
Applied Mathematics, 2012, 3, 2071-2079 
http://dx.doi.org/10.4236/am.2012.312A286 Published Online December 2012 (http://www.SciRP.org/journal/am) 

Gaussian Mixture Models for Human Face Recognition 
under Illumination Variations 

Sinjini Mitra 
Information Systems and Decision Sciences Department, Mihaylo College of Business and Economics,  

California State University, Fullerton, USA 
Email: smitra@fullerton.edu 

 
Received August 18, 2012; revised September 18, 2012; accepted September 25, 2012 

ABSTRACT 

The appearance of a face is severely altered by illumination conditions that makes automatic face recognition a 
challenging task. In this paper we propose a Gaussian Mixture Models (GMM)-based human face identification 
technique built in the Fourier or frequency domain that is robust to illumination changes and does not require “illu- 
mination normalization” (removal of illumination effects) prior to application unlike many existing methods. The 
importance of the Fourier domain phase in human face identification is a well-established fact in signal processing. A 
maximum a posteriori (or, MAP) estimate based on the posterior likelihood is used to perform identification, achieving 
misclassification error rates as low as 2% on a database that contains images of 65 individuals under 21 different 
illumination conditions. Furthermore, a misclassification rate of 3.5% is observed on the Yale database with 10 people 
and 64 different illumination conditions. Both these sets of results are significantly better than those obtained from 
traditional PCA and LDA classifiers. Statistical analysis pertaining to model selection is also presented. 
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1. Introduction 

Biometric Authentication denotes the technique of iden- 
tifying people based on their unique physical (e.g. face, 
fingerprints, iris) or behavioral (e.g. gait, voiceprint) 
traits. The modern world has seen a rapid evolution of 
the technology of biometric authentication, prompted by 
an increasing urgency for security following the attacks 
of 9/11. They are used everywhere today from law 
enforcement to immigration to e-commerce transactions. 
Of all the biometrics in use today, facial biometrics are 
probably the most popular owing to the ease of capturing 
face images using non-intrusive means such as, sur- 
veillance equipment. The significance of face as a bio- 
metric is ever increasing today in various areas of home- 
land security as well. This includes the practice of re- 
cording biometric information (photo and fingerprint) of 
foreign passengers at all US airports (the US-VISIT 
program) and the proposed inclusion of digitized photos 
in passports. Of all biometrics, face is the most accep- 
table because it is the most common method used by 
humans in their visual interaction and perception. In fact, 
facial recognition is an important human ability—an 
infant innately responds to face shapes at birth and can 
discriminate his or her mother’s face from a stranger’s at 
the tender age of 45 hours ([1]). In addition, the method  

of acquiring face images is very simple and non-in- 
trusive. 

The growing importance of face recognition has led to 
much research in computer vision over the past few 
decades, with applications ranging from still, controlled 
mug-shot verification to dynamic face identification in a 
cluttered background. There are two different approaches 
to devising face identification systems: 1) feature-based; 
and 2) model-based. Feature-based methods make use of 
individualized facial characteristics such as distance 
between eyes, nose, mouth, and their shapes and sizes, as 
the matching criteria. Model-based systems use a statisti- 
cal model to represent the pattern of some facial features 
(often the ones mentioned above), and some characteri- 
stics of the fitted model (parameter estimates, likelihood, 
etc.) are used as the matching criteria. Some well-known 
model-based approaches include Gaussian models ([2]), 
deformable models ([3]), and the inhomogeneous Gibbs 
models ([4]) that are particularly good at capturing the 
local details of a face using a minimax entropy principle. 
One class of flexible statistical models is Mixture Models 
([5]). These models can represent complex distributions 
through an appropriate choice of its components to re- 
present accurately the local areas of support of the true 
distribution. Apart from statistical applications, Gaussian 
Mixture Models (GMM), the most popular of the mixture  
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models, have also been used in computer vision. For in- 
stance, [6] used GMM for modeling the shape and tex- 
ture of face images. 

The problem of human face identification under illu- 
mination variations is also well-researched ([7,8]). Illu- 
mination changes occur frequently in real face images 
and hence it is imperative to develop identification me- 
thods that are robust to these changes. [9] and [10] con- 
tain comprehensive surveys and reviews of current face 
recognition methods that work well under varying 
illumination conditions. [11] proposed an appearance- 
based algorithm for face recognition across pose by esti- 
mating the eigen light-field from a collection of images. 
[12] developed a bilinear model of an illumination sub- 
space given arbitrary shape parameters from a 3D face 
model, while [13] devised a novel face recognition tech- 
nique under variable lighting using harmonic Image 
Exemplars that employ only one training image. Al- 
though all these approaches to devising face recognition 
systems are based on the spatial domain pixel intensities, 
recently much research effort has focused on the fre- 
quency domain as well whose many useful properties 
have been successfully exploited in various signal pro- 
cessing applications ([14]). The frequency spectrum of 
an image consists of two components, the magnitude and 
phase. In 2D images particularly, the phase captures 
more of the image intelligibility than magnitude and 
hence is very significant for performing image re- 
construction ([15]). [16] showed that correlation filters 
built in the frequency domain can be used for efficient 
face identification, and recently, [17] proposed correla- 
tion filters based only on the Fourier domain phase which 
perform as well as the original filters. [18] demonstrated 
that performing PCA in the frequency domain using only 
the phase spectrum outperforms spatial domain PCA and 
has attractive properties such as robustness to illumina- 
tion variations. Furthermore, much work has also been 
done on face recognition based on the low-frequency 
DCT (Discrete Cosine Transform) coefficients ([19,20]). 
[21] also proposed a similar method which applied 
Genetic Algorithms to search appropriate weights to 
rescale low-frequency DCT coefficients. Besides the 
DCT, discrete wavelet transform (DWT) is another com- 
mon method in face recognition. There are several simi- 
larities between the DCT and the DWT: 1) They both 
transform the data into frequency domain; 2) As data 
dimension reduction methods, they are both independent 
of training data compared to the PCA. Because of these 
similarities, there are also several studies on illumination 
invariant recognition based on the DWT ([22-24]). All 
these suggest that the frequency domain, particularly the 
phase spectra, has the potential of devising efficient 
identification methods. However, no work has been done, 

as per our knowledge, on developing model-based face 
identification systems in the frequency domain. Hence, in 
this paper we propose a novel GMM-based face iden- 
tification system in the frequency domain exploiting the 
significance of the phase spectrum. Moreover, unlike 
many face recognition techniques that perform illumi- 
nation normalization prior to classification ([19,25-27]), 
our method does not require it, and is able to perform 
training and testing using subsets of the original images. 
A preliminary version of this work appeared in [28]. 

The rest of the paper is organized as follows. Section 2 
presents our proposed GMM approach for human iden- 
tification. Section 3 provides a brief description of the 
two databases used in this work and presents the classi- 
fication results along with a performance comparison 
with existing approaches. Finally, model selection me- 
thods are included in Section 4 and a discussion appears 
in Section 5. 

2. Gaussian Mixture Models Based on Phase 

Because of their ability to capture heterogeneity in a 
cluster analysis context, finite mixture models provide a 
flexible approach to the statistical modeling of a wide 
variety of random phenomena. As any continuous distri- 
bution can be approximated arbitrarily well by a finite 
mixture of normal densities, Gaussian mixture models 
(GMM) provide a suitable semiparametric framework for 
modeling unknown and complex distributional shapes. 
Mixtures can thus handle situations where a single para- 
metric family fails to provide a satisfactory model for 
local variations in the observed data, and offer the scope 
of inference at the same time. 

2.1. Background: Model and Parameter 
Estimation 

Let  1, , nY Y  be a random sample of size n where jY  
is a p-dimensional random vector with probability dis- 
tribution f(yj) on pR . Also, let θ denote the vector of the 
model parameters. We write a g-component mixture mo- 
del in parametric form as: 

  
1

;   π ,
g

j i i j
i

f y f y  ,i


          (1) 

where  T

1 1  π , ,π , , ,g  Ψ   g  contains the unknown  

parameters. i  represents the model parameters for the  
thi  mixture component and  is the 

vector of the mixing proportions with 
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 . When  

the mixture components have a multivariate Gaussian 
distribution, each component is given by: 
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where   denotes the multivariate Gaussian density with 
mean vector i  and covariance matrix . 
Plugging (3) in (1), the mixture model has the form: 

, 1, ,i i g  
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         (4) 

Among the methods used to estimate mixture distri- 
butions are graphical models, method of moments, maxi- 
mum likelihood (based on EM) and Bayesian approaches 
using Markov Chain Monte Carlo (MCMC) methods. 
Although the application of MCMC methods is now po- 
pular, there are some difficulties that need to be add- 
ressed in the context of mixture models ([5]). Bayes esti- 
mators for mixture models are well-defined as long as the 
prior distributions are proper since improper priors yield 
improper posterior distributions. Another drawback is 
that when the number of components g is unknown, the 
parameter space is ill-defined, which prevents the use of 
classical testing procedures. But if a fixed g is used, this 
is not of any concern. 

Although EM is the most popular estimation method 
for mixture models, we adopt the Bayesian estimation 
technique using a fixed g due to the following reasons. 
The Bayesian approach yields a nice framework for per- 
forming statistical inference based on the posterior 
distributions of the parameters which is not provided by 
the EM method. For instance, there are rigorous methods 
available to perform a systematic model selection for the 
Bayesian approach. [29] suggests that the EM-type app- 
roximation is not really an adequate substitute for the 
more refined numerical approximation provided by the 
Gibbs sampler. In particular, they show that EM is not as 
effective as the Gibbs sampler in estimating the marginal 
distributions for small datasets with few samples as is 
often the case with image-based data. More precisely, if 
the number of training samples is smaller than the num- 
ber of estimable parameters, the Bayesian method creates 
no overflows in the estimation procedure. Moreover, [30] 
points out that EM is often slower to converge than the 
corresponding Gibbs sampler for Bayesian inference. 

A key step in the Bayesian estimation method consists 
of the specification of suitable priors for all the unknown 
parameters in . This ensures that the posterior density 
will be proper, thereby allowing the application of 
MCMC methods to provide an accurate approximation to 
the Bayes solution. In particular, if we use conjugate 
priors, then the posterior distribution of  can be writ- 
ten in a closed-form and computations are much simp- 

lified. The conjugate priors for mixtures of multivariate 
Gaussians are,  

Ψ

Ψ
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(The Wishart distribution is a multivariate generaliza- 
tion of the Gamma distribution). According to [31], the 
parameters of the prior distributions should be so chosen 
as to be fairly flat in the region where the likelihood is 
substantial and not much greater elsewhere, in order to 
ensure that the estimates are relatively insensitive to rea- 
sonable changes in the prior. 

The posterior quantities of interest  are approxi- 
mated by the Gibbs sampler which allow the construction 
of an ergodic Markov chain with stationary distribution 
equal to the posterior distribution of . In particular, 
Gibbs sampling simulates directly from the conditional 
distribution of a subvector of  given all the other 
parameters in  and y (called the complete condi-  

Ψ

Ψ

Ψ
Ψ

tional). It yields a Markov chain     , 1, 2,k k Ψ 

whose distribution converges to the true posterior dis- 
tribution of the parameters. The point estimates of the 
parameters are formed by the posterior means, estimated 
by the average of the first N values of the Markov chain. 
To reduce error associated with the fact that the chain 
takes time to converge to the correct distribution, how- 
ever, we discard the first 1  samples as burn-in, 
usually chosen by visual inspection of plots of the com- 
ponents of the Markov chain which shows that the chain 
has “settled down” into its steady-state behavior. Thus 
our estimates are given by 

N

 
 

 1 1 1

ˆ .
kN

k N

E y
N N 


 Ψ

Ψ         (6) 

2.2. Proposed Model Based on Phase Spectra 

An experiment that illustrates the fact that phase captures 
more of the image intelligibility than magnitude is 
described in Hayes (1982) and is performed as follows. 
Let  1 2,x n n  and  1 2,y n n  denote two images. From 
these images, two other images  1 2, f n n  and  
 1 2,g n n  are synthesized as:  
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1 2
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,
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    (7) 

where 1F   denotes the inverse Fourier transform ope- 
ration. What happens here is that  1 2, f n n  captures the 
intelligibility of  1 2,x n n , while 2 1, g n n  captures 
that of  1 2,y n n . This is shown in Figure 1, and we see  
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Figure 1. (a) Subject 1; (b) Subject 2; (c) Re-constructed 
image with magnitude of Subject 1 and phase of Subject 2; 
(d) Re-constructed image with magnitude of Subject 2 and 
phase of Subject 1. 
 
clearly that both the re-constructed images bear more 
resemblance to that original image to which the respec- 
tive phase component belonged. This demonstrates the 
significance of phase in identifying a face.  

Despite the well-established significance of phase in 
face identification, modeling the phase poses several 
difficulties. Perhaps the biggest challenge arises due to 
the fact that the phase is an angle and it lies between –π 
and π (Figure 2). Such a behavior is difficult to capture 
with the help of traditional statistical models based on 
stationarity assumptions. Besides, the phase angle is sen- 
sitive to distortions in images which means that it varies 
considerably across images of the same person under 
different lighting conditions. This calls for carefully 
choosing a suitable representation of phase for modeling 
purposes which we do in the following way: we divide 
the Fourier transform of an image by the magnitude at 
every frequency. The resulting images are of unit mag- 
nitude and we call them “phase-only’’ images. We then 
use the real and imaginary parts of these phase-only 
frequencies for modeling purposes, which are nothing 
but the sinusoids of the 2D Fourier transform  
(  and ). This is a simple and ef- 
fective way of modeling phase, as it provides an ade- 
quate representation and at the same time does not suffer 
from any of the difficulties associated with direct phase 
angle modeling (such as constrained support). Moreover, 
exploratory studies show that there does not exist any 
significant amount of correlation among the sinusoids at 
the different frequencies (Figure 2), and hence it is rea- 
sonable to assume independence and model each fre- 
quency separately. This helps in reducing the complexity 
of the model considerably and simplifying computations. 
However, we note here that extension to the correlated 
case, although algebraically cumbersome, is straightfor- 
ward.  

sin 2πux cos 2πux

Let ,
,

k j
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the imaginary part at the  ,
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Figure 2. The “wrapping around” property of the phase 
component. θ denotes the phase angle. 
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s t s t s tY R I j   n  where n denotes  

the total number of training images, as a mixture of 
bivariate normal distributions, the mixture components 
being given by 
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where   and   are respectively the frequency-wise 
means for the real and the imaginary parts, 2  and 2  
the frequency-wise variances and   is the correlation 
coefficient between the real and the imaginary parts. 
They form the unknown parameters of , so that Ψ

 g2 2, , , , , 1, ,i   Ψ πi i ,i i i i . The mixture model 
for each frequency for each person can then be written 
as: 

   ,
, , , , , , , , ,

1

;  ; , ,
g

k j k k j k k
s t s t i s t s t i s t i s t

i

f y y  


 Ψ  .

n

   (8) 

where 1, ,j   . It is a commonly known fact in signal 
processing that an image of good quality and identi- 
fiability can reconstructed using only few low frequency 
components around the origin ([14]). So we model only 
the low frequencies within a  square grid region 
(determined by experimentation so that p is much smaller 
than M) around the origin of the spectral plane. Moreover, 
owing to the Hermitian symmetry of the frequency com- 
ponents, only half of these frequencies need to used in 
the model (real part is symmetric and imaginary part is 
anti-symmetric). The complete model for each person is 
then given by (based on the independence assumption): 

p p

K
J   (the total number 

of illumination levels in the dataset). We model each 
frequency separately and for each individual; that is, we  

   
2

, ,
1 1

 ; .
pp

k j k j
s t s t

s t

f y f y
 

       (9) 
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The mixture components are expected to represent the 
different illumination levels in the images of each person. 

2.3. Classification Scheme 

We use a MAP (maximum a posteriori) estimate based 
on the posterior likelihood to classify the test images. For 
a new observation  ex- 
tracted from the phase spectrum of a test image, we can 
compute the likelihood under the model for person  
by evaluating 

 , ,, , , 1, ,100s t s tX R I s t  

k

    kh X k f x ,            (10) 

where  is as in Equation (9). The posterior like- 
lihood of the observed data belonging to a specific 
person is then be given by: 

 kf 

      ,f k X h X k p k       (11) 

where  denotes the prior probability for each per- 
son which we assume to be uniform over all the possi- 
ble people in the database. A particular image will then 
be assigned to class  if: 

 p k

C

 arg max .
k

C f k X          (12) 

For computational convenience, it is a convention to 
work with log-likelihoods in order to avoid numerical 
overflows/underflows in the evaluation of Equation (10). 

3. Results 

In this section, we present the results of human classi- 
fication. But first we briefly describe the two datasets 
used to illustrate the proposed techniques in this paper. 

3.1. Face Image Datasets 

First, we use a subset of the publicly available “CMU- 
PIE Database” ([32]) which contains images of  
people captured under  different illumination condi- 
tions ranging from shadows to balanced and overall dark. 
Figure 3 shows a small sample of images of 6 people 
under 3 different lighting effects. 

65
21

All these images are cropped using affine transfor- 
mations based on locations of the eyes and nose as is 
common and necessary for most computer vision pro- 
blems ([33]) for a detailed overview of such a cropping 
technique). The final cropped images are of dimension 
100 × 100. 

The second database is a susbset of the “Yale Face 
Database B” ([7]), consisting of images of 10 individuals 
under 64 different illumination conditions. Some sample 
images are shown in Figure 4. These images are again 
cropped and aligned in a similar manner as the PIE 
images, and the final images are of dimension 90 × 80. 

Note here that for both these sets, we use only frontal  

 
(a) 

 
(b) 

Figure 3. 2D autocorrelations among the real and the 
imaginary parts for the frequencies in the phase spectrum 
of an image in the PIE database: lags 0 - 10 in both row and 
column directions. The highest cross-correlation for both 
the components is 0.2. (a) Real part; (b) Imaginary part. 
 

 

Figure 4. Sample images of 6 people (along the rows) from 
the CMU-PIE database under three different illumination 
conditions (along the columns). 
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images under varying lighting conditions since our objec- 
tive is to study the illumination problem in this paper. 

3.2. Classification Results 

For both the datasets, we select M = 50 and this succeeds 
in reducing the dimensionality of the problem consider- 
ably (from 100 × 100 = 10000 frequencies to 50 × 25 = 
1250 frequencies for the PIE images and from 90 × 80 = 
7200 frequencies to 1250 frequencies for the Yale 
images). Recall that there are J = 21 illumination levels 
in the images of a person in the CMU-PIE database, and 
J = 64 in the images of a person in the Yale database. 

We start with g = 2 and use a total of N = 5000 
iterations of the Gibbs sampler allowing a burn-in of 

1  for each frequency. We select different train- 
ing and test sets for each person to study how the number 
of training images affect the classification results. The 
training images in each case are randomly selected and 
the rest used for testing. Furthermore, this selection of 
training set is repeated 20 times (in order to remove se- 
lection bias) and the final errors are obtained by averag- 
ing over the 20 iterations. Tables 1 and 2 summarize the 
classification results from applying our classification me- 
thod to the two datasets. The tables also include the stan- 
dard deviations of the corresponding error rates over the 
20 repetitions, as measures of reliability of the quantities. 

2000N 

The results on the two databases illustrate that our 
proposed method is quite effective in dealing with a large 
number of individuals (PIE database) as well as a large 
number of illumination conditions (Yale database). This 
is particularly impressive given the fact that no illumi- 
nation normalization is performed prior to classification, 
and both training and testing are done on the original 
cropped images with varying illumination. This demon- 
strates that the statistical model used is able to aptly 
capture the discriminative facial details of each person 
 
Table 1. Misclassification error rates from the CMU-PIE 
database. 

Case No. Training/test set Errors Std.dev. 

Case 1) 15 training/6 test 1.25% 0.69% 

Case 2) 10 training/11 test 2.25% 1.12% 

Case 3) 6 training/15 test 9.67% 2.89% 

Case 4) 3 training/18 test 21.11% 3.49% 

 
Table 2. Misclassification error rates from the Yale data- 
base. 

Case No. Training/test set Errors Std. dev. 

Case 1) 20 training/44 test 3.54% 0.87% 

Case 2) 10 training/54 test 5.82% 1.32% 

Case 3) 5 training/59 test 8.34% 2.22% 

despite the distortions caused by non-uniform lighting. 
The classification results deteriorate as the size of the 
training set decreases. This is expected since an adequate 
number of training images is required for the efficient 
estimation of all the model parameters. The training set 
in each case is selected randomly, hence the classifi- 
cation performance does not depend on the nature of the 
training images selected. Furthermore, the associated 
standard deviations over the repetitions in each case is 
quite low, thus demonstrating that the results are not 
sensitive to training set selection. Our method thus 
appears to be robust to widely varying training and test 
sets and this suggests that the representation of phase in 
our model succeeds in forming a valid human identi- 
fication system. 

3.3. Performance Comparison 

We now conduct a comparative study of the identifi- 
cation performance of our GMM-based method with 
those from some existing methods applied to the same 
subsets of the two database. The competing classifiers 
used are Principal Components Analysis (PCA) and 
Linear Discriminant Analysis (LDA), the results being 
included in Table 3. For the PIE database, we use the 
results with g = 2 and 10 training images, and for Yale, 
we use g = 3 and 20 training images. 

As we can see clearly, both the traditional PCA and 
LDA classifiers fail completely for both datasets, yield- 
ing high misclassification error rates, and our proposed 
GMM-based method outperforms them by an over- 
whelming margin.This is because both these traditional 
methods are very sensitive to illumination variations and 
thus perform poorly. We cannot compare our method to 
that in Gross, Matthews and Baker (2004) since they 
used a different subset of the CMU-PIE database that has 
different poses for a single person. Our current model 
was developed to be robust to illumination changes and 
hence only frontal images were used. However, we wish 
to extend this model to apply to images with multiple 
poses as well, as we discuss later on in the paper. Most 
face identification methods that are in use today use illu- 
mination normalization methods to first eliminate the 
illumination variations in the image and then apply the 
classifier on the restored or normalized images that are 
free from such variations ([19,25,26,34]). In contrast, our 
proposed approach does not require removing the illumi- 
nation variations from the images prior to classification, 
 
Table 3. Comparison of error rates of our proposed method 
with other existing methods. 

Database GMM (our method) PCA LDA 

CMU-PIE 2.25% 96.48% 72.21% 

Yale 2.34% 35.43% 43.21% 
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a significant improvement over existing methods. 

4. Choosing the Number of Mixture 
Components 

Often we can improve model fit and classification accu- 
racy by using a greater number of mixture components. 
Recall that, in our models, the mixtures represent the 
different illumination conditions in the images of a per- 
son. It is therefore reasonable to expect that the number 
of components should depend directly on the nature of 
illumination variation among the training images. For 
example, for a small set, say with 3 or 6 images, there is 
insufficient data to be able to display much variation, and 
at the same time estimate effectively all the additional 
parameters associated with a larger g. Thus, increasing 
the number of mixture components when using few train- 
ing images is not worthwhile. However, increasing the 
number of mixture components may be beneficial to 
classification performance when a sufficiently large 
training set is used. With more images, it is likely that the 
images will vary significantly with respect to the nature 
of illumination, and this may be better captured with 
more mixture components in the form of efficient clus- 
tering. 

We use  and  with cases 1) and 2) for 
both datasets. The results are included in Table 4, along 
with the standard deviations computed over  dif- 
ferent training sets. The results for the PIE database are 
not significantly better than those from using g = 2 
(p-values > 0.9 in all cases). We thus conclude that g = 2 
is the optimal choice for this particular database as far as 
the trade-off between model complexity and classifi- 
cation performance is concerned. For the Yale database, 
on the other hand, we observe significant improvements 
in the classification performance for both the cases with 
g = 3 (p-value < 0.001). However, significant improve- 
ment is limited when the number of mixture components 
was further increased to g = 4 (p-value > 0.4). Therefore, 
g = 3 can be taken to be optimal for this dataset. We see 
similar results when applying Bayes factors ([35]) to 
perform model selection- the model with g = 2 com- 
ponents is preferred for the PIE databases whereas the 
model with g = 3 has significantly better performance for 
the Yale database. These results can be explained by the 
fact that the images in the Yale database has more 

varying illumination levels than those in the PIE database 
(64 different illumination conditions for Yale and  
for PIE), hence a larger number of mixture components 
are required to model that. 

3g  4g 

20

21

We note here that a GMM with g = 1 (the traditional 
bivariate Gaussian model with no mixture components) 
performed really poorly in all cases, yielding misclassi- 
fication rates of over 50%. This shows that a single 
Gaussian distribution is unable to capture the inherent 
variability present in the different images due to illu- 
mination effects that are aptly captured by the GMMs. 

5. Discussion 

In this paper, we have introduced a novel face identifica- 
tion scheme based on phase and GMMs. Although the 
importance of phase is well-known, this fact had not yet 
been utilized in building model-based identification 
techniques. This is partially because modeling phase with 
the help of an appropriate representation of its variability 
across different images of a person is indeed a challeng- 
ing task and our experiments show that our proposed 
models are able to handle it fairly well. We point out 
again that the novelty of our method lies in the fact that 
the human identification method does not need to rely on 
removing the lighting effects in advance like many ex- 
isting work, and works directly on the raw images with 
extreme illumination variations. Not only this, we have 
demonstrated that our approach is tolerant to illumina- 
tions; in fact, the model has a general framework and we 
are exploring applications of our methodology to images 
with expression and pose variations. Thus this should be 
useful in practice for handling real life databases that are 
often subject to extraneous variations. Very good identi- 
fication error rates of about 2% are obtained. In conclu- 
sion, both GMM and phase have enormous potential in 
computer vision, and harnessing this combined strength 
has indeed proved to be a success. 

So far we have seen that research on face recognition 
has been primarily limited within the computer science 
community although statistical and probabilistic models 
are used widely in developing such identification tools. 
For instance, in this paper we have established the utility 
of the well-known statistical technique of mixture models 
(GMMs actually) in building efficient face recognition 
techniques. The low misclassification error rates from  

 
Table 4. Error rates with greater number of mixture components (g = 3, g = 4). 

Data Case Error (g = 3) Std. dev. Error (g = 4) Std. dev. 

CMU-PIE Case 1) 1.20% 0.71% 1.12% 0.67% 

 Case 2) 2.19% 1.28% 2.08% 1.23% 

Yale Case 1) 2.34% 0.56% 2.10% 0.43% 

 Case 2) 3.87% 1.02% 3.15% 0.98% 
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our classifier show that it helps achieve this goal suc- 
cessfully. Our immediate future direction of work con- 
sists of assessing the performance of our GMM model on 
larger and more diverse databases with expression and 
pose variations. For both the latter types of variations, we 
would expect the mixture components to represent their 
various levels; for instance, for images with 3 different 
expressions (say, happy, sad, disgust), we would use a 
GMM with g = 3 components. 
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