Pontryagin’s Maximum Principle for a Advection-Diffusion-Reaction Equation

Youjun Xu1,2, Cuie Xiao3, Hui Zhu1

1School of Mathematics and Physics, University of South China, Hengyang, China
2School of Mathematical Sciences, Fudan University, Shanghai, China
3Department of Mathematics and Computation Sciences, Hunan City University, Yiyang, China

Email: youjunxu@163.com, xiaocuie@163.com

Received July 2, 2012; revised November 19, 2012; accepted November 26, 2012

ABSTRACT

In this paper we investigate optimal control problems governed by an advection-diffusion-reaction equation. We present a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are the Ekeland’s variational principle combined with penalization and spike variation techniques.

Keywords: Optimal Control; Pontryagin’s Maximum Principle; State Constraint

1. Introduction

Consider the following controlled advection convection diffusion equations:

\[
\begin{cases}
-\nabla \cdot (\mu \nabla y) + \beta \nabla y + \sigma y = f(x,u) \text{ in } \Omega, \\
y = 0 \text{ on } \partial \Omega,
\end{cases}
\]

where $\Omega \subset \mathbb{R}^n$, $n \geq 2$ is a convex bounded domain with a smooth boundary $\partial \Omega$, the diffusity $\mu \in L^\infty(\Omega)$ with $\mu \geq \mu_0 > 0$ a.e. in Ω, the reaction $\sigma \in L^\infty(\Omega)$ with $\sigma \geq \sigma_0 > 0$, and the advective field $\beta \in \left(L^\infty(\Omega) \right)^2$, with $\nabla \beta \in L^\infty(\Omega)$ and $-\frac{1}{2} \nabla \beta + \sigma \geq 0$ a.e. in Ω are assigned functions. Here $f: \Omega \times U \to \mathbb{R}$, with U being a separable metric space. Function $u(\cdot)$, called a control, is taken from the set

\[U = \{ w: \Omega \to U | w(\cdot) \text{ is measurable} \} .\]

Under some mild conditions, for any $u(\cdot) \in U$, (1.1) admits a unique weak solution $y(\cdot) = y(\cdot; u(\cdot))$, which is called the state(corresponding to the control $u(\cdot)$). The performance of the control is measured by the cost functional

\[J(u(\cdot)) = \int_\Omega f^0(x,y(x),u(x))dx.\]

for some given map $f^0: \Omega \times U \to \mathbb{R}$. Our optimal control problem can be stated as follows.

Problem (C). Find a $u(\cdot) \in U$ such that

\[J(\bar{u}(\cdot)) = \inf_{u(\cdot) \in U} J(u(\cdot)).\]

And the state constraint of form:

\[F(y) \in Q.\]

In this paper, we make the following assumptions.

(H1) Set $\Omega \subset \mathbb{R}^n$, $n \geq 2$ is a convex bounded domain with a smooth boundary $\partial \Omega$.

(H2) Set U is a separable metric space.

(H3) The function $f: \Omega \times U \to \mathbb{R}$ has the following properties: $f(\cdot; u)$ is measurable on Ω, and $f(x,\cdot)$ continuous on $\Omega \times U$ and for any $R > 0$, a constant $M_R > 0$, such that $|f(x,u)| \leq M_R, \forall (x,u) \in \Omega \times U$.

(H4) Function $f^0(x,y,v)$ is measurable in x and continuous in $(y,v) \in R \times U$ for almost all $x \in \Omega$. Moreover, for any $R > 0$, there exists a $K_R > 0$ such that

\[|f^0(x,y,v)| + |f^0(x,y,v)| \leq K_R, \quad \text{a.e. } x,v \in \Omega \times U, |y| \leq R.\]

(H5) Ω is a Banach space with strictly convex dual Ω^*, $F: W_0^{1,p}(\Omega) \to X$ is continuously Fréchet differentiable, and $Q \subset X$ is closed and convex set.

(H6) $F(\bar{y})D_y - Q$ has finite codimensionality in X for some $r > 0$, where $D_y = \{ z \in X : \|z\|_X \leq r \}$.

Definition 1.1 (see [1]) Let X is a Banach space and X_0 is a subspace of X. We say that X_0 is finite codimensional in X if there exists $x_1, x_2, \cdots, x_n \in X$ such that

\[\|x - \sum_{i=1}^n a_i x_i\|_X = \inf_{a \in \mathbb{R}^n} \|x - \sum_{i=1}^n a_i x_i\|_X = 0.\]
span \{X_0, x_1, \cdots, x_n\} = \text{the space spanned by}
\{X_0, x_1, \cdots, x_n\} = X.

A subset \(S \) of \(X \) is said to be finite codimensional in \(X \) if for some \(x_0 \in S \), \(\text{span} \{S - \{x_0\}\} \) is a finite codimensional subspace of \(X \) and \(coS \) the closed convex hull of \(S - \{x_0\} \) has a nonempty interior in this subspace.

Lemma 1.2. Let \((H1) - (H3)\) hold. Then, for any \(u(\cdot) \in U \), (1.1) admits a unique weak solution
\[
y(\cdot) \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega). \tag{1.6}
\]
Furthermore, there exists a constant \(K > 0 \), independent of
\[
u(\cdot) \in U, \|y(\cdot)\|_{W_0^{1,p}(\Omega) \cap L^\infty(\Omega)} \leq K \tag{1.6}
\]
The weak solution \(y \in V = H_0^1(\Omega) \) of the state Equation (1.1) is determined by
\[
a(y, v) = (f, v), \forall v \in V.
\]
using the bilinear form \(a: V \times V \rightarrow R \) given by
\[
a(y, v) = \int_{\Omega} \mu \nabla y \nabla v \, dx + \int_{\Omega} \beta \nabla y \nabla v \, dx + \int_{\Omega} \sigma y v, \forall v \in V.
\]
Existence and uniqueness of the solution to (1.1) follow from the above hypotheses on the problem data (see [2]). Let \(A_{ad} \) be the set of all pairs \((y(\cdot), u(\cdot))\) satisfying (1.1) and (1.4) is called an admissible set. Any \((y, u) \in A_{ad}\) is called an admissible pair. The pair \((\overline{y}(\cdot), \overline{u}(\cdot)) \in A_{ad}\) mover satisfies \(J(\overline{u}(\cdot)) \leq J(u) \) for all \((y, u) \in A_{ad}\) is called an optimal pair. If it exists, refer to \(\overline{y} \) and \(\overline{u} \) as an optimal state and control, respectively.

Now, let \((\overline{y}, \overline{u})\) be an optimal pair of Problem (C). Let \(z = z(\cdot; u(\cdot)) \in W_0^{1,p}(\Omega) \) be the unique solution of the following problem:
\[
\begin{aligned}
-\nabla \cdot (\mu \nabla z) + \nu \nabla z + \sigma z &= f(x, u) - f(x, \overline{u}) \text{ in } \Omega, \\
z &= 0 \text{ on } \partial \Omega.
\end{aligned} \tag{1.7}
\]
And define the reachable set of variational system (1.7)
\[
R = \{z(\cdot; u(\cdot)) | u(\cdot) \in U\}. \tag{1.8}
\]
Now, let us state the first order necessary conditions of an optimal control to Problem (C) as follows.

Theorem 1.3. (Pontryagin’s maximum principle) Let \((H1) - (H6)\) hold. Let \((\overline{y}(\cdot), \overline{u}(\cdot))\) be an optimal pair of Problem (C). Then there exists a triplet
\[
(\Psi^0, \Psi, \phi) \in R \times W_0^{1,p} \times X^* \text{ with } (\Psi^0, \phi) \neq 0,
\]
such that
\[
\langle \phi, \eta - F(\overline{y}) \rangle_{X^*, X} \leq 0, \forall \eta \in Q. \tag{19}
\]
\[
\begin{align*}
\bar{d}\left(u, u^e\right) & \leq \sqrt{\varepsilon}, \\
J_{\varepsilon}(\bar{u}) - J_{\varepsilon}\left(u^e\right) & \geq -\varepsilon \bar{d}\left(\bar{u}, u^e\right), \forall \bar{u} \in U.
\end{align*}
\]

Let \(v \in U\) and \(\varepsilon > 0\) be fixed and let \(y^e = y(\cdot; u^e)\), we know that for any \(\rho \in (0, 1)\), there exists a measurable set \(E^{\varepsilon}_\rho \subset \Omega\) with the property \(|E^{\varepsilon}_\rho| = \rho|\Omega|\), such that if we define

\[
u^{\varepsilon}_\rho(x) = \begin{cases} u^e(x), & \text{if } x \in \Omega \setminus E^{\varepsilon}_\rho, \\ v(x), & \text{if } x \in E^{\varepsilon}_\rho. \end{cases}
\]

and let \(y^{\varepsilon}_\rho = y(\cdot; u^{\varepsilon}_\rho)\) be the corresponding state, then

\[
\begin{align*}
y^{\varepsilon}_\rho &= y^e + \rho z^{\varepsilon} + r^{\varepsilon}, \\
J_{\varepsilon}\left(u^{\varepsilon}_\rho(x)\right) &= J(u^e) + \rho z^{\varepsilon} + r^{\varepsilon},
\end{align*}
\]

where \(z^{\varepsilon}\) and \(z^{\varepsilon}_\rho\) satisfying the following

\[
\begin{align*}
-\nabla \left(\mu(\nabla z^{\varepsilon})\right) + \beta \nabla z^{\varepsilon} + \sigma z^{\varepsilon} = f(x,v) - f(x,u) \quad &\text{in } \Omega, \\
z^{\varepsilon} = 0 \quad &\text{on } \partial \Omega, \\
z^{\varepsilon}_\rho = \frac{1}{\Omega} \int_\Omega \left[J_{\varepsilon}(x, y, u^e) + h^{\varepsilon}(x)\right] dx
\end{align*}
\]

with

\[
\begin{align*}
h^{\varepsilon}(x) &= f^0(x, y^e, v) - f^0(x, y^e, u^e), \\
\lim_{\rho \to 0} \frac{1}{\rho} \left\|F^{\varepsilon}_\rho\right\|_{W^{1,\rho}_0(\Omega)} &= \lim_{\rho \to 0} \frac{1}{\rho} \left\|F^{\varepsilon}_\rho\right\|_{W^{1,\rho}_0(\Omega)} = 0.
\end{align*}
\]

We take \(\bar{u} = u^{\varepsilon}_\rho\). It follows that

\[
\begin{align*}
&\sqrt{\varepsilon}|\Omega| \leq J_{\varepsilon}(u^{\varepsilon}_\rho) - J(u^e) \\
= & \frac{1}{\rho} \left(J_{\varepsilon}(u^{\varepsilon}_\rho) + J_{\varepsilon}\left(u^e\right)\right) \\
+ & \frac{1}{\rho} \left[J_{\varepsilon}(u^{\varepsilon}_\rho) + \varepsilon\right] - \frac{1}{\rho} \left[J(u^e) + \varepsilon\right] \\
+ & \frac{d_{\varepsilon}(F(y^{\varepsilon}_{\rho})) - d_{\varepsilon}(F(y^{\varepsilon}))}{\rho} \\
\to & \frac{\left(J(u^e) + \varepsilon\right)}{J_{\varepsilon}\left(u^e\right)} z^{\varepsilon}_\rho \\
& + \frac{d_{\varepsilon}(F(y^{\varepsilon}_{\rho}))}{J_{\varepsilon}\left(u^e\right)} \xi\left(F'(y^{\varepsilon})z^{\varepsilon}\right) \quad \text{as } \rho \to 0.
\end{align*}
\]

where

\[
\xi\left(F'(y^{\varepsilon})z^{\varepsilon}\right) = \begin{cases} \nabla d_{\varepsilon}\left(F(y^{\varepsilon})\right) & \text{if } F(y^{\varepsilon}) \notin Q, \\
0 & \text{if } F(y^{\varepsilon}) \in Q.
\end{cases}
\]

Next, we define \((\phi^{\varepsilon,\rho}, \varphi) \in [0,1] \times X^*\) as follows:

\[
\phi^{\varepsilon,\rho} = \frac{J(u^e) + \varepsilon}{J_{\varepsilon}(u^e)} \xi_{\varepsilon}\left(F'(y^{\varepsilon})z^{\varepsilon}\right)
\]

By (2.1) and chapter 4 of [8], (2.8) becomes

\[
\phi^{\varepsilon,\rho} \left| + \phi^{\varepsilon,\rho} \right|_{z^{\varepsilon}} = 1.
\]

On the other hand, by the definition of the subdifferential, we have

\[
\left\langle \phi^{\varepsilon,\rho}, \eta - F(y^{\varepsilon}) \right\rangle \leq 0, \forall \eta \in Q
\]

Next, from the first relation in (2.3) and by some calculations, we have

\[
\|y^{\varepsilon} - \bar{y}\|_{W^{1,\rho}(\Omega)} \to 0, \quad \text{as } \varepsilon \to 0.
\]

Consequently,

\[
\lim_{\varepsilon \to 0} \left\|\phi^{\varepsilon,\rho} - \phi^e\right\|_{V^*} = 0.
\]

From (2.5) and (2.6), we have

\[
\begin{align*}
z^{\varepsilon}_\rho & \to z \quad \text{in } W^{1,\rho}_0(\Omega), \\
z^{\varepsilon}_\rho & \to z^0 \quad \text{as } \rho \to 0,
\end{align*}
\]

where \(z\) is the solution of system (1.7) and

\[
\begin{align*}
z^0 &= \int_\Omega f^0(x, y^e, v) z(x) dx \\
&+ \int_\Omega \left[f^0(x, y^e, v) - f^0(x, y^e, u^e)\right] dx.
\end{align*}
\]

From (2.10), (2.12) and (2.15), we have

\[
\phi^{\varepsilon,\rho} z(v) + \left\langle \phi^e, F'(y^e)z(v) - \eta + F'(\bar{y})\right\rangle \\
\geq -\delta_{\varepsilon}, \quad \forall v \in U, \eta \in Q.
\]

Now, let
\[\psi^0 = -\varphi^0 \in [-1, 0]. \]

Then
\[(\psi^0, \varphi) \neq 0. \]

Then we have
\[\varphi^0 z^0(v) + \langle \varphi, \eta - F'(\psi) \rangle - F'(\psi)^* \varphi, z(v) \rangle \geq 0, \quad \forall \eta \in U, \quad \forall \varphi \in Q. \]

(2.19)

Take \(\nu = \bar{\nu} \), we obtain (1.9).

Next, we let \(\eta = F(\psi) \) to get
\[\psi^0 \varphi(v) - \langle F'(\psi)^* \varphi, z(v) \rangle \leq 0 \quad \forall \nu \in U. \]

(2.20)

Because \(F'(\psi)^* \varphi \in W^{-1,r}(\Omega) \), for the given \(\psi^0 \), there exists a unique solution \(\psi \in W^{1,r}(\Omega) \) of the adjoint Equation (1.10). Then, from (1.6), (2.16), and (2.2), we have
\[0 \geq \psi^0 z^0(v) - \langle F'(\psi)^* \varphi, z(v) \rangle \]
\[= \int_\Omega f^0(x, \bar{\psi}, \bar{\nu}) z(x) \, dx \]
\[+ \int_\Omega \left[f^0(x, \bar{\psi}, v) - f^0(x, \bar{\psi}, \bar{\nu}) \right] \, dx \]
\[+ \left\{ - \nabla \left(\mu \nabla \bar{\psi} \right) - \nabla \left(\beta \bar{\psi} \right) + \sigma \bar{\psi} - \psi^0 f^0(x, \bar{\psi}, \bar{\nu}) , z \right\} \]
\[= \int_\Omega \left\{ \psi^0 \left[f^0(x, \bar{\psi}, v) - f^0(x, \bar{\psi}, \bar{\nu}) \right] \right\} \, dx \]
\[+ \left\{ \psi^0 f(x, \nu) - f(x, \bar{\nu}) \right\} \, dx \]
\[= \int_\Omega \left\{ H(x, \bar{\psi}(x), v(x), \psi^0, \psi(x)) \right\} \, dx \]
\[- \left\{ H(x, \bar{\psi}(x), \bar{\nu}(x), \psi^0, \psi(x)) \right\} \, dx \]

There, (1.11) follows. Finally, by (1.10), if \((\psi^0, \psi) = 0 \), then \(F'(\psi)^* \varphi = 0 \). Thus, in the case where
\[N \left(F'(\psi)^* \right) = \{ 0 \}, \]

we must have \((\psi^0, \psi) \neq 0 \), because \((\psi^0, \varphi) \neq 0 \).

3. Conclusion

We have already attained Pontryagin’s Maximum Principle for the advection-diffusion-reaction equation. It seems to us that this method can be used in treating many other relevant problems.

REFERENCES

