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ABSTRACT 

A hydrodynamic model of thin, laminar, gravity-driven, wavy-film flow over a vertical plate was considered. To make 
advantage of the cyclic boundary conditions and due to the nature of the wavy flow, a solution based on a Fourier series 
was implemented. Two representative cases of practical importance were studied; Re = 25, Re = 100. This range of 
Reynolds numbers is of the most practical importance in the process industry. Multiple solutions were obtained. Most of 
these solutions are mathematically correct but physically are not. It is observed that realistic wave profiles are always 
obtained once we approach the Froude number corresponding to thin film.  
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1. Introduction 

Thin films flowing down vertical surfaces have been 
extensively studied because of their common occurrence 
in a variety of engineering applications. The transport 
properties typical of thin-film flows are especially suited 
to applications in industrial process equipment. The effi- 
cient heat- and mass-transfer characteristics of the film 
are primarily the result of the thinness of the film and are 
further enhanced by the presence of waves on the liquid- 
vapor interface.  

Gravity is the driving force which creates the film flow 
and gives rise to the term “falling film”. In addition to 
the gravity force, the falling film is acted upon by an 
opposing shear force between the film and the solid sur- 
face and by a second shear force caused by the difference 
in viscosity of the fluid and the gases at the interface. 
The gravity effect on the falling film is expressed in 
terms of the Froude number, while the fluid flow rate is 
expressed in terms of the film Reynolds number.  

Casual observation of a thin film on a vertical surface 
reveals certain important characteristics of the flow. The 
most obvious feature is the essential unsteadiness of the 
motion. With disturbances normally present in laboratory 
situations waves will develop on the liquid-vapor inter- 
face. For disturbances with a dominant perturbing fre- 
quency and a limited side-band width, a finite-amplitude, 
wavy-flow state can be observed. In this situation, con- 

stant wave amplitude is approached asymptotically with 
flow length as nonlinear interaction of wave modes re- 
sults in an equilibrium condition. In other, more common 
situations, the presence of a wide spectrum of perturbing 
disturbances precludes the possibility of an observable 
stable equilibrium state. However, it does appear that 
developing flow characteristics can be satisfactorily de- 
scribed for much of the flow length by these asymptotic 
states Hirshburg and Florschuetz [1]. Wavy motion in a 
falling liquid film has been investigated both experimen- 
tally (Emmert and Pigford, [2]; Oliver and Atherinos, [3]; 
Yih and Seagrave, [4]; Patnaik and Perez-Blanco [5]; 
Adomeit and Renz [6]; Ambrosini, et al. [7]; Drosos, et 
al. [8]) and analytically by (Berbente and Ruckenstein, 
[9]; Javdani, [10]; Beschkov, and Boyadjiev, [11]).  

In the literature, several techniques have been at- 
tempted to solve the wavy film motion (Dukler, [12]; 
Nguyen and Balakotaiah, [13]). An approximate solution 
of wavy film motion was done by Kapitza [14], Shkadov 
[15] for Re < 100 Hirshburg and Florschuetz [1] at- 
tempted to extend Shkadov’s work by including more 
expansion terms in the solution. However, by truncating 
the higher harmonic terms, generated by the nonlinear 
equation, they lost the coefficients of lower harmonic 
expansion terms of interest. Both Shkadov and Hirshburg 
employed a periodic wave state assumption which sim- 
plified the mathematical derivation substantially. Yang 
[16] made the same assumption along with constant fluid 
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properties to provide improved solutions via a colloca- 
tion technique. He has given some details of the growth 
of finite-amplitude waves.  

1) The above brief review suggests that wavy motion 
in a falling liquid film enhances heat or mass transfer 
relative to the case of smooth laminar motion and despite 
progress made in recent years; significant gaps exist in 
understanding and modeling the falling films.  

2) The objective of this work is to predict the wavy 
film flow profile using a hybrid analytical-numerical 
method. The solutions are valid for low and moderate 
Reynolds numbers regimes where the linear stability and 
the asymptotic finite-amplitude wave analysis of equilib- 
rium flow states are still valid. This range of Reynold’s 
numbers is of the most practical importance in the proc- 
ess industry.  

2. Mathematical Formulation 

For two-dimensional laminar flow, the governing equa- 
tions for constant fluid properties in the coordinate sys- 
tem shown in Figure 1 are  
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The associated boundary conditions are 
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Figure 1. Coordinate system for the falling wavy film. 

1) No slip and no penetration on the wall; 
2) Negligible shear stress and balanced normal forces 

on the interface; 
3) Specified global mean flow rate; 
4) A permanent wave transformation can be employed. 

This is because we are studying the asymptotic periodic 
wave state.  

The free surface boundary conditions for negligible 
shear stress and balanced normal forces can be expressed 
respectively after some manipulations as  
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From the continuity equation 
y
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Since the film thickness  is very small compared to 
the film length in the x-direction, an order of magnitude 
analysis combines Equations (1)-(3) and (6) such that:  
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and the boundary conditions become: 
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Udea and Tanaka [17] proved experimentally that 
parabolic velocity profile is quite accurate for Reynolds 
numbers flows up to about 150. Therefore the following 
velocity profile assumption was used.  
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where  ,u x  t  is the cross-sectional mean velocity de- 
fined as  
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Plugging Equation (11) and the boundary conditions 
Equations (9) and (10) into Equation (7) and making all 
necessary partial derivatives, we obtain  
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Equation (15) is third-order, nonlinear, boundary value 
problem with the Froude number, Fr, as the eigenvalue. 
In Equation (15)   is the wave number,   is the cap- 
illary-buoyancy coefficient, z is the dimensionless wave 
velocity, and Re is the film Reynolds number, (flow 
rate).  

The Weber number, We, can be expressed in terms of 
Re,   and Fr as  For periodic wave states, there exists a permanent 

wave transformation variable x ct    where c is the 
wave velocity. The wave amplitude can be described by  
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3. Numerical Method where, o  is the mean film thickness over the wave- 
length and 

h
  is the dimensionless free surface deflec- 

tion. Substituting Equation (15) into Equation (14) and 
making all necessary partial derivatives, we obtain  

To make advantage of the cyclic boundary conditions 
and due to the nature of the wavy flow, a solution in the 
form of a Fourier series is suggested.  
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  (15) As seen, this solution satisfies the periodic boundary 

conditions (16). 
Substituting Equation (18) into Equation (15), we get 

the following algebraic equation.  The boundary conditions become 
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Equation (19) involves 2N + 1 unknowns, An, Bn and 

the Froude number as the eigenvalue. Thus we need 2N + 
1 equations. This can be achieved by satisfying Equation 
(19) at 2N + 1 collocation points. The uniform grid is a 
good choice for the Fourier series. 
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Since Equation (15) is an eigenvalue problem in Fr, 
the solution is not unique and we have troubles finding 
the solutions. Some examples of the solutions obtained 
for water are shown in Figure 2. While these solutions 
are mathematically correct they are not physically so. 

4. Results and Discussions 

In the physical problem, one need only specify the Rey- 
nolds number, Re, (flow rate), and the capillary-buoy- 
ancy coefficient, γ. The values for z and   are given by 
Pierson and Whitaker [18] while the capillary-buoyancy 
coefficient is:  

These wave profiles are unrealistic because the wave 
amplitude exceeds the boundary at 0  . 

Figure 3 shows the wave profile for water (γ = 3400 at 
Reynolds number, Re = 25, z = 2.8, a = 0.009551). 

Figures 4 and 5 show the wave profile for water (γ =    
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Figure 2. The wave profile for water at Re = 100, and different values of Fr. 
 

    

    

 

Figure 3. The wave profile for water (γ = 3400 at Reynolds number, Re = 25, z = 2.8, a = 0.009551, and different values of Fr). 
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Figure 4. The wave profile for water (γ = 3400 at Reynolds number, Re = 100, z = 2.8, a = 0.021645 and different values of Fr)
 

. 

    

 

Figure 5. The wave profile for water (γ = 3400 at Reynolds number, Re = 100, z = 2.8, a = 0.021645 and different values of Fr)   . 
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3400 at Reynolds number, Re = 100, z = 2.8, a = 0.021645). 

Because of the multiplicities of the solutions we need 
to judge the correct solution by other methods. One way 
is to compare the values of the Fr with the Nusselt 
smooth film thickness,  0 
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film corresponds to Fr ose look at Figures 
4 and 5 reveals that the values of the Froude number are 
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for comparison with the smooth film.  
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y  
z  oc u  
 oh    = wave number 

o  = mean volumetric flow rate over a wavelength (m3/s) 
 y h   = 
  = wavelength (m) 
 = kinematic viscosity (m2/s)   

 =   x ct   
  = liquid density (kg/m ) 3

  = surface te /m) nsion (N
  = dimensionless free surface deflection 
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	The Weber number, We, can be expressed in terms of Re,  and Fr as 
	Because of the multiplicities of the solutions we need to judge the correct solution by other methods. One way is to compare the values of the Fr with the Nusselt smooth film thickness, . The Nusselt smooth film corresponds to Fr = 12/Re. A close look at Figures 4 and 5 reveals that the values of the Froude number are centered around Fr = 12/Re, which asserts our hypothesis for comparison with the smooth film. 

