero with probability 1 because the consumer will receive no income in period 1T + . Moreover, under the 
axiom of non-satiation, the consumer will spend all his wealth in the last period of his life span and therefore 

1 0TW + = . The problem (2)-(3) is a discrete-time stochastic control problem (see [10,11]). 
Now consider the case when the consumer has lived to period t  and his wealth is W . The consumer prob-

lem can formulized as the maximization of the payoff: 
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,                               (4) 

subject to the budget constraint characterized by the wealth dynamics 

( )( ) { }1 11 , , for , 1, , .k k k k k tW r W p x W W k t t Tθ+ += + − + = ∈ + 

                     (5) 

In a stochastic dynamic framework, strategy space with state-dependent property has to be considered. In par- 
ticular, a pre-specified class Γ  of mapping ( ) :k W Xφ ⋅ →  with the property  

{ } ( ) ( ) ( ) ( ){ }1 2 1 2, , , , , ,k kn n
k k k k k k k kx x x x W W W Wφ φ φ φ= = =  , for { }1,2, ,k T∈  , is the strategy space and each of  

its elements is a admissible strategy. We define the value function ( ),V t W  and the set of strategies 
( ) { }{ }* * , for , 1, ,k kx W k t t Tφ= ∈Γ ∈ +   which provides an optimal consumption solution as follows: 
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for { }1,2, ,t T∈  . 
In particular, ( ),V t W  reflects the expected inter-temporal utility that the consumer will obtain from period 

t  to the end of his life span. Following the analysis of Yeung and Petrosyan [12,13] one can derive an optimal 
solution to the random-horizon consumer problem (2)-(3) as follows: 

Theorem 2.1. A set of consumption strategies ( ) { }{ }* * , for 1,2, ,k kx W k Tφ= ∈   provides an optimal solu-
tion to the random horizon consumer problem (2)-(3) if there exist functions ( ),V k W , for { }1,2, ,k T∈  , such 
that the following recursive relations are satisfied: 

( )1, 0V T W+ =  and 1 0TW + = , 
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Proof. Following Bellman’s [14] technique of dynamic programming we begin with the last period/period. 
By definition, the utility of the consumer at period 1T +  and therefore ( )1, 0V T x+ = . 

We first consider the case when the consumer survives in the last period T  and the state TW W= . The pro- 
blem then becomes 

( ) ( )( ){ }
1

1max 1, 1
TT
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 + + + − +                   (8) 

subject to 

( )( )1 11T T T TW r W p x θ+ += + − + .                           (9) 

Since 1 0Tθ + =  with probability 1, ( )1, 0V T W+ =  and 1 0TW + = , the problem in (8)-(9) can be expressed 
as the second equation in Theorem 2.1. 

Now consider the problem in period 1T − . Invoking the probabilities that the consumer can live up to periods 
1T −  and T , the problem in period 1T −  can be expressed as maximizing 
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subject to 

( )( ) { }1 1 11 , for 1, and .k k k k TW r W p x k T T W Wθ+ + −= + − + ∈ − =             (11) 

If the value function ( ),V T W  exists, the problem (10)-(11) can be expressed as a single period problem: 
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Now consider the problem in period { }1,2, , 2t T∈ − . Following the analysis above, the problem in period 
t  becomes the maximization of the expected payoff 
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Note that in (13) the term 
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gives the expected intertemporal utility to be maximized in period 1t + . If the value function ( )1,V t W+  ex-
ists, the problem (13)-(14) can be formulated as a single period problem which maximizes the expected payoff 

( ) ( )( )1

1
11, 1 .

t

T

tt
t t t tT

t

E u x V t r W p x
ζ

ζ
θ

ζ
ζ

γ
θ

γ
+

= +
+

=

 
   + + + − +  
 
  

∑

∑
                   (16) 

If ( ),V t W  exists, we have the third set of equations in Theorem 2.1. Hence Theorem 2.1 follows. ■ 
The stochastic optimal state trajectory derived from Theorem 2.1 is characterized by: 
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 at period   along 
the optimal trajectory generated by Theorem 2.1. 

3. Wealth-Dependent Ordinary Demand under Uncertain Life Span and Income 
In this section, we consider the primal problem of deriving wealth-dependent ordinary demand functions in 
which the consumer maximizes his inter-temporal expected utility subject to uncertain inter-temporal budget and 
life span. Following the analysis in [8] we first consider the case when the consumer survives in the last period, 
that is period T . Let 0 *

T TW W∈  denote the consumer’s wealth in period T . Given that ( )1, 0V T W+ =  and 
1 0TW + = , to exhaust all the wealth in this period, 0 0T T TW p x− = . Hence the consumer faces the problem 

( )
0

max

subject to 0.
T

T
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x

T T T
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                                  (17) 
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Problem (17) is a standard single period utility maximization problem. Setting up the corresponding Lagrange 
problem and performing the relevant maximization one obtains a set of first order conditions. It is well-known 
(see [15]) that if the set of first order conditions satisfies the implicit function theorem, one can obtain the ordi-
nary demand as explicit functions of the parameters 0

TW  and Tp , that is: 
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T T T T Tx W p h nϕ= ∈                               (18) 
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subject to the inter-temporal budget 
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Using the indirect utility function ( )0 ,T
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First order condition for a maximizing solution yields 
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Again, with the implicit function holding, (21) can be solved to yield the ordinary demands in period 1T −   
as ( ) ( )0 0
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First order condition for a maximizing solution to the problems in (22) can be obtained as: 
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In particular, the expected marginal utility of wealth takes into consideration the random future income and 
the probability of the consumer surviving in period 1+ . Solving (23) yields the ordinary demands in period 
  as: 

( ) { }0 , , for 1,2, , .h hx W p h nϕ= ∈
   

                          (24) 

After solving the primal consumer problem which maximizes expected utility subject to an uncertain inter- 
temporal budget and life span, we proceed to derive the Roy’s identity result in a random horizon stochastic dy-
namic framework.  

4. Random Horizon Stochastic Dynamic Roy’s Identity 
In this section we derive the random horizon version of the stochastic dynamic Roy’s Identity. Invoking (23) we 
obtain the identity 
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Differentiating the inter-temporal indirect utility function in (25) with respect to jp
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Invoking the first order conditions in (23) the term inside the curly brackets vanishes, condition (26)then be-
comes: 
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The effect of a change in initial wealth on the maximized utility can be obtained by differentiating 
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 in (25) with respect to 0W


: 
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Again, invoking the first order conditions in (23), the term inside the curly brackets vanishes, condition (28) 
then becomes: 
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Dividing the right-hand-side of (27) by the right-hand-side of (29) yields: 
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Condition (30) provides a random horizon stochastic dynamic version of the Roy’s Identity involving a 
change in current prices. 

Then we consider deriving the random horizon stochastic dynamic Roy’s Identity for a change in prices in 
current and future periods. 

Theorem 4.1. Random Horizon Stochastic Dynamic Roy’s Identity 

( ) ( ) ( ) { }
0 0

0
0

, ,
, , for 1,2, , ;j

j

v W p v W p
W p j n

p W
ϕ

∂ ∂
÷ ≡ − ∈

∂ ∂

 

 

  

 


                (31) 

( ) ( )

( ) ( )( ) ( )

1 2
1 2

1 2 1 2
1 21 2

1 2
1 221

1
1 2

21

0 0

0

1 2
1 11

1 2
11

, ,

,
, 1

jj j h
h

h jj j h
h h

jj j h
hh

k
h

h
mm m h hjj j k

h h h
j jj h

m m
w w

ww

v W p v W p

p W

v W p
W p r

W

θ θ θ

θ θ θ

θ θ θ
λ λ λ ϕ

λ λ

+ +
+ +

+ + + +
+ ++ +

+ +
+ +++

+
+ +

++

− −
+ +

= ==

+ +
==

∂ ∂
÷

∂ ∂

∂
≡ − × +

∂

÷

∑ ∑ ∑

∑

 

 

 

 

 
 

 

 







 





 

 









 



 



( )1 2
1 2

2

1 2
1 21

,
,

ww w h
h

h
h

ww w h
hh

h
m h

w
h

w
h

v W p

W

θ θ θ

θ θ θ
λ

+ +
+ +

+

+ +
+ +=

 ∂ 
× 

∂ 
 

∑ ∑
 

 



 

 







     (32) 

for { }1,2, ,T∈  , { }1, 2, ,h T∈ + +    and { }1,2, , hk n∈  , 
where 

( ) ( )
( ) ( )

( )

1
1 1

1 2 1 1
1 2 1 1 2

1 2 1 2 1
1 2 1 2 1 1

0

0 0
1 1

2 1 1 1 1 2

1 1 1 1

,

1 , ,

1 , ,

1

j

j j j j

j j j j j j jT T
T T

j

j

T T T T T

W W

W r W p W p

W r W p W p

W r W p W

θ

θ θ θ θ

θ θ θ θ θ θ θ

ϕ θ

ϕ θ

ϕ

+
+ +

+ + + +
+ + + + +

+ + + + −
+ + + + − +

+ +

+ + + + + +

− − − −

=

 = + − + 
 = + − +  

= + −



 

   

    

   

    

 

     

     

 



( )1 2 1
2 1 ;

j jT
T Tj

T
θ θ θ

+ + −
+ −  +  

 





             (33) 

Proof. See Appendix A of this Chapter. ■ 
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Theorem 4.1 gives the random horizon stochastic dynamic Roy’s identity. Invoking (73) in the proof of 
Theorem 4.1 in Appendix A, an alternative form of the random horizon stochastic dynamic Roy’s identity can 
be expressed as: 

( ) ( )

( )

1 2
1 2

1 2
1 2

1 2
1 221

1 2
1 2

0

1 2
1 11

,,

, ,

jj j h
h

h
h

jj j h
hh

jj j h
h

T
h

mm m h
h jj j

hk T
j jjh h

k
h h

v W pv W p

p W

W p

θ θ θ
ζ

ζ

θ θ θ

ζ
ζ

θ θ θ

γ
λ λ λ

γ

ϕ

+ +
+ +

+ +
+ +

+ +
+ +++

+ +
+ +

=
+ +

= ==

=

∂∂
≡ − ×

∂ ∂

×

∑
∑ ∑ ∑

∑

 

 

 

 

 

 





 

 







 









               (34) 

for { }1,2, ,T∈  , { }1, 2, ,h T∈ + +   , and { }1,2, , hk n∈  . 

5. Duality and Wealth Compensated Demand 
In this section, we invoke the duality principle in consumer theory to construct wealth compensated demand 
functions under an uncertain inter-temporal budget and a random life span by considering the dual problem of 
minimizing expenditure covered by the current wealth subject to maintaining the level of utility achieved in the 
primal problem. Again, following the analysis in [8] we first consider the last period in which 0 *

T TW W∈  is the 
consumer’s wealth if he survives in the period. Since wealth equals income in this period, to derive the compen-
sated demand we follow the standard single period consumer problem of 

min
T

T T
x

p x  

subject to achieving the level of utility 

( ) ( )0 0ˆ , .TWT T
T T T Tu x v v W p= =                              (35) 

Setting the corresponding Lagrange function and performing the minimization operation yields a set of first 
order conditions. With the implicit function theorem holding for the first order conditions one can obtain the 
wealth (income) compensated demand functions as 

( ) { }0
ˆ , , for 1,2, , .TWh h

T T T T Tx v p h nψ= ∈                            (36) 

Substituting (36) into (35) yields the wealth-expenditure function ( ) ( )0 0 0ˆ ˆ, ,T TW W
T T T T T T T Tv p p v p Wξ ψ= = . 

Now we proceed to period 1T −  and let wealth in this period be 0 *
1 1T TW W− −∈ . To obtain the wealth compen-

sated demand function in period 1T −  we consider the problem of minimizing expenditure covered by  
current wealth in the period to bring about the expected inter-temporal utility ( )0

1 1 0
1 1 1ˆ , ,TW T

T T T Tv v W p p− −
− − −≡  from  

the primal problem. However, wealth 0
1TW −  in period 1T −  does not only cover consumption expenditure 

1 1T Tp x− −  in the period 1T −  but also part of the consumption expenditure in period T . To delineate expendi-
tures attributed to wealth in period 1T −  we first invoke the dynamical Equation (3) and express 1TW −  as: 

( ) ( )1
1 1 1 1T T T T TW p x r W θ−
− − −= + + − .                          (37) 

Using the wealth expenditure function ( )0
ˆ ,TW

T T Tv pξ  in period T  and taking expectation over the random  

variable Tθ  in (37) one can obtain a crucial identity relating wealth to current and expected future expenditures 
attributable to wealth as: 

( ) ( )( )0
1 1 1110

1 1 1
1

ˆ1 , .
jT

T T T T
m r W p xj j

T T T T T T T T
j

W p x r v p
θ

λ ξ θ− − −+ − +−
− − −

=

  ≡ + + −    
∑              (38) 

Using (38) the consumer’s dual problem in period 1T −  can be formulated as minimizing wealth expenditure 
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( ) ( )( )0
1 1 111

1 1
1

ˆ1 ,
jT

T T T T
m r W p xj j

T T T T T T T
j

p x r v p
θ

λ ξ θ− − −+ − +−
− −

=

  + + −    
∑                 (39) 

with respect to 1Tx −  subject to the constraint 

( ) ( )( )0 01 1 1 1
11

1 1
1

1

ˆ ˆ, .
jT

T T T T T
m r W p x WT j TT

T T T T T TT
j

T

u x u v p v
θ

ζ
ζ

γ
λ ψ

γ

− − − −
+ − +−

− −
=

= −

  + =    
∑

∑
            (40) 

Since ( )( )0
1 1 11ˆ ,

j
T T T Tr W p x

T T Tv p
θ

ψ − − −+ − + 
 
 

 is a set of wealth compensated demands that leads to the level of utility 

( )( )0
1 1 11ˆ

j
T T T Tr W p x

Tv
θ− − −+ − +

, 

so ( )( )0
1 1 11ˆ ,

j
T T T Tr W p xT

T T Tu v p
θ

ψ − − −+ − +  
    

 equals ( )( )0
1 1 11ˆ

j
T T T Tr W p x

Tv
θ− − −+ − +

. 

Invoking 
( )( ) ( )( )

0
1 1 11 0

1 1 1ˆ 1 ;
j

T T T Tr W p x T j
T T T T T Tv v r W p x p

θ
θ− − −+ − +

− − −
 = + − +   

the constraint (40) can be expressed as: 

( ) ( )( ) 0
11 0

1 1 1 1 1
1

1

ˆ1 ; .
T

T
m

WT j T jT
T T T T T T T TT

j

T

u x v r W p x p v
ζ

ζ

γ
λ θ

γ

−−
− − − − −

=

= −

 + + − + = ∑
∑

 

Setting the Lagrange function and performing the relevant optimization operation (similar to the analysis in 
[8]) yields a set of first order conditions. With the implicit function theorem holding, the wealth compensated 
demand functions can be obtained as: 

( ) { }0
1

1 1 1 1 1ˆ , , , for 1,2, , .TWh h
T T T T T Tx v p p h nψ −
− − − − −= ∈                       (41) 

Substituting the wealth compensated demand functions in (41) into (39) yields the wealth-expenditure func-
tion in period 1T − : 

( ) ( ) ( )
0

0 1
1 1 1 110 0

1 1
ˆ , ,

1
1 1 1 1 1 1 1

1
ˆ ˆ ˆ, , , , 1 , .

W jT
T T T T TT TT

T T
W p v p pm

W W j
T T T T T T T T T T T T T

j
v p p p v p p r v p

ψ θ

ξ ψ λ ξ
−

− − − −−
− −

 
 − + −  

− − − − − − −
=

 
 = + +   
 

∑   (42) 

Now we proceed to period { }2, 3, ,1k T T∈ − −   and let wealth be 0 *
k kW W∈  in the period. Again using (3)  

we can express wealth in period k  as ( ) ( )1
1 11k k k k kW p x r W θ−
+ += + + − . Taking expectations over the ran- 

dom variable 1kθ +  and invoking the wealth expenditure functions in period 1k + , one can obtain the identity 

( ) ( )( )01
11 1

1

11 0
1 1 1 1

1
ˆ1 , ,

jk
k kk kk k

k

m r W p xj j
k k k k k k k

j
p x r v p W

θ
λ ξ θ

+
++ +

+

+ − +−
+ + + +

=

  + + × − ≡  
  

∑                 (43) 

where ( )( )0
11

1ˆ ,
j

k kk kr W p x
kv p

θ ++ − +

+
 
 
 

 is the short form for ( )( )0
11

1 1 2ˆ , , , ,
j

k kk kr W p x
k k k Tv p p p

θ ++ − +

+ + +
 
 
 


. 

The consumer’s wealth expenditure minimization problem can be expressed as: 

( ) ( )( )01 1
11 1

1

11
1 1 1 1

1
ˆmin 1 ,

jk k
k kk kk k

k k

m r W p xj j
k k k k k kx j

p x r v p
θ

λ ξ θ
+ +

++ +

+

+ − +−
+ + + +

=

    + + × −   
    

∑                (44) 

subject to 

( ) ( )( )
1 0

1 1

1

1 1 0
1 1

1
ˆ1 ) ; ,

k
k k k

k

T

m
Wk j jk k

k k k k k k kT
j

k

u x v r W p x p v
ζ

ζ

ζ
ζ

γ
λ θ

γ

+
+ +

+

= + +
+ +

=

=

 + × + − + = 

∑
∑

∑
              (45) 

for { }1,2, , 2k T∈ −  and 0 *
k kW W∈ . 
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Setting up the Lagrange function and deriving the first order conditions one can obtain the wealth  

compensated demand functions (with the implicit function theorem holding) as ( )0
ˆ ,kWh h

k k kx v pψ= , for  

{ }1,2, , 2k T∈ − , { }1,2, , kh n∈   and 0 *
k kW W∈ . 

Similarly, the wealth-expenditure function can be obtained as: 

( ) ( ) ( ) ( )( )01 10 0
11 1

1

11
1 1 1 1

1
ˆ ˆ ˆ, , 1 , .

jk k
k kk kk k k k

k

m r W pW W j j
k k k k k k k k k

j
v p p v p r v p

ψ θ
ξ ψ λ ξ θ

+ +
++ +

+

+ − +−
+ + + +

=

  = + + × −  
  

∑       (46) 

The wealth compensation demand functions and wealth-expenditure functions derived in this section represent 
the dual results of the primal problem in Section 3. 

6. Random Horizon Stochastic Dynamic Slutsky Equations 
In this section, we derive the Slutsky equations under an uncertain inter-temporal budget and random horizon.  

Invoking the duality results in Section 3 and Section 5 we have ( ) ( )0 0ˆ , ,kWh h
k k k kv p W pψ ϕ= , and  

( )0 0ˆ ,kW
k k kv p Wξ =  and ( ) 00 ˆ, kWk

k kv W p v= , for 0 *
k kW W∈  and { }1,2, ,k T∈   and { }1,2, , kh n∈  . 

Substituting 0
kW  by ( )0

ˆ ,kW
k kv pξ  into the wealth-dependent ordinary demand function yields the identity: 

( ) ( )0 0
ˆ ˆ, , , ,k kW Wh h

k k k k kv p v p pψ ϕ ξ ≡   
                           (47) 

for { }1,2, , kh n∈  . 
One can derive a theorem concerning the relationships between the price effect of the demand of a commodity 

and the pure substation effect and the wealth effect in a random horizon stochastic dynamic framework as fol-
lows. 

Theorem 6.1. Random Horizon Stochastic Dynamic Slutsky Equation 

( ) ( ) ( ) ( )
0

0 0
0

0

ˆ ,, ,
, ,

k

k
k k

Whh h
k kk k k k i

k ki i
kk k

v pW p W p
W p

Wp p

ψϕ ϕ
ϕ

∂∂ ∂
= −

∂∂ ∂
 

( ) ( ) ( )

( ) ( ) ( ) ( )

0

1 2
1 2

1 2

1 2
1 2

1 2
1 2

1 2
1 2

1

1

0 0

1 20
1 11

1

ˆ ,, ,

,
, 1

k
k k

k k

k k

j j jk k
k k

j j jk k
k k

j j jk k
k k

k

k

Whh h m m mk kk k k k j j j
k ki i

j jjk

ki

w
k

w

v pW p W p

Wp p

v W p
W p r

W

θ θ θ

θ θ θ

θ θ θ

ψϕ ϕ
λ λ λ

ϕ

λ

+ +
+ +

+ +

+ +
+ +

+ +
+ +

+ +
+ +

+

+

+ +
= ==

− −

+

∂∂ ∂
= − ×

∂∂ ∂

∂
× × +

∂

÷

∑ ∑ ∑




 


















 











 







( )1 2
1 2

1 2
2

1 2
1 2

2

2
1 11

,
,

w w wk k
k k

k k
k

w w wk k
k k

k

m m m
w w
k

ww

v W p

W

θ θ θ

θ θ θ
λ λ

+ +
+ +

+ +
+

+ +
+ +

+

+
= ==

 ∂ 
× 

∂ 
 

∑ ∑ ∑




























           (48) 

for { }1,2, ,k T∈  , { }1, 2, ,k k T∈ + +  , { }1,2, ,i n∈
 

 , and { }, 1,2, ,k kh i n∈  . 
Proof. Differentiating the identity (47) with respect to ti

tp  yields: 

( ) ( ) ( )
( )

( )0 00 0

0

ˆ ˆ, , , ,ˆ ˆ, ,
,

ˆ ,

k kk k

t t t
k

W WW Wh hh
k k k k k kk k k k

i i iW
t t tk k

v p p v p pv p v p

p p pv p

ϕ ξ ϕ ξψ ξ

ξ

   ∂ ∂∂ ∂      = −
∂ ∂ ∂∂

            (49) 

for { }1,2, ,t ti n∈   and { }, 1, ,t k k T∈ +  . 

Invoking ( )0 0ˆ ,kW
k k kv p Wξ =  one can express (49) as: 
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( ) ( ) ( ) ( )0 0
0 0

0

ˆ ˆ, ,, ,
.

k k

t t t

W Whh h
k k k kk k k k

i i i
kt t t

v p v pW p W p

Wp p p

ψ ξϕ ϕ∂ ∂∂ ∂
= −

∂∂ ∂ ∂
                  (50) 

To derive the term 
( )0

ˆ ,k

t

W
k k

i
t

v p

p

ξ∂

∂
 in a more readily computable form we first note that ( )0 0ˆ ,kW k

k kv v W p= . To 

derive the effect on ( )0
ˆ ,kW

k kv pξ  brought about by a change in ti
tp , with 

0
ˆ kW

kv  being held constant, we totally  

differentiate 
0

ˆ kW
kv  to obtain: 

( ) ( )0
0 0

0
0

1

, ,
ˆd d d .k

k knTk kW i
k k i

k jk

v W p v W p
v W p

W p

ϖ
ϖ

ϖ
ϖ

ϖ
ϖ ϖ= =

∂ ∂
= +

∂ ∂
∑ ∑                      (51) 

With 
0

ˆd 0kW
kv =  and d 0ip ϖ

ϖ =  for all { }1,2, ,i nϖ ϖ∈   and { }, 1, ,k k Tϖ ∈ +   except ti
tdp , Equation (51) 

becomes 

( ) ( )0 0
0

0

, ,
0 d d ,t

t

k k
k k i

k ti
k t

v W p v W p
W p

W p

∂ ∂
= +

∂ ∂
 

which yields 

( ) ( )
0

0 00 0

0

, ,d .
d ˆt t t k

k k
k kk k

i i i W
kt t t k

v W p v W pW W
Wp p p v

∂ ∂ ∂
= − ÷ ≡

∂∂ ∂
                      (52) 

Invoking ( )0 0ˆ ,kW
k k kv p Wξ ≡  and using (52) one can readily obtain 

( ) ( ) ( )
0

0

0 00

0

ˆ , , ,
.

ˆ

k

t t tk

W k k
k k k kk

i i iW
kt t tk

v p v W p v W pW
Wp p pv

ξ∂ ∂ ∂∂
≡ = − ÷

∂∂ ∂ ∂
                    (53) 

Substituting (53) into (50) and invoking the Roy’s identity result in Theorem 4.1, one obtains (48). Hence 
Theorem 6.1 follows. ■ 

The random horizon stochastic dynamic Slutsky Equation (48) generalizes the classic Slutsky Equation to a 
multi-period framework with uncertainties in future income and the consumer’s life span. In particular, the ef- 
fect of a price change on the demand of a commodity can be decomposed into a pure substation effect and a 
wealth effect. The left hand side of Equation (48) represents how the demand for good h  at period k  changes 
in response to a change in price ti

tp , and the first term on the right hand side of the Equation gives the change in 
demand caused by a change in price ti

tp  holding utility fixed at 
0

ˆ kW
kv . The second term on the right hand side 

of Equation (48) is the product of the change in demand when wealth changes and the required change in wealth 
brought about by a change in ti

tp  with utility kept fixed at 
0

ˆ kW
kv . Thus, the change in the demand of a good 

caused by a price change can be decomposed into a pure substation effect and a wealth effect. 

7. An Illustration with Explicit Utility Function 
We consider a consumer with a 2 period horizon. His utility function in period { }1,2,k∈  is given by 

( ) ( ) ( )1 2 1 1 2 2, ln lnk
k k k k k ku x x x xα α= + . His initial wealth in Period 1 is 0

1W . In Period 2 he expects to receive an 
income 2

jθ  with probability 2
jλ  for { }1,2j∈ . The probability that the consumer’s life span would end after 

Period 1 is 1γ  and the probability that his life span would end after Period 2 is 2γ . 
The consumer maximizes the expected inter-temporal utility  

( ) ( )1

ˆ2
1 1 2 2

ˆ
ˆ 11

ln ln
T

k k k kT
kT

E x xθ γ α α
==

  +   
∑ ∑                              (54) 

subject to the budget dynamics 
2

0
1 1 1 1

1 1
, .h h h h

k k k k k k k k
h h

W W p x r W p x W Wθ+ +
= =

 = − + − + = 
 

∑ ∑                   (55) 
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7.1. Wealth-Dependent Ordinary Demand 
Following the analysis in Section 3, if the consumer lives in Period 2 the wealth-dependent ordinary demand 
functions in the period can be obtained as: 

( ) ( ) { }
0

0 1 2 2 2
2 2 2 2 2 1 2

2 2 2

, , , for 1,2 .
i

i i
i

Wx W p p i
P

αϕ
α α

= = ∈
+

                     (56) 

The indirect utility function in Period 2 becomes: 

( ) ( ) ( )

( ) ( )

1 2
2 0 1 2 1 2 0 1 22 2

2 2 2 2 2 2 2 21 2 1 2
2 2 2 2

1 1 2 2
2 2 2 2

, , ln ln ln

ln ln .

v W p p W

p p

α α
α α α α

α α α α

α α

   
= + + +   

+ +   

− −

           (57) 

Following the analysis in Section 3 we obtain the wealth-dependent ordinary demand functions in Period 1 as: 
Proposition 7.1. The wealth-dependent ordinary demand functions in Period 1 are: 

( )
2

0
1 1 1 2

1

4
, ,

2
i i i ii

i
i

B B A C
W p p

A p
ϕ

− −
= ,                           (58) 

where ( ) ( )
1 2

1 2 1 22 1 1
1 1 2 22

1

1

i iA
ζ

ζ

γ α α
α α α α

αγ
=

 
   + = + + +  
  
  

∑
, 

( ) ( ) ( ) ( ) ( ) ( )1 10 2 1 2 1 1 2 0 1 1 2 1 2 22 2
1 2 1 1 2 2 2 1 2 1 1 2 2 22 2

1 1

1 1 ,iB W r W r
ζ ζ

ζ ζ

γ γ
θ α α λ α α θ α α α α λ

γ γ

− −

= =

    
    
       = + + + + + + + + + + +       
    

    
∑ ∑

 

( ) ( ) { }1 10 1 0 2
1 1 1 1 21 1 , for 1,2 .i

iC W r W r iα θ θ− −   = + + + + ∈   
                   (59) 

Proof. See Appendix B. ■ 
Using (59), the inter-temporal indirect utility function in Period 1 can be obtained as: 

( )

( ) ( ) ( ){

( ) ( )}

2 2
1 1 1 1 2 2 2 21 0 1 2

1 1 2 1 11 2
1 1 2 1

21 1 2 0 1 1 2 22
2 2 2 1 1 1 1 1 22

1

1

1 2
1 2 1 1 2 22 2
2 2 2 2 2 21 2 1 2

2 2 2 2

4 4
, , ln ln

2 2

1 ln

ln ln ln ln ,

j j

j

B B A C B B A C
v W p p

A p A p

r W p p

p p

ζ
ζ

α α

γ
λ α α ϕ ϕ θ

γ

α α
α α α α

α α α α

−

=

=

   − − − −
   = +
   
   

+ + × + − − +

   
+ + − −   

+ +   

∑
∑

 

where ( ) ( )1 0 2 0
1 1 1 1 2 1 1 1 2, , , , ,x W p p W p pϕ ϕ =    is as given in Proposition 7.1. 

7.2. Wealth Compensated Demand 
Following the analysis in Section 5 we obtain the wealth compensated demands in Period 2 as  

( ) ( )
2

1 2
0 0 1 2 2 2
2 2 2 2

1
1 2 2 2

2 2 2 2 2
2 2

ˆ ˆ, , exp ,
i

W Wi
i

pv p p v
p

α

α αα α α
ψ

α
+

+   =      







 

for { }, 1,2i ∈  and i ≠  . 
The expenditure function in Period 2 becomes: 
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( ) ( ) ( ) ( )
2 1
2 2 2 1

1 2 1 2 2 20 0 1 2 2 2 2 2 1 2 1 22 2 2 2 2 2 2 2

1 1 2
1 2 2 1 02 2

2 2 2 2 2 2 2 22 1
2 2

ˆ ˆ, , exp .W Wv p p v p p W

α α
α αα α α αα α α α α α

α α
ξ

α α
+ +

+ + +

 
     = × + =           
 

    (60) 

Now we proceed to Period 1. Following the analysis from Equation (37) to Equation (42) the wealth compen-
sated demand function in Period 1 can be obtained as: 

Proposition 7.2. The wealth compensated demand functions in Period 1 are: 

( ) ( )( )
( )
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1 200 0 1 11 1 1 21 1
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     (61) 

for { }, 1,2i ∈  and i ≠  . 
Proof. See Appendix C. ■ 
Invoking the fact that 

( )( ) ( )( ( ) ( ) ( )( )
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one can also have: 
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for { }, 1,2i ∈  and i ≠  .                                (62) 

Proof. See Appendix C. ■ 
The wealth expenditure function in Period 1 can be expressed as: 
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∑

        (63) 

where 1
1ψ  and 2

1ψ  are given in (61). 

7.3. Random Horizon Slutsky Equation 
From (48) we obtain the stochastic dynamic Slutsky equations: 
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{ }
1 1

1 1 1
0 0

1 1

, for , , 1, 2 .
i i i

j j j

v v i j
p p W p W
ϕ ψ ϕ∂ ∂ ∂ ∂ ∂

= + ÷ ∈
∂ ∂ ∂ ∂ ∂

  

                      (64) 

To verify the duality results and Slutsky equations numerically we consider the illustration in this Section 
with the following parameter values: 1

1 0.4,α =  2
1 0.6,α =  1

2 0.35,α =  2
2 0.65,α =  1

1 0.6,λ =  2
1 0.4,λ =   

1
1 45,θ =  2

1 65θ = , 1
1 3,p =  2

1 2,p =  1
2 2,p =  2

2 4,p =  0.04r = , 0
1 120W =  and 

2
2

2 1
1

0.8ζ
ζ

γ γ γ
=

= =∑ . 

In Table 1, the results showing that the ordinary demand ( )0
1 1 1 2, ,i W p pϕ  equals the wealth-compensated 

demand ( )0
1

1 1 1 2ˆ , ,Wi v p pψ , for { }1,2i∈ , are given in the first two rows. The indirect utility and wealth expendi- 

ture are given in the third row. 
In Table 2, the results for the eight stochastic dynamic Slutsky equations 

1 1
1 1 1

0 0
1 1

i i i

j j j

v v
p p W p W
φ ψ φ∂ ∂ ∂ ∂ ∂

= + ÷
∂ ∂ ∂ ∂ ∂

  

, 

for , , {1, 2}i j ∈ , are given as random horizon stochastic dynamic Slutsky Equations (1) to (8). The numerical 
values of partial derivatives are derived and the Slutsky results are shown in the last row of each equation block. 

 
Table 1. Numerical depiction of wealth-dependent ordinary demands, wealth compensated demands, indirect utility 
and wealth expenditure. 

Ordinary Demands & Indirect Utility 

( )1 0
1 1 1 2, ,W p pϕ  12.58208650 

( )2 0
1 1 1 2, ,W p pϕ  28.30969462 

( )1 0
1 1 2, ,v W p p  5.08223308 

Wealth Compensated Demands & Expenditure 

( )0
11

1 1 1 2ˆ , ,Wv p pψ  12.58208650 

( )0
12

1 1 1 2ˆ , ,Wv p pψ  28.30969462 

( )0
1

1 1 1 2ˆ , ,Wv p pξ  120 

 
Table 2. Numerical depiction of the partial derivatives and random horizon stochastic dynamic slutsky equations. 

Random Horizon Slutsky Equation (1) 
1 0
1 1Wϕ∂ ∂  0.07452223 

1 1 1 0
1 1v p v W−∂ ∂ ÷ ∂ ∂  12.58208650 

1 1
1 1pϕ∂ ∂  −4.19402883 
1 1
1 1pψ∂ ∂  −3.25638374 

1 1 1
1
0 1 0

1 1 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −0.93764509 

1 1 1
1 1 1 1 1

0 1 01 1 1 1
1 1 1

v vp p
W p W
ϕϕ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂

 −4.19402883 = −4.19402883 

Random Horizon Slutsky Equation (2) 
1 2 1 0

1 1v p v W−∂ ∂ ÷ ∂ ∂  28.30969462 
1 2
1 1pϕ∂ ∂  0.000000 
1 2
1 1pψ∂ ∂  2.10970146 

1 1 1
1
0 2 0

1 1 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −2.10970146 

1 1 1
1 2 1 2 1

0 2 01 1 1 1
1 1 1

v vp p
W p W
ϕφ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂

 0.000=0.000 
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Continued 
Random Horizon Slutsky Equation (3) 

1 1 1 0
2 1v p v W−∂ ∂ ÷ ∂ ∂  13.21119082 

1 1
1 2pϕ∂ ∂  0.000000 
1 1
1 2pψ∂ ∂

 

0.98452735 
1 1 1
1
0 1 0

1 2 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −0.98452735 

1 1 1
1 1 1 1 1

0 1 01 2 1 2
1 2 1

v vp p
W p W
ϕϕ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂  

0.000 = 0.000 

Random Horizon Slutsky Equation (4) 
1 2 1 0

2 1v p v W−∂ ∂ ÷ ∂ ∂  12.26753434 
1 2
1 2pϕ∂ ∂  0.000000 
1 2
1 2pψ∂ ∂  0.91420397 

1 1 1
1
0 2 0

1 2 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −0.91420397 

1 1 1
1 2 1 2 1

0 2 01 2 1 2
1 2 1

v vp p
W p W
ϕϕ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂

 0.000 = 0.000 

Random Horizon Slutsky Equation (5) 
2 0

1 1Wϕ∂ ∂  0.16767501 
2 2

1 1pϕ∂ ∂  −14.15484731 
2 2

1 1pψ∂ ∂  −9.40801903 
2 1 1

1
0 2 0

1 1 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −4.74682828 

2 1 1
2 2 2 2 1

0 2 01 1 1 1
1 1 1

v vp p
W p W
ϕϕ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂

 −14.15484731 = −14.15484731 

Random Horizon Slutsky Equation (6) 
2 1

1 1pϕ∂ ∂  0.000000 
2 1

1 1pψ∂ ∂  2.10970146 
2 1 1

1
0 1 0

1 1 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −2.10970146 

2 1 1
2 1 2 1 1

0 1 01 1 1 1
1 1 1

v vp p
W p W
ϕϕ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂

 0.000 = 0.000 

Random Horizon Slutsky Equation (7) 
2 1

1 2pϕ∂ ∂  0.000000 
2 1

1 2pψ∂ ∂  2.21518653 
2 1 1

1
0 1 0

1 2 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −2.21518653 

2 1 1
2 1 2 1 1

0 1 01 2 1 2
1 2 1

v vp p
W p W
ϕϕ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂

 0.000 = 0.000 

Random Horizon Slutsky Equation (8) 
2 2

1 2pϕ∂ ∂  0.000000 
2 2

1 2pψ∂ ∂  2.05695892 
2 1 1

1
0 2 0

1 2 1

v v
W p W
ϕ∂ ∂ ∂

÷
∂ ∂ ∂

 −2.05695892 

2 1 1
2 2 2 2 1

0 2 01 2 1 2
1 2 1

v vp p
W p W
ϕϕ ψ ∂ ∂ ∂

∂ ∂ = ∂ ∂ + ÷
∂ ∂ ∂

 0.000 = 0.000 

8. Concluding Remarks 
This paper extends the conventional consumer analysis to a random horizon stochastic dynamic framework in 
which the consumer has a planning horizon of T  periods and there is uncertainty in future incomes and the 
consumer’s life span. The extension incorporates realistic and essential characteristics of the consumer into con- 
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ventional consumer theory. The paper derives the Roy’s identity and Slutsky equation for this framework. It is 
the first time that the Roy’s identity is derived in an inter-temporal setting. With the Roy’s identity the random 
horizon stochastic dynamic Slutsky is presented in a more comprehensive form than the stochastic dynamic 
Slutsky equations of Yeung [8]. The analysis advances the microeconomic study on optimal consumption deci-
sion to a random horizon stochastic dynamic framework. Further research, development and propagations which 
explore further economic implications of the results in this paper are in order. 
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Appendices 
Appendix A. Proof of Theorem 4.1 

Invoking (22) we obtain the identity 
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Differentiating (65) with respect to k
hp  yields: 
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Using (32) we have 
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Substituting (67) into (66) yields 
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Invoking (29) we obtain: 
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Using (69) the terms inside the square brackets in (68) can be written as 
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=
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    (70) 

Invoking the first order conditions in (23) the term inside the square brackets in (70) vanishes and therefore 
(68) becomes: 
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( ) ( )
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jj j h
h

h
h

jj j h
hh

jj j h
h

T
h

mm m h
h jj j

hk T
j jjh h

k
h h

v W pv W p
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Using (69), one has 
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Substituting (72) into (71) yields 
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                (73) 

Invoking (69) one obtains 
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        (74) 

Dividing (73) by (74) yields another form of the random horizon Roy’s identity as: 
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         (75) 

for { }1,2, ,T∈   and { }1, 2, ,h T∈ + +   . 
Hence Theorem 4.1 follows. Q.E.D. 

Appendix B: Proof of Proposition 7.1 
The problem facing the consumer in period 1 can be expressed as: 

( ) ( ) ( ) ( )( )

( ) ( )

1

2
1 1 2 2 2 1 2 0
1 1 1 1 1 2 2 2 1 1 1 2

1

1 2
1 2 1 1 2 22 2
2 2 2 2 2 21 2 1 2

2 2 2 2

max ln ln ln 1

ln ln ln ln ,

j j

x j
x x r W p x

p p

α α γ λ α α θ

α α
α α α α

α α α α

=

   + + + + − +  

    + + − −     + +     

∑
           (76) 
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where 2 2
1 2

1
ζ

ζ

γ
γ

γ
=

=

∑
 

Using the First order condition for a maximizing solution for (76) yields 

( )
( )

1 2 11 2 2 2 121
1 21 1 2

1 11 0 1 11 1
1 1 1 21

1

0.
1

j

j j

p

x
W p x r

α αα
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α α θ
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+
− × =
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∑                       (77) 

Upon rearranging terms (77) can be expressed as: 

( ) ( ) ( )

( ) ( )

1 2 1 2
1 11 0 1 1 1 1 2 1 1 1 0 1 1 21 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 21 1
1 1

1 2
11 2 2 2 1 1 0 1 1 11 1
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α
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−

       + +
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  +
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   (78) 

Equation (78) can be reduced into a quadratic equation in 1
1x  with roots 

2
1 1 11

1 1
1

4
2

B B A C
x

Ap
± −

= ,                              (79) 

where ( ) ( )
1 2

1 2 2 1 2 1 1
1 1 1 1 2 2 1

1

A α α
α α γ α α

α
 + = + + +     

, 

( ) ( ) ( )(
( ) ( ) ( ) )

10 2 1 2 2 1 1 2
1 1 2 1 1 1 2 2 2
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B W r
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−

−

   = + + × + + +  

   + + + + + +  

 and ( ) ( )1 11 0 1 0 2
1 1 1 2 1 21 1C W r W rα θ θ− −   = + + + +    . 

One can show that both roots are real and positive, and the smaller root yields a utility maximizing solution.  

( )
2

1 1 11 1 0
1 1 1 1 2 1

1

4
, ,

2
B B A C

x W p p
Ap

ϕ
− −

= = .                           (80) 

Following similar analysis, ( )2 0
1 1 1 2, ,W p pϕ  can be obtained as in Proposition 7.1. Q.E.D. 

Appendix C: Proof of Proposition 7.2 
The consumer’s dual problem in period 1 can be formulated as minimizing  
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( ) ( )

1 20
2 21 1 1 2

2 1
2 2 2 1

1 2 1 2 2 2
2 2 2 2 1 2 1 2
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subject to the constraint 
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∑
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                (82) 

Setting up the corresponding Lagrange function of the problem and performing the relevant minimization 
yield the first order conditions 
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                 (83) 

where ( )( )0
1 1 1 21

2ˆ
jr W p x

v
θ+ − +

 is given in (57). 

Invoking 
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j
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 and (60) one can readily obtain: 
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Using (84), one can reduce the first two equations in (83) to: 
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for { }1,2i = . 

Using (85), one obtains 
2 1

2 11 1
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=  and upon substituting into the last equation of (83) yields 
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which could be expressed alternatively as: 
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Solving 1
1x  from (86) yields the wealth compensated demand for good 1 as: 

( ) ( )( )
( )

( )
1 2

21 1
1

1 200 0 1 11 1 1 21 1

1

1 22 11 2 1 1
1 1 1 2 1 2 22 2 1

1 1 1

1
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p

α α α

α αθ

ζ
ζ

γ α
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+
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=

=

  
       = − ×         

    

∑
∑

      (87) 

Following the above analysis, the wealth compensated demand for good 2 can be obtained as that given in 
Proposition 7.2. Q.E.D. 
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