Doubly and Triply Periodic Waves Solutions for the KdV Equation*

Ying Huang, Dengguo Xu
Department of Mathematics, Chuxiong Normal University, Chuxiong, China
Email: huang11261001@163.cn
Received September 6, 2013; revised October 6, 2013; accepted October 13, 2013

Copyright © 2013 Ying Huang, Dengguo Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT
Based on the arbitrary constant solution, a series of explicit doubly periodic solutions and triply periodic solutions for the Korteweg-de Vries (KdV) equation are first constructed with the aid of the Darboux transformation method.

Keywords: KdV Equation; Doubly Periodic Solution; Triply Periodic Solution; Darboux Transformation

1. Introduction
The famous KdV equation
\[u_t + 6uu_x + u_{xxx} = 0 \] (1)
is a shallow water wave equation early derived by Korteweg de and Vries, its first application was discovered in the study of collision-free hydro-magnetic waves in 1960. Subsequently, it has arisen in a number of physical contexts, such as stratified internal waves, ion-acoustic waves, plasma physics, lattice dynamics and so on. Following the further studies of these physical problems, its exact solutions have attracted much attention and have been extensively studied [1-7]. However, in contrast to solitary wave solutions, the analytic periodic solutions represent only a small subclass of its known solutions, and multi-periodic solutions are scarce. It is always useful to seek more and various multi-periodic solutions for recovering interactions among some simple periodic waves in a nonlinear medium.

We know that the Darboux transformation method is the main method to construct exact multi-soliton solutions, and this method is scarcely used for solving multi-periodic solutions [8-10]. In the paper, not only explicit doubly periodic solutions are available, but also a group of explicit triply periodic solutions is obtained by means of the Darboux transformation method.

2. Doubly Periodic Solutions
According to [11], the linear system
\[
\begin{align*}
\Phi &= \begin{pmatrix} 0 & 1 \\ \lambda - u & 0 \end{pmatrix} \Phi, \\
\Phi &= \begin{pmatrix} u_x - (4\lambda + 2u) \\ A - u_x \end{pmatrix} \Phi,
\end{align*}
\] (2)
is the Lax pair for Equation (1), with the Darboux matrix
\[
D(x,t,\lambda) = \begin{pmatrix} -\sigma_i & 1 \\ \lambda - \lambda_i + \sigma_i^2 & -\sigma_i \end{pmatrix},
\] (3)
where \(A = -(4\lambda + 2u)(\lambda - u) + u_{xx} \), \(\lambda, \lambda_i (i = 0,1,2) \) are the spectral parameters. The monograph [11] further points out, if \(u_i \) is a known solution to Equation (1), then
\[u_{i+1} = 2\lambda_i - u_i - 2\sigma_i^2 \] (4)
becomes new solution generated from \(u_i \), with
\[\sigma_i = \frac{a_i^{(1)}(x,t,\lambda_i)\mu_i + a_i^{(2)}(x,t,\lambda_i)\gamma_i}{a_i^{(1)}(x,t,\lambda_i)\mu_i + a_i^{(2)}(x,t,\lambda_i)\gamma_i}, \] (5)
where, \(\mu_i \) and \(\gamma_i \) are arbitrary constants, but \(\mu_i^2 + \gamma_i^2 \neq 0 \), and \(\Phi_i(x,t,\lambda) = \left(a_i^{(1)}(x,t,\lambda), a_i^{(2)}(x,t,\lambda) \right) \) is the fundamental solution matrix to the lax pair on \(2u_i \).

Only solving the fundamental solution matrix of the lax pair corresponding to constant solution \(u_0 \), it is possible to construct multi-periodic solutions to the KdV Equation (1). Substituting \(u_0 \) into the system (2) yields

*This work was supported by the Chinese Natural Science Foundation Grant (11261001) and Yunnan Provincial Department of Education Research Foundation Grant (2012Y130).
If setting $\xi = x - (4\lambda + 2u_0)t$, then we can assert that both the system (6) and the following linear system

$$
\Phi_\xi = \begin{pmatrix} 0 & 1 \\ \lambda - u_0 & 0 \end{pmatrix} \Phi,
$$

$$
\Phi_{\xi} = -\left(4\lambda + 2u_0\right) \begin{pmatrix} 0 & 1 \\ \lambda - u_0 & 0 \end{pmatrix} \Phi.
$$

(6)

have exactly the same solutions. Under the condition for $u_0 > \lambda$, by the eigenvalue method, we obtain the complex-valued fundamental solution matrix to the above system

$$
\begin{pmatrix} e^{ia\xi} & e^{-ia\xi} \\ iae^{ia\xi} & -iae^{-ia\xi} \end{pmatrix},
$$

(7)

where $a = a(\lambda) = \sqrt{u_0 - \lambda}$. Because the real and imaginary parts of a complex-valued solution are also solutions, we thus take

$$
\Phi_\theta (x, t, \lambda) = \begin{pmatrix} \cos \theta & \sin \theta \\ -a \sin \theta & a \cos \theta \end{pmatrix}
$$

(8)

as the fundamental solution matrix to the system (6), where $\theta = \theta(\lambda) = a\xi$.

For simplicity, we setting $a_i = a(\lambda), b_i = \theta(\lambda), \Gamma_{ij} = a_j^2 - a_i^2 = \lambda_j - \lambda_1, (i, j = 0, 1, 2)$.

From (5), we have

$$
\sigma_0 = a_0 \frac{-\mu_0 \sin \theta_0 + \gamma_0 \cos \theta_0}{\mu_0 \cos \theta_0 + \gamma_0 \sin \theta_0},
$$

in the above formula, choosing $\mu_0 = 1, \gamma_0 = 0$ and $\mu_0 = 0, \gamma_0 = 1$, respectively, we get

$$
\sigma_{0t} = -a_0 \tan \theta_0
$$

(9)

and

$$
\sigma_{0c} = a_0 \cot \theta_0,
$$

(10)

respectively, with (4), the periodic wave solutions

$$
u_{t,1} = u_0 - 2a_0^2 \sec^2 \theta_0
$$

and

$$
v_{t,2} = u_0 - 2a_0^2 \csc^2 \theta_0
$$

are obtained.

Now we construct the doubly periodic solutions generated from u_t, thanks to (4), we see that

$$
u_2 = 2\lambda_1 - \left(2\lambda - u_0 - 2\sigma_0^2\right) - 2\sigma_2^2,
$$

(11)

we first give σ_1, then substitute σ_0 and σ_1 into (11). Again according to [11], we can obtain the fundamental solution matrix to the lax pair associated with the known periodic wave solution u_t in the following manner

$$
\Phi_t (x, t, \lambda) = \begin{pmatrix} -\sigma_0 \\ \lambda - \lambda_1 + \sigma_1 \end{pmatrix},
$$

$$
\Phi_\theta (x, t, \lambda) = \begin{pmatrix} -\sigma_0 \cos \theta - a \sin \theta \\ -\sigma_0 \sin \theta + a \cos \theta \end{pmatrix}
$$

(12)

where $P = \left(\lambda - \lambda_1 + \sigma_1^2\right) \cos \theta + \sigma_0 a \sin \theta$.

$$
Q = \left(\lambda - \lambda_1 + \sigma_0^2\right) \sin \theta - \sigma_0 a \cos \theta.
$$

After combining (5) and (12), choosing $\mu_1 = 1, \gamma_1 = 0$, we get

$$
\sigma_{1c} = -\frac{(\lambda - \lambda_1 + \sigma_0^2) + \sigma_0 a \tan \theta_1}{\sigma_0 + a \tan \theta_1},
$$

(13)

Substituting (9) and (13) into (11), we have new doubly periodic solution

$$
u_{2,1} = u_0 + \frac{2\Gamma_{01} \left(a_0^2 \sec^2 \theta_0 - a_1^2 \csc^2 \theta_0\right)}{(a_0 \tan \theta_0 - a_1 \tan \theta_1)^2},
$$

(14)

Again substituting (10) and (13) into (11), we obtain another new doubly periodic solution

$$
u_{2,2} = u_0 + \frac{2\Gamma_{01} \left(a_0^2 \csc^2 \theta_0 - a_1^2 \sec^2 \theta_0\right)}{(a_0 \cot \theta_0 + a_1 \tan \theta_1)^2}.
$$

(15)

Similarly, choosing $\mu_1 = 0, \gamma_1 = 1$, we have

$$
\sigma_{1c} = -\frac{(\lambda - \lambda_0 + \sigma_1^2) - \sigma_0 a \cot \theta_1}{\sigma_0 a \cot \theta_1},
$$

(16)

which implies the doubly periodic solutions

$$
u_{2,3} = u_0 + \frac{2\Gamma_{01} \left(a_0^2 \sec^2 \theta_0 - a_1^2 \csc^2 \theta_0\right)}{(a_0 \tan \theta_0 + a_1 \cot \theta_1)^2},
$$

(17)

and

$$
u_{2,4} = u_0 + \frac{2\Gamma_{01} \left(a_0^2 \csc^2 \theta_0 - a_1^2 \sec^2 \theta_0\right)}{(a_0 \cot \theta_0 - a_1 \cot \theta_1)^2}.
$$

(18)

Specially, although $u_{2,3}$ is a doubly periodic solution, its structure is very similar to a given two-soliton solution in [1].

3. Triply Periodic Solutions

As shown in [11], the fundamental solution matrix to the lax pair associated with the doubly periodic wave solution u_2 can be given by

$$
\Phi_t (x, t, \lambda) = \begin{pmatrix} -\sigma_1 \\ \lambda - \lambda_0 + \sigma_1^2 \end{pmatrix},
$$

(19)

substituting (12) into (19), in exactly the same manner as in Section 2, we get
\[\sigma_{2i} = \frac{(\lambda_i - \lambda_2)(\sigma_0 + a_2 \tan \theta_i)}{\lambda_2 - \lambda_0 + (\sigma_0 + \sigma_1)(\sigma_0 + a_2 \tan \theta_2)} - \sigma_i \]

and

\[\sigma_{2c} = \frac{(\lambda_i - \lambda_2)(\sigma_0 - a_2 \cot \theta_i)}{\lambda_2 - \lambda_0 + (\sigma_0 + \sigma_1)(\sigma_0 - a_2 \cot \theta_2)} - \sigma_i. \]

Owing to (4) and (11), we have

\[u_3 = 2(\lambda_0 - u_0 - \sigma_0^2) + 2(\lambda_2 - \lambda_4 + \sigma_1^2 - \sigma_2^2) + u_0. \quad (20) \]

Here, we set \(F_i = a_i \tan \theta_i \), \(G_i = a_i \cot \theta_i \), \(i = 0, 1, 2 \).

Substituting \(\sigma_0, \sigma_1 \) and \(\sigma_{2i} \) into (20), we obtain triply periodic solution

\[u_{3i} = u_0 + 2a_i^2 \sec^2 \theta_0 + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \sec^2 \theta_0 - a_i^2 \sec^2 \theta_1 \right) (F_0 - F_2)}{\left[\Gamma_0 (F_1 - F_0) + \Gamma_{10} (F_0 - F_2) \right]^2} + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \sec^2 \theta_3 - a_i^2 \sec^2 \theta_0 \right) (F_1 - F_0)}{\left[\Gamma_0 (F_1 - F_0) + \Gamma_{10} (F_0 - F_2) \right]^2}. \]

Similarly, we have

\[u_{3c} = u_0 + 2a_i^2 \sec^2 \theta_0 + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \sec^2 \theta_0 - a_i^2 \sec^2 \theta_1 \right) (G_0 + F_2)}{\left[\Gamma_0 (G_1 + G_0) - \Gamma_{10} (G_0 + F_2) \right]^2} + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \sec^2 \theta_3 - a_i^2 \sec^2 \theta_0 \right) (G_1 + F_0)}{\left[\Gamma_0 (G_1 + G_0) - \Gamma_{10} (G_0 + F_2) \right]^2}. \]

\[u_{3s} = u_0 + 2a_i^2 \sec^2 \theta_0 + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \csc^2 \theta_0 - a_i^2 \csc^2 \theta_1 \right) (F_0 - F_2)}{\left[\Gamma_0 (G_1 + G_0) + \Gamma_{10} (G_0 + F_2) \right]^2} + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \csc^2 \theta_3 - a_i^2 \csc^2 \theta_0 \right) (G_1 + F_0)}{\left[\Gamma_0 (G_1 + G_0) + \Gamma_{10} (G_0 + F_2) \right]^2}. \]

\[u_{3t} = u_0 + 2a_i^2 \csc^2 \theta_0 + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \csc^2 \theta_0 - a_i^2 \csc^2 \theta_1 \right) (G_0 + F_2)}{\left[\Gamma_0 (G_1 + G_0) + \Gamma_{10} (G_0 + F_2) \right]^2} + \frac{2\Gamma_{12} \Gamma_0 \left(a_i^2 \csc^2 \theta_3 - a_i^2 \csc^2 \theta_0 \right) (G_1 + F_0)}{\left[\Gamma_0 (G_1 + G_0) + \Gamma_{10} (G_0 + F_2) \right]^2}. \]

REFERENCES

