Application of $\alpha\delta$-Closed Sets

Kokilavani Varadharajan1, Basker Palaniswamy2*

1Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, India
2Department of Mathematics, Kalaivani College of Technology, Coimbatore, India

Received January 4, 2012; revised November 29, 2012; accepted December 4, 2012

ABSTRACT

In this paper, we introduce the notion of $\alpha\delta$-US spaces. Also we study the concepts of $\alpha\delta$-convergence, sequentially $\alpha\delta$-continuity and sequentially $\alpha\delta$-sub-continuity and derive some of their properties.

Keywords: $\alpha\delta$-US Spaces; $\alpha\delta$-Convergence; Sequentially $\alpha\delta$-Compactness; Sequentially $\alpha\delta$-Continuity; Sequentially $\alpha\delta$-Sub-Continuity

1. Introduction

In 1967, A. Wilansky [1] introduced and studied the concept of US spaces. Also, the notion of $\alpha\delta$-closed sets of a topological space is discussed by R. Devi, V. Kokilavani and P. Basker [2,3]. The concept of slightly continuous functions is introduced and investigated by Erdal Ekici et al. [4]. In this paper, we define that a sequence $\{x_n\}$ in a space X is $\alpha\delta$-converges to a point $x \in X$ if $\{x_n\}$ is eventually in every $\alpha\delta$-open set containing x. Using this concept, we define the $\alpha\delta$-US space, Sequentially-$\alpha\delta$-continuous, Sequentially-Nearly-$\alpha\delta$-continuous, Sequentially-Sub-$\alpha\delta$-continuous and Sequentially-$\alpha\delta$O-compact of a topological space (X, τ).

2. Preliminaries

Throughout this paper, spaces X and Y always mean topological spaces. Let X be a topological space and A, a subset of X. The closure of A and the interior of A are denoted by $cl(A)$ and $int(A)$, respectively. A subset A is said to be regular open (resp. regular closed) if $A = int(cl(A))$ (resp. $A = cl(int(A))$, the δ-interior [5] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $Int_\delta(A)$. The subset A is called δ-open if $A = Int_\delta(A)$, i.e., a set is δ-open if it is the union of regular open sets. The complement of a δ-open set is called δ-closed.

Alternatively, a set $A \subset (X, \tau)$ is called δ-closed if $A = cl_\delta(A)$, where $cl_\delta(A) = \{x \mid x \in U \in \tau \Rightarrow \text{int}(cl(A)) \cap A \neq \emptyset\}$. The family of all δ-open (resp. δ-closed) sets in X is denoted by $\deltaO(X)$ (resp. $\deltaC(X)$). A subset A of X is called α-open [6] if $A \subseteq \text{int}(cl(int(A)))$ and the complement of an α-open are called α-closed. The intersection of all α-closed sets containing A is called the α-closure of A and is denoted by $\alphacl(A)$, Dually, α-interior of A is defined to be the union of all α-open sets contained in A and is denoted by $\alphaInt(A)$.

We recall the following definition used in sequel.

Definition 2.1. A subset A of a space X is said to be
(a) An α-generalized closed [7] (ag-closed) set if $\alphacl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).
(b) An $\alpha\delta$-closed [8] set if $\alphacl_\delta(A) \subseteq U$ whenever $A \subseteq U$ and U is ag-open in (X, τ).

The complement of a $\alpha\delta$-closed set is said to be $\alpha\delta$-open. The intersection of all $\alpha\delta$-closed sets of X containing A is called $\alpha\delta$-closure of A and is denoted by $\alpha\deltacl(A)$. The union of all $\alpha\delta$-open sets of X contained in A is called $\alpha\delta$-interior of A and is denoted by $\alpha\deltaint(A)$.

3. $\alpha\delta$-US Spaces

Definition 3.1. A sequence $\{x_n\}$ in a space X, $\alpha\delta$-converges to a point $x \in X$ if $\{x_n\}$ is eventually in every $\alpha\delta$-open set containing x.

Definition 3.2. A space X is said to be $\alpha\delta$-US if every sequence in X, $\alpha\delta$-converges to a point of X.

Definition 3.3. A space X is said to be
(a) $T_{\alpha\delta}^{\ast}$ if each pair of distinct points x and y in X there exists an $\alpha\delta$-open set U in X such that $x \in U$ and $y \notin U$ and a $\alpha\delta$-open set V in X such that $y \in V$ and $x \notin V$.
(b) $T_{\alpha\delta}$ if for each pair of distinct points x and y in X there exists an $\alpha\delta$-open sets U and V such

Copyright © 2013 SciRes. AM
that \(U \cap V = \varnothing \) and \(x \in U \), \(y \in V \).

Theorem 3.4. Every \(a\delta \)-US-space is \(T_{1}^{a\delta} \).

Proof. Let \(X \) be an \(a\delta \)-US-space and \(x, y \) be two distinct points of \(X \). Consider the sequence \(\{x_n\} \), where \(x_n = x \) for any \(n \in N \). Clearly \(\{x_n\} a\delta \)-converges to \(x \). Since \(x \neq y \) and \(X \) is \(a\delta \)-US, \(\{x_n\} \) does not \(a\delta \)-converges to \(y \), i.e., there exists an \(a\delta \)-open set \(U \) containing \(x \) but not \(y \). Similarly, we obtain an \(a\delta \)-open set \(V \) containing \(y \) but not \(x \). Thus, \(X \) is \(T_{1}^{a\delta} \).

Theorem 3.5. Every \(T_{2}^{a\delta} \)-space is \(a\delta \)-US.

Proof. Let \(X \) be a \(T_{2}^{a\delta} \) space and \(\{x_n\} \) a sequence in \(X \). Assume that \(\{x_n\} a\delta \)-converges to two distinct points \(x \) and \(y \). Then \(\{x_n\} \) is eventually in every \(T_{2}^{a\delta} \) and \(\{x_n\} \) is eventually in two disjoint \(a\delta \)-open sets. This is a contradiction. Therefore, \(X \) \(a\delta \)-US.

Definition 3.6. A subset \(A \) of a space \(X \) is said to be

(a) Sequentially \(a\delta \)-closed if every sequence in \(A \) \(a\delta \)-converges to a point in \(A \),

(b) Sequentially \(a\delta \)O-compact if every sequence in \(A \) has a subsequence which \(a\delta \)-converges to a point in \(A \).

Theorem 3.7. A space is \(a\delta \)-US if and only if the diagonal subset \(\Delta \) is sequentially \(a\delta \)-closed.

Proof. Suppose that \(X \) is an \(a\delta \)-US space and \(\{(x_n, x_n)\} \) is a sequence in the diagonal \(\Delta \). It follows that \(\{x_n\} \) is a sequence in \(X \). Since \(X \) is \(a\delta \)-US, the sequence \(\{(x_n, x_n)\} \) \(a\delta \)-converges to \((x, x) \) which clearly belongs to \(\Delta \). Therefore, \(\Delta \) is a sequentially \(a\delta \)-closed subset of \(X \times X \). Conversely, suppose that the diagonal \(\Delta \) is sequentially \(a\delta \)-closed subset of \(X \times X \). Assume that a sequence \(\{x_n\} \) is \(a\delta \)-converging to \(x \) and \(y \). Then it follows that \(\{(x_n, x_n)\} a\delta \)-converges to \((x, y) \). By hypothesis, since \(\Delta \) is sequentially \(a\delta \)-closed, we have \((x, y) \in \Delta \). Thus \(x = y \). Therefore, \(X \) \(a\delta \)-US.

Theorem 3.8. If a space \(X \) is \(a\delta \)-US and a subset \(M \) of \(X \) is sequentially \(a\delta \)O-compact, then \(M \) is sequentially \(a\delta \)-closed.

Proof. Assume that \(\{x_n\} \) is any sequence in \(M \) which \(a\delta \)-converges to a point \(x \in X \). Since \(M \) is sequentially \(a\delta \)O-compact, there exists a subsequence \(\{x_{n_m}\} \) of \(\{x_n\} \) \(a\delta \)-converges to \(m \in M \). Since \(X \) is \(a\delta \)-US, we have \(x = m \). This shows that \(M \) is sequentially \(a\delta \)-closed.

Theorem 3.9. The product space of an arbitrary family of \(a\delta \)-US topological space is an \(a\delta \)-US topological space.

Proof. Let \(\{x_\lambda : \lambda \in \Delta \} \) be a family of \(a\delta \)-US topological spaces with the index set \(\Delta \). The product space of \(\{x_\lambda : \lambda \in \Delta \} \) is denoted by \(\prod X_\lambda \). Let \(\{x_\lambda (\lambda)\} \) be a sequence in \(\prod X_\lambda \). Suppose that \(\{x_\lambda (\lambda)\} a\delta \)-converges to two distinct points \(x \) and \(y \) in \(\prod X_\lambda \). Then there exists a \(\lambda_0 \in \Delta \) such that \(x(\lambda_0) \neq y(\lambda_0) \). Then \(\{x_\lambda (\lambda_0)\} \) is a sequence in \(X_{\lambda_0} \).

Let \(V_{\lambda_0} \) be any \(a\delta \)-open in \(X_{\lambda_0} \) containing \(x(\lambda_0) \). Then \(V = \bigcap_{\lambda \in \Delta} X_\lambda \) is a \(a\delta \)-open set of \(\prod X_\lambda \) containing \(x \). Therefore, \(\{x_\lambda (\lambda)\} \) is eventually in \(V \). Thus \(\{x_\lambda (\lambda_0)\} \) is eventually in \(V_{\lambda_0} \) and it \(a\delta \)-converges to \(x(\lambda_0) \). Similarly, the sequence \(\{x_\lambda (\lambda_0)\} a\delta \)-converges to \(y(\lambda_0) \). This is a contradiction as \(X_{\lambda_0} \) is an \(a\delta \)-US space.

Therefore, the product space \(\prod X_\lambda \) is \(a\delta \)-US.

4. Sequentially \(a\delta \)O-Compact Preserving Functions

Definition 4.1. A function \(f : X \rightarrow Y \) is said to be

(a) Sequentially-\(a\delta \)-continuous at \(x \in X \) if the sequence \(\{f(x_n)\} a\delta \)-converges to \(f(x) \) whenever a sequence \(\{x_n\} a\delta \)-converges to \(x \).

(b) Sequentially-\(a\delta \)O-compact preserving if the image \(f(M) \) of every sequentially \(a\delta \)O-compact set \(M \) of \(X \) is a sequentially \(a\delta \)O-compact subset of \(Y \).

Theorem 4.2. Let \(f_1 : X \rightarrow Y \) and \(f_2 : X \rightarrow Y \) be two sequentially \(a\delta \)-continuous functions. If \(Y \) is \(a\delta \)-US, then the set \(E = \{ x \in X : f_1(x) = f_2(x) \} \) is sequentially \(a\delta \)-closed.

Proof. Suppose that \(Y \) is \(a\delta \)-US and \(\{x_n\} \) is any sequence in \(E \) that \(f_1 \)-converges to \(x \in X \). Since \(f_1 \) and \(f_2 \) are sequentially \(a\delta \)-continuous functions, the sequence \(\{f_1(x_n)\} \) (respectively, \(\{f_2(x_n)\} \)) converges to \(f_1(x) \) (respectively, \(f_2(x) \)). Since \(x \in E \) for each \(n \in N \) and \(Y \) is \(a\delta \)-US, \(f_1(x) = f_2(x) \) and hence \(x \in E \). This shows that \(E \) is sequentially \(a\delta \)-closed.

Lemma 4.3. Every function \(f : X \rightarrow Y \) is sequentially sub \(a\delta \)US \(a\delta \)-US continuous if \(Y \) is sequentially \(a\delta \)O-compact.

Proof. Let \(\{x_n\} \) be a sequence in \(X \) that \(a\delta \)-US converges to \(x \in X \). It follows that \(\{f(x_n)\} \) is a sequence in \(Y \). Since \(Y \) is sequentially \(a\delta \)-compact,
there exists a subsequence \(\{f(x_n)\}\) of \(\{f(x)\}\) that \(a_\delta\)-converges to a point \(y \in Y\). Therefore \(f: X \to Y\) is sequentially sub \(a_\delta\)-continuous.

Theorem 4.4. Every sequentially nearly \(a_\delta\)-continuous function is sequentially \(a_\delta\Omega\)-compact preserving.

Proof. Let \(f: X \to Y\) be a sequentially nearly \(a_\delta\)-continuous function and \(M\) be any sequentially \(a_\delta\Omega\)-compact subset of \(X\). We will show that \(f(M)\) is a sequentially \(a_\delta\Omega\)-compact subset of \(Y\). So, assume that \(\{y_n\}\) is any sequence in \(f(M)\). Then for each \(n \in N\), there exists a point \(x_n \in M\) such that \(f(x_n) = y_n\). Now \(M\) is sequentially \(a_\delta\Omega\)-compact, so there exists a subsequence \(\{x_{n_k}\}\) of \(\{x_n\}\) that \(a_\delta\)-converges to a point \(x \in M\). Since \(f\) is sequentially nearly \(a_\delta\)-continuous, there exists a subsequence \(\{x_{n_k}(i)\}\) of \(\{x_n(i)\}\) such that \(f(x_{n_k}(i))\) \(a_\delta\)-converges to \(f(x)\). Therefore, there exists a subsequence \(\{y_{n_k}(i)\}\) of \(\{y_n(i)\}\) that \(a_\delta\)-converges to \(f(x)\). This implies that \(f(M)\) is a sequentially \(a_\delta\Omega\)-compact set of \(Y\).

Theorem 4.5. Every sequentially \(a_\delta\Omega\)-compact preserving function is sequentially sub-\(a_\delta\)-continuous.

Proof. Suppose that \(f: X \to Y\) is a sequentially \(a_\delta\Omega\)-compact preserving function. Let \(x\) be any point of \(X\) and \(\{x_n\}\) a sequence that \(a_\delta\)-converges to \(x\). We denote the set \(\{x_n: n \in N\}\) by \(A\) and put \(M = A \cup \{x\}\). Since \(\{x_n\}\) \(a_\delta\)-converges to \(x\), \(M\) is sequentially \(a_\delta\Omega\)-compact. By hypothesis, \(f\) is sequentially \(a_\delta\Omega\)-compact subset of \(Y\). Now in \(f(M)\) there exists a subsequence \(\{f(x_{n_k})\}\) of \(\{f(x_n)\}\) that \(a_\delta\)-converges to a point \(y \in f(M)\). This implies that \(f\) sequentially sub-\(a_\delta\)-continuous.

Theorem 4.6. A function \(f: X \to Y\) is sequentially \(a_\delta\Omega\)-compact preserving if and only if \(f|_M: M \to f(M)\) is sequentially sub-\(a_\delta\)-continuous for each sequentially \(a_\delta\Omega\)-compact set \(M\) of \(X\).

Proof. Necessity: Suppose that \(f: X \to Y\) is a sequentially \(a_\delta\Omega\)-compact preserving function. Then \(f(M)\) is sequentially \(a_\delta\Omega\)-compact in \(Y\) for each sequentially \(a_\delta\Omega\)-compact subset \(M\) of \(X\). Therefore, by Theorem 3.5 \(f|_M: M \to f(M)\) is sequentially sub-\(a_\delta\)-continuous.

Sufficiency: Let \(M\) be any sequentially \(a_\delta\Omega\)-compact set of \(X\). We will show that \(f(M)\) is sequentially \(a_\delta\Omega\)-compact subset of \(Y\). Let \(\{y_n\}\) be any sequence in \(f(M)\). Then for each \(n \in N\), there exists a point \(x_n \in M\) such that \(f(x_n) = y_n\). Since \(\{x_n\}\) is a sequence in the sequentially \(a_\delta\Omega\)-compact set \(M\) there exists a subsequence \(\{x_{n_k}\}\) of \(\{x_n\}\) that \(a_\delta\)-converges to a point in \(M\). By hypothesis \(f|M: M \to f(M)\) is sequentially sub-\(a_\delta\)-continuous, hence there exists a subsequence \(\{y_{n_k}\}\) of \(\{y_n\}\) that \(a_\delta\)-converges to \(y \in f(M)\). This implies that \(f(M)\) is sequentially \(a_\delta\Omega\)-compact in \(Y\).

Corollary 4.7. If a function \(f: X \to Y\) is sequentially sub-\(a_\delta\)-continuous and \(f(M)\) is sequentially \(a_\delta\)-closed in \(Y\) for each sequentially \(a_\delta\Omega\)-compact set \(M\) of \(X\), then \(f\) is sequentially \(a_\delta\Omega\)-compact preserving.

Proof. It will be sufficient to show that \(f|M: M \to f(M)\) is sequentially sub-\(a_\delta\)-continuous for each sequentially \(a_\delta\Omega\)-compact set \(M\) of \(X\) and by Lemma 3.3. We have already done. So, let \(\{x_n\}\) be any sequence in \(M\) that \(a_\delta\)-converges to a point \(x \in M\). Then, since \(f\) is sequentially sub-\(a_\delta\)-continuous there exists a subsequence \(\{x_{n_k}\}\) of \(\{x_n\}\) and a point \(y \in Y\) such that \(f(x_{n_k})\) \(a_\delta\)-converges to \(y\).

Since \(\{f(x_{n_k})\}\) is a sequence in the sequentially \(a_\delta\)-closed set \(f(M)\) of \(Y\), we obtain \(y \in f(M)\). This implies that \(f|M: M \to f(M)\) is sequentially sub-\(a_\delta\)-continuous.

5. Slightly \(a_\delta\)-Continuous Functions

Definition 5.1. A function \(f: X \to Y\) is said to be slightly \(a_\delta\)-continuous if for each \(x \in X\) and for each \(v \in CO(Y, f(x))\), there exists \(U \in a_\delta O(X, x)\) such that \(f(U) \subseteq V\), where \(CO(Y, f(x))\) is the family of clopen sets containing \(f(x)\) in a space \(Y\).

Definition 5.2. Let \((D, \leq\) be a directed set \(A\) net \(\{x_\lambda: \lambda \in D\}\) in \(X\) is said to be \(a_\delta\)-convergent to a point \(x \in X\) if \(\{x_\lambda\}_{\lambda \in D}\) is eventually in each \(U \in a_\delta O(X, x)\).

Theorem 5.3. For a function \(f: X \to Y\), the following are equivalent:

(a) \(f\) is slightly \(a_\delta\)-continuous.

(b) \(f^{-1}(v) \in a_\delta O(X)\) for each \(V \in CO(Y)\).

(c) \(f^{-1}(v)\) is \(a_\delta\)-cl-open for each \(V \in CO(Y)\).

(d) for each \(x \in X\) and for each net \(\{x_\lambda\}_{\lambda \in D}\) in \(X\).

Proof. (a) \(\Rightarrow\) (b). Let \(V \in CO(Y)\) and let \(x \in f^{-1}(V)\), then \(x \in V\). Since \(f\) is slightly \(a_\delta\)-continuous, there is a \(U \in a_\delta O(X, x)\) such that \((U) \subseteq V\). Thus \(f^{-1}(U) = \bigcup \{U: x \in f^{-1}(V)\}\), that is \(f^{-1}(U)\) is a union of \(a_\delta\)-open sets. Hence \(f^{-1}(U) \in a_\delta O(X)\).

(b) \(\Rightarrow\) (c). Let \(V \in CO(Y)\), then \((Y-V) \in CO(X)\).

By hypothesis \(f^{-1}(Y-V) = X-f^{-1}(V) \in a_\delta O(X)\).

Thus \(f^{-1}(U)\) is \(a_\delta\)-closed.

(c) \(\Rightarrow\) (d). Let \(\{x_\lambda\}_{\lambda \in D}\) be a net in \(X a_\delta\)-con-
verging to \(x \) and let \(V \in CO(Y, f(x)) \). There is thus a \(U \in \alpha \delta O(X, x) \) such that \((U) \subset V \). There is thus a \(\lambda_0 \in D \) such that \(\lambda_0 \leq \lambda \) implies \(x_\lambda \in U \) since \(\{x_\lambda\}_{\lambda \in D} \) is \(\alpha \delta \)-convergent to \(x \). Thus \(f(x_\lambda) \in f(U) \subset V \) for all \(\lambda \). Thus \(\{f(x_\lambda)\}_{\lambda \in D} \) is \(\alpha \delta \)-convergent to \(f(x) \).

\((d) \Rightarrow (a)\) Suppose that \(f \) is not slightly \(\alpha \delta \)-continuous at a point \(x \in X \), then there exists a \(V \in CO(Y, f(x)) \) such that \(f(U) \) does not contained in \(V \) for each \(U \in \alpha \delta O(X, x) \). So

\[
f(U) \cap (Y - V) \neq \emptyset \text{ and thus } U \cap f^{-1}(Y - V) \neq \emptyset \text{ for each } U \in \alpha \delta O(X, x), \text{ since } \alpha \delta O(X, x) \text{ is directed by set inclusion } C, \text{ there exists a selection function } x_\lambda \text{ from } \alpha \delta O(X, x) \text{ into } X \text{ for each } U \in \alpha \delta O(X, x).
\]

Thus \(\{x_\lambda\}_{U} \in \alpha \delta O(X, x) \) is a net in \(\alpha \delta \)-converging to \(x \). Since \(X_U \in U \cap f^{-1}(Y - V) = U - f^{-1}(V) \) and so \(f(x_\lambda) \notin V \) for each \(U \),

\[
\{f(x_\lambda)\}_{U} \in \alpha \delta O(X, x) \text{ is not eventually in } V \subset CO(Y, f(x)), \text{ which is a contradiction. Hence } (a) \text{ holds.}
\]

Theorem 5.4. If \(f : X \to Y \) is slightly \(\alpha \delta \)-continuous and \(g: Y \to Z \) is slightly continuous, then their composition \(g \circ f \) is slightly \(\alpha \delta \)-continuous.

Proof. Let \(V \in CO(Z) \), then \(g^{-1}(V) \subset CO(Y) \).
Since \(f \) is slightly \(\alpha \delta \)-continuous,

\[
f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \subset \alpha \delta O(X). \text{ Thus } g \circ f \text{ is slightly } \alpha \delta \text{-continuous.}
\]

Theorem 5.5. The following are equivalent for a function \(f : X \to Y \):

\((a)\) \(f \) is slightly \(\alpha \delta \)-continuous,
\((b)\) for each \(x \in X \) and for each \(V \in CO(Y, f(x)) \), there exists a \(\alpha \delta \)-open set \(U \) such that \(f(U) \subset V \),
\((c)\) for each closed set \(F \) of \(Y \), \(f^{-1}(F) \) is \(\alpha \delta \)-closed,
\((d)\) \(f(cl(A)) \subset \alpha \delta cl(f(A)) \) for each \(A \subset X \) and
\((e)\) \(f^{-1}(B) \subset f^{-1}(\alpha \delta cl(B)) \) for each \(B \subset Y \).

Proof. \((a) \Rightarrow (b)\) Let \(x \in X \) and \(V \in CO(Y, f(x)) \) by Theorem 4.3. \(f^{-1}(V) \) is clopen. Put \(U = f^{-1}(V) \), then \(x \in U \) and \(f(U) \subset V \).

\((b) \Rightarrow (c)\) is obvious.

\((c) \Rightarrow (d)\) since \(\alpha \delta cl(f(A)) \) is the smallest \(\alpha \delta \)-closed set containing \(f(A) \), hence by \((c)\), we have \((d)\).

\((d) \Rightarrow (e)\) for each \(V \subset Y \),

\[
f(cl(f^{-1}(B))) \subset \alpha \delta cl(f^{-1}(B)) \subset \alpha \delta cl(B). \text{ Hence } f(cl(f^{-1}(B))) \subset \alpha \delta cl(B)
\]

\[
\Rightarrow f^{-1}(B) \subset f^{-1}(\alpha \delta cl(B))
\]

\((e) \Rightarrow (a)\) Let \(V \in CO(Y) \), then \((Y - V) \subset CO(X) \), by \((e)\), we have

\[
cl(f^{-1}(Y - V)) \subset f^{-1}(\alpha \delta cl(Y - V)) = f^{-1}(Y - V), \text{ since every closed set is } \alpha \delta \text{-closed, thus } f^{-1}(Y - V) = X - f^{-1}(V) \text{ is closed and thus } \alpha \delta \text{-closed, thus } f^{-1}(V) \in \alpha \delta O(X) \text{ and } f \text{ is slightly } \alpha \delta \text{-continuous.}
\]

Theorem 5.6. If \(f : X \to Y \) is a slightly \(\alpha \delta \)-continuous injection and \(Y \) is clopen \(T_1 \), then \(X \) is \(T_{1}^{\text{ad}} \).

Proof. Suppose that \(Y \) is clopen \(T_1 \). For any distinct points \(x \) and \(y \) in \(X \), there exist \(U, V \in CO(Y) \) such that \(f(x) \in V, f(y) \notin V, f(x) \notin W \) and \(f(y) \in W \). Since \(f \) is slightly \(\alpha \delta \)-continuous, \(f^{-1}(V) \) and \(f^{-1}(W) \) are \(\alpha \delta \)-open subsets of \(X \) such that \(x \in f^{-1}(V), y \notin f^{-1}(V), x \notin f^{-1}(W) \) and \(y \in f^{-1}(W) \). This shows that \(X \) is \(T_{1}^{\text{ad}} \).

Theorem 5.7. If \(f : X \to Y \) is a slightly \(\alpha \delta \)-continuous surjection and \(Y \) is clopen \(T_2 \), then \(X \) is \(T_{2}^{\text{ad}} \).

Proof. For any pair of distinct points \(x \) and \(y \) in \(X \), there exist disjoint clopen sets \(U \) and \(V \) in \(Y \) such that \(f(x) \in U \) and \(f(y) \in V \). Since \(f \) is slightly \(\alpha \delta \)-continuous, \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\alpha \delta \)-open in \(X \) containing \(x \) and \(y \) respectively. Therefore \(f^{-1}(U) \cap f^{-1}(V) = \emptyset \) because \(U \cap V = \emptyset \). This shows that \(X \) is \(T_{2}^{\text{ad}} \).

Definition 5.8. A space is called \(\alpha \delta \)-regular if for each \(\alpha \delta \)-closed set \(F \) and each point \(x \notin F \), there exist disjoint open sets \(U \) and \(V \) such that \(F \subset U \) and \(x \in V \).

Definition 5.9. A space is said to be \(\alpha \delta \)-normal if for every pair of disjoint \(\alpha \delta \)-closed subsets \(F_1 \) and \(F_2 \) of \(X \), there exist disjoint open sets \(U \) and \(V \) such that \(F_1 \subset U \) and \(F_2 \subset V \).

Theorem 5.10. If \(f \) is slightly \(\alpha \delta \)-continuous injective open function from an \(\alpha \delta \)-regular space \(X \) onto a space then \(Y \) is clopen regular.

Proof. Let \(F \) be clopen set in \(Y \) and be \(y \notin F \), take \(y = f(x) \). Since \(f \) is slightly \(\alpha \delta \)-continuous, \(f^{-1}(F) \) is a \(\alpha \delta \)-closed set, take \(G = f^{-1}(F) \), we have \(x \notin G \). Since \(X \) is \(\alpha \delta \)-regular, there exist disjoint open sets \(U \) and \(V \) such that \(G \subset U \) and \(x \in V \). We obtain that \(F = f(G) \subset f(U) \) and \(y = f(x) \in f(V) \) such that \(f(U) \) and \(f(V) \) are disjoint open sets. This shows that \(Y \) is clopen regular.
Theorem 5.11. If \(f \) is slightly \(\alpha \delta \)-continuous injective open function from a \(\alpha \delta \)-normal space \(X \) onto a space \(Y \), then \(Y \) is \(cl \)-open normal.

Proof. Let \(F_1 \) and \(F_2 \) be disjoint \(cl \)-open subsets of \(Y \). Since \(f \) is slightly \(\alpha \delta \)-continuous, \(f^{-1}(F_1) \) and \(f^{-1}(F_2) \) are \(\alpha \delta \)-closed sets. Take \(U = f^{-1}(F_1) \) and \(V = f^{-1}(F_2) \). We have \(U \cap V = \emptyset \). Since \(X \) is \(\alpha \delta \)-regular, there exist disjoint open sets \(A \) and \(B \) such that \(U \subset A \) and \(V \subset B \). We obtain that \(F_1 = f(U) \subset f(A) \) and \(F_2 = f(V) \subset f(B) \) such that \(f(A) \) and \(f(B) \) are disjoint open sets. Thus, \(Y \) is \(cl \)-open normal.

REFERENCES
[6] V. Kokilavani and P. Basker, “On Some New Applications in \(R_{\alpha \delta}^{\alpha \delta} \) and \(R_{\alpha \delta}^{\alpha \delta} \) Spaces via \(\alpha \delta \)-Open Sets,” Elixir Applied Mathematics, Vol. 45, 2012, pp. 7817-7821.