
Applied Mathematics, 2013, 4, 97-99 
http://dx.doi.org/10.4236/am.2013.48A013 Published Online August 2013 (http://www.scirp.org/journal/am) 

Inherent Properties of Two Dimension Green Function 
with Linear Boundary Condition of Free Water Surface* 

Xing Wang, Chao Liu, Zhenli Sun, Mingyan Wu, Shesheng Zhang# 
Department of Statistics, Wuhan University of Technology, Wuhan, China 

Email: #sheshengz@qq.com 
 

Received May 11, 2013; revised June 11, 2013; accepted June 18, 2013 
 

Copyright © 2013 Xing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

A mathematic model of Green function is build for two dimension free water surface. The analytic expression of Green 
function is obtained by introducing a parameter of complex number. The intrinsic properties of Green function are dis-
cussed for the special parameter values. The real and imaginary parts of H function are shown in the paper. 
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1. Introduction 

Researches on ship’s hydrodynamics force need to work 
out the added mass. The near field two dimensional 
added mass is generally calculated by boundary integral 
method, in which the Green function is often used as the 
kernel function. Since the Green function can be repre-
sented by improper integral with several singularities and 
an infinite integrating range, problems of calculation errors 
and large mount of calculation naturally arise. However it 
causes scholars’ interests to study on the Green function 
with free surface for years. Some researchers like Frank 
[1], Poul [2], Newman [3], Ricardo [4], Chen [5] and etc 
have done lots of work on the Green function. Research-
ers like Liu [6], Dai [7], Ma [8], Zhou [9], Zhou [10] and 
etc also have gotten their findings. In 2010, French scholar 
Ricardo [4] published his research results of the Green 
function, which pointed out that if using infinite series or 
integral to represent the two-dimensional frequency do-
main Green function with free surface, it has an ambigu-
ous theory discourse, a huge mount of computation and 
some inconvenience in practical. 

Based on the work of Ricardo [4], this paper theoreti-
cally discusses the near-field two-dimensional Green func-
tion with free surface about its inherent properties using 
complex function theories. 

2. Fundamental Theories 

Taking Oxyz as the orthogonal coordinate system along 
with ship’s movement, plane Oxz is placed on the hori-
zontal plane, with y axis vertical downwards and z axis 
pointing the movement’s direction, see Figure 1. If fluid 
is in-viscid and ir-rotational. Considering the near-field 
flow in z axis’s cross section, suppose   satisfies Laplace 
equation: 
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where z is the coordinate of field point P defined as 
z x jy  , ; complex number 0y    is the coordinate 
of source point Q defined as j    , 0  ; The 
right of the equation is the product of two delta functions. 

The boundary condition on the free surface is: 
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where K,   are real numbers and  1j    is the unit 
imaginary number.  

At infinite, take the radiation conditions are: 
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        (2.3) 

where C is constant. 
Ricardo [4] obtained the Green function with the above 

free surface linear boundary conditions using Fourier 
transform method: 
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It can be represented as the following patterns after sim- 
plification 
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H function is defined as: 
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here C is the Euler’s constant. The above formula has only 
one infinite series, whose denominator is (n!n) and as a 
result the convergence rate is relatively fast. 

3. The Truncation Error of Series 

Suppose a and δ is Y’s modulus and argument respectively, 
When δ is zero, H(Y) proposed above is 
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or written as 
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Let the relative error noted as 
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Since constant a > 0, note q = a/M, then here’s the es-
timating formula for error  
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So we get  
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This is the estimating formula for error. Once the posi-
tive integer M is given, we can work out the estimated 
error. On the contrary, if the bound on error is given, we 
can get the value of M. Assuming the bound on error is 
0.01, here’s the relationship of M and a. See details in 
Table 1. 

4. Numerical Calculation 

As long as the number of terms in series M is known, we 
can calculate the values of H(Y) and the Green function 
based on the proposed formula before. The specific cal-
culation steps are: 

1) Give the bound on error; 
2) Work out the number of terms in series M; 
3) Calculate H(Y) using the following formula 
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4) Calculate the Green function using the following 
formula  
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According to these steps, we obtain the real and imagi- 
nary part of H(Y). See details in Figure 2, where the pa- 

 
Table 1. Relationship of M (number of terms in series) and 
a (bound on error). 

a 1 4 7 10 13 16 19 

M 6 10 14 18 22 26 29 
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6. Conclusion 

 

This paper works out the explicit formulation of the Green 
function, estimates the formulation’s error and gives the 
relationship between the number of terms in series M and 
the bound on error a. Then, inherent properties of the 
Green function are concluded. 
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