Some Results on \((1,2n-1) \)-Odd Factors

Man Liu, Qingzi Yu, Shuling Wang, Changhua Huang

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality

1. Introduction

We consider finite undirected graph without loops and multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Given \(x \in V(G) \), the set of vertexes adjacent to \(x \), denoted by \(N_G(x) \), and \(d_G(x) = |N_G(x)| \) is called the degree of \(x \). If there exists a spanning subgraph \(F \) such that \(d_F(x) \in \{1,3,\cdots,2n-1\} \), then \(F \) is called to be \((1,2n-1) \)-odd factor of \(G \). Some sufficient and necessary conditions are given for \(G - U \) to have \((1,2n-1) \)-odd factor where \(U \) is any subset of \(V(G) \) such that \(|U| = k \).

Keywords: Claw Free Graphs; \((1,2n-1) \)-Odd Factor; Factor-Criticality
graph with \((1,2n-1)\)-odd factor we have
\[o(G' - B') \leq (2n-1)|B'|. \]

Noting that \(G' - B' = G - B\),
Therefore
\[o(G - B) = o(G' - B') \leq (2n-1)|B'| = (2n-1)(|B| - k) \]
For any \(B \subseteq V(G)\) and \(|B| \geq k\) we have
\[o(G - B) \leq (2n-1)(|B| - k), \]
the following that the set \(U\) with any \(k\) vertexes, \(G' = G - U\) has \((1,2n-1)\)-odd factor, i.e., for any \(B' \subseteq V(G')\), there \(o(G' - B') \leq (2n-1)|B'|.\)
Noting that \(B = U \cup B'\), of course \(|B| \geq k\).
By
\[o(G - B) \leq (2n-1)(|B| - k), \]
and \(G' - B' = G - B\), we have
\[o(G' - B') = o(G - B) \leq (2n-1)(|B| - k) = (2n-1)|B'|. \]

Lemma 2 [9] Connected claw free graphs of even order have 1-factor.

Lemma 3 Connected claw free graphs of even order have \((1,2n-1)\)-odd factor.

Proof If \(n = 1\), by lemma 2, the conclusion is proved. Assume that \(n \geq 2\).

By contradiction, we assume that \(G\) has no \((1,2n-1)\)-odd factor, i.e., \(\exists S \subseteq V(G)\) such that
\[o(G - S) > (2n-1)|S| \geq 3|S|(n \geq 2). \]
then there exists \(x \in S\) such that \(x\) connecting with three components of \(G - S\) at least. If not, for \(\forall x \in S\), \(x\) connects with two components of \(G - S\) at most, consequently \(o(G - S) \leq 2|S|\), contradiction.

Theorem 1 Let \(G\) be graph with \(p\) order, \(x, y\) are a couple of nonadjacent vertexes and satisfy
\[d_G(x) + d_G(y) \geq p + k + 1, \]
then the sufficient and necessary condition for \(G\) removing any \(k\) vertexes with \((1,2n-1)\)-odd factor is that \(G + xy\) getting rid of any \(k\) vertexes with \((1,2n-1)\)-odd factor.

Proof The necessary condition is obvious, next we prove the sufficient condition.

By contradiction, let \(G + xy\) remove any \(k\) vertexes with \((1,2n-1)\)-odd factor, but there exist \(k\) vertexes after getting rid of the \(k\) vertexes of \(G\) without \((1,2n-1)\)-odd factor. By lemma 1, there exists
\[B \subseteq V(G), |B| \geq k \]
such that
\[o(G - B) > (2n-1)(|B| - k), \]
and
\[o(G + xy - B) \leq (2n-1)(|B| - k). \]

at the same time, by \(o(G - B) + |B| = p (mod 2)\) and \(p = k (mod 2)\),
Thereby \(o(G - B) \geq (2n-1)(|B| - k) + 2.\)
Furthermore, by \(o(G + xy - B) \geq o(G - B) - 2,\)
Consequently
\[(2n-1)(|B| - k) \geq o(G + xy - B) \geq o(G - B) - 2 \geq (2n-1)(|B| - k) + 2 - 2 \]
Accordingly
\[o(G - B) = (2n-1)(|B| - k) + 2 \]
and
\[o(G + xy - B) = (2n-1)(|B| - k). \]
It shows that \(x, y\) are part of two odd components \(C_1, C_2\) of \(G - B\) respectively. Thus
\[d_G(x) + d_G(y) \leq |V(C_1)| - 1 + |V(C_2)| - 1 + 2|B|. \]
On the other hand, by hypothesis
\[d_G(x) + d_G(y) \geq p + k - 1 \geq |B| + |V(C_1)| + |V(C_2)| \]
\[+ (2n-1)(|B| - k) + k - 1. \]
But
\[(2n - 2)|B| > (2n - 2)k - 1. \]

Contradiction.

Theorem 2 Let \(t \leq k + 1\) connected graph \(G\) be \(p\) order, \(x, y\) are a couple of any nonadjacent vertexes of \(G\), and satisfy
\[|N_G(x)| |N_G(y)| \geq p - t + k - 1, \]
then the sufficient and necessary condition for \(G\) removing any \(k\) vertexes with \((1,2n-1)\)-odd factor is \(G + xy\) getting rid of any \(k\) vertexes with \((1,2n-1)\)-odd factor.

Proof \(G\) is a spanning subgraph of \(G + xy\), so the necessary condition is obvious.
Next we prove the sufficient condition. We suppose \(G + xy\) getting rid of any \(k\) vertexes with \((1,2n-1)\)-odd factor, but \(G\) is not, i.e. there exist
\[B \subseteq V(G), |B| \geq k \]
such that
\[o(G - B) > (2n - 1)(|B| - k). \]
Be similar to the discussion of theorem 1.
\[o(G - B) > (2n - 1)(|B| - k) + 2 \]

and
\[o(G + xy - B) = (2n - 1)(|B| - k). \]

thereby \(x, y \) are part of two odd components \(C_1, C_2 \) of \(G - B \) respectively.

Noting that
\[|N_G(x) \cup N_G(y)| \leq |V(C_1)| - 1 + |V(C_2)| - 1 + |B| \]

(1)

By hypothesis
\[|N_G(x) \cup N_G(y)| \geq p - t + k - 1 \geq |V(C_1)| + |V(C_2)| - t \]
\[+ (2n - 1)(|B| - k) - t + k - 1 \]

(2)

Combining (1) with (2)
\[-2 \geq (2n - 1)(|B| - k) - t + k - 1 \]

Consequently
\[\frac{t - k - 1}{2n - 1} + k \geq |B| \geq k, \]

but \(t \leq k + 1 \).

Contradiction.

Theorem 3 Let \(G \) be claw free graphs, \(x \) be partial \(k \) connection point. \(G' \) be graph obtained by locally fully on \(G \) in \(x \) point, then for \(U \subseteq V(G), |U| = k \), the sufficient and necessary condition for \(G - U \) with \((1,2n-1)\)-odd factor is \(G' - U \) with \((1,2n-1)\)-odd factor.

Proof \(G \) is a spanning subgraph of \(G' \), so the necessary condition is obvious.

Next we prove the sufficient condition. Let \(G' - U \) have \((1,2n-1)\)-odd factor, \(G - U \) have no \((1,2n-1)\)-odd factor. \(G' - U \) has \((1,2n-1)\)-odd factor,
\[|V(G')| \equiv k \pmod{2} \]
so \[|V(G)| \equiv k \pmod{2} \]

On the other hand, \(G \) is claw free, so \(G - U \) is claw free.

By lemma 2, lemma 3, \(G - U \) has two odd components at least.

If \(x \not\in U \), let \(x \in C_0 \) (\(C_0 \) is branch of \(G - U \)). Now, \(G - U \) has the same odd components as \(G' - U \), therefore, \(G - U \) has \((1,2n-1)\)-odd factor. which is contradiction.

Next let \(x \in U \), since \(G' - U \) has not odd components, for any odd components of \(G - U \),
\[N_G(x) \cap V(C) \neq \Phi \]
is complete.

Let \(x_1, x_2 \) be adjacent vertexes of \(x \) in two odd components of \(G - U \) respectively.

Then \(x_1, x_2 \) is nonadjacent in the induced subgraph of \(N_G(U - \{x\}) \), which is contradiction to the fact that \(x \) is a locally \(k \) connected vertex, since
\[|U - \{x\}| \leq k - 1 \]

The proof is complete.

REFERENCES

