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ABSTRACT 

Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, 
or infinite domains, or boundary layers. This work deals with the sinc-collocation method for solving linear and 
nonlinear system of second order differential equation. The method is then tested on linear and nonlinear examples and 
a comparison with B-spline method is made. It is shown that the sinc-collocation method yields better results. 
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1. Introduction 

Numerous problems in physics, chemistry, biology and 
engineering science are modelled mathematically by 
systems of ordinary differential equations, e.g. series cir- 
cuits, mechanical systems with several springs attached 
in series lead to a system of differential equations (for 
example see [1,2]). However, many classical numerical 
methods used with second-order initial value problems 
cannot be applied to second-order boundary value prob- 
lems (BVPs). 

Most realistic systems of ordinary differential equa- 
tions do not have exact analytic solutions, so approxi- 
mation and numerical techniques must be used. There are 
many publications dealing with the linear system of 
second-order boundary value problems. They introduced 
various numerical methods. For instance, a finite diffe- 
rence method has been proposed in recent works [3-8]. 
For a nonlinear system of second- order BVPs, there are 
few valid methods to obtain numerical solutions. Geng et 
al. have studied the numerical solution of a nonlinear 
system of second-order boundary value problems in the 
reproducing kernel space [9]. Lu considered the vari- 
ational iteration method to solve a nonlinear system of 
second-order boundary value problems [10]. Recently, 
Bataineh et al. [11] represented modified homotopy me- 
thod for solving systems of second-order boundary value 
problems. Sinc-collocation method was applied to solve 
nonlinear systems of second order boundary value prob- 
lems in [12]. 

In this paper, we discuss the use of sinc-collocation 
method for solving a class of linear and non-linear sys- 
tem of differential equations 
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where  1u x ,  2u x ,  1 1 2, ,f x u u , 2 1 2, , f x u u , and  

 i x ,  i x ,  i x , and  i x

nu C

, for , are 
analytic functions. It will always be assumed that (1) 
possesses a unique solution .  

0,1,2i 

J
Numerical examples including regular, singular as 

well as singularly perturbed problems are considered. On 
the basis of these examples, the results reveal that the 
method is very effective and convenient. 

The paper is organized into five sections. Section 2 
contains notation, definitions and some results of sinc 
function theory. In Section 3, the sinc-collocation method 
is developed for linear second-order system of diffe- 
rential equation with homogeneous boundary conditions. 
The method is developed for nonlinear second-order 
system of differential equation in Section 4. Some nume- 
rical examples are presented in Section 5. Finally, Sec- 
tion 6 provides conclusions of the study.  

2. Sinc Function 

In recent years, a lot of attention has been devoted to the 
study of the sinc method to investigate various scientific 
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models. The efficiency of the method has been formally 
proved by many researchers [13-22]. 

A general review of sinc function approximation is 
given in [23,24]. Hence, only properties of the sinc 
function that are used in the sequel. 

If  f x  is defined on the real line, then for  
the Whittaker cardinal expansion of f is given by: 

0h 
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where  k kf f x , kx hk , and the mesh size is given 
by  
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where  is suitably chosen and N   depends on the 
asymptotic behavior of  f x . The n-th derivative of the 
function f at the sampling points kx kh  can be 
approximated using a finite number of terms as:  
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We note that  
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The interpolation formula for  f x  over  ,a b  
takes the form  
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where the basis functions on  ,a b  are then given by  
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transforms  ,a b  to the infinite range  ,  .  The 
interpolation points  kx  are then given by:  
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The n-th derivative of the function f  at points kx  
can be approximated using a finite number of terms as  
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which will be used later. 

3. System of Linear Second Order Equations 

Consider a linear, system of linear second order equ- 
ations of the form 
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We assume that  1u x  and  the solutions of 
(11) and (2), is approximated by the finite expansion of 
Sinc basis functions  
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where  is the function  for some 
fixed step size h. If we replace each term of (11) with its 
corresponding approximation given by the right-hand 
side of (10) and (8) we have 
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Substituting  1
kx x   kh  in (14) and applying 

the collocation to it, we eventually obtain the following 
theorem. 

Theorem: If the assumed approximate solution of 
problem (11) and (2) is (12) and (13) , then the discrete 
sinc-collocation system for the determination of the 
unknown coefficients is given by 
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We now rewrite these equations in matrix form. The 
system in (16) takes the matrix form 
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Now we have a linear system of  equations of 
the 
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coefficients of the approximate solution by solving this 
linear system. The system (17) may be easily solved by a 
variety of methods. In this paper we used the Q-R me- 
thod. The solution c gives the coefficients in the approxi- 
mate sinc-collocation solutions  and  x1mu  2mu x  of 
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4. System of Non-Linear Second Order 
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we write the above equation in the form Consider a nonlinear, system second-order equations of 
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the form  
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where  is an integer, or a fraction. n
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method to solve problem (18) and (2). 
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Theorem: If the assumed approximate solution of 
problem (18) and (2) is (12) and (13), then the discrete 
sinc-collocation system for the determination of the 
unknown coefficients is given by  

     

     

   

     

     

   

2 2

0 0

11 12 1

2 2

0 0

21 22 2

1 1

,

1 1

i iN
kj kj

i k j i k ji
j N i i

n n
k k k k k

i iN
kj kj

i k j i k ji i
j N i i

n n
k k k k k

i i

i

i i

g x c x
h

P x c P x d f

d
h

x c x
h h

P x c P x d f





 

  

  

    
   
     

d










  

         
        

  

  

  

2



 

(20) 

Let  be the nc 4N  -vector with j-th component 
given by n

jc . In this notation the system in (20) takes the 
matrix form 

,n  Ac Ec               (21) 

where 

11 12

21 22

,
 

  
 

P P
E

P P
 

 11 .iiP P D  

Now we have a nonlinear system of 4N 2  equa- 
tions in the 4N 2  unknown coefficients. We can obtain 
the coefficients in the approximate solution by solving 
this nonlinear system by Newton’s method. 

Starting from an initial estimate , the corrections 
are made using 

0c

  
 

1
1

1.

n
j j j j

n
j j

J

J n






   

 

c c c Ac Ec

c A Ec

j
 

Here, jc  is the current iterate, and 1j  is the new 
iterate. A common numerical practice is to stop the 
Newton iteration whenever the distance between two 
iterates is less than a given tolerance, i.e. when 

c

1 ,j j   c c  

where the Euclidean norm is used. The solution  gives 
the coefficients in the approximate sinc-collocation 
solution 

c

 mu x  of  u x .  

5. Numerical Examples 

In this section, some numerical examples are studied to 
demonstrate the accuracy of the present method. The 
results obtained by the method are compared with the 
exact solution of each example and are found to be in 
good agreement with each other.Comparison between 
sinc-collocation and other method shall be presented. 

All computations were carried out using Matlab on a 
personal computer with a machine precision of 3210 . In  

all cases,  is taken to be d
π

2
d  . The selection of a  

larger  yields more accuracy, but at the expense of a 
lengthier computation. We report absolute error which is 
defined as  

N

exact sinc-collocationcE u u   

Example 1: [3,11] consider the linear system of se- 
cond order boundary value problems 

   

 

2
1 1 2

12

2
2

1 22

d d d
2 1 cos π 0 1

d dd

d

d

u u u
x x f x

x xx

u
xu f x

,x

x

     

 
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where 

    
 

2
1

2

π sin π 2 1 π 1 cos π

2 sin π

f x x x

f x x x

    

 

x

0



 

subject to the boundary conditions  

       1 1 2 20 1 0, 0 1u u u u     

whose exact solutions are  

    2
1 2sin π and .u x x u x x x   

Maximum absolute errors for 1  and 2  are tabu- 
lated in Table 1 for the sinc-collocation method. 

u u

Maximum absolute error are tabulated in Table 2 for 
sinc-collocation together with the analogous results of N. 
Caglar and H. Caglar [3]. 

Example 2: [11] Now we turn to a nonlinear problem  

   

 

2
1 1 2

12

2
22 1
1 22

d d d
cos π , 0 1,

d dd

d d

dd

u u u
x x f x

x xx

u u
x xu f x

x

x

x

    

  

 

where  

     

     

2
1

2 2 2
2

sin 2 cos 1 2 cos π

2 sin 1 sin cos .

f x x x x x x x

f x x x x x x x x

     

       x
 

subject to the boundary conditions  

       1 1 2 20 1 0, 0 1 0,u u u u     

whose exact solutions are  

      2
1 21 sin , .u x x x u x x x     

The computational results are summarized in Table 3. 
Example 3: Now we turn to a singular problem, 

 

 

2
1 1

1 2 12 2

2
2 2

2 1 22 2

d d1 1
, 0 1,

dd

d d1 1

dd

u u
u u f x x

x xx x

u u
u u f x

x xx x

          
   

         
   


 

where 

 

 
 

1

2
2 3

2
5 1

3 1 1 2 1
.

2 41 1

f x x x
x

x x
f x x x

xx x

    


    

 

 

subject to the boundary conditions  

       1 1 2 20 1 0, 0 1 0,u u u u     

whose exact solutions are  

     1 21 , 1u x x x u x x x     .

Table 1. Maximum absolute error for example 1. 

u2N  Max. absolut error in u1 Max. absolut error in 

20 3.128E–005 1.175E–006 

40 1.829E–007 5.095E–009 

60 3.573E–009 7.696E–011 

80 1.287E–010 2.267E–012 

100 6.839E–012 1.026E–013 

 
Tabl ompariso aximum a r for 

ample 1. 

in u1 in u2 

e 2. C n between m bsolute erro
ex

 
Max. absolute error Max. absolute error 

Sinc-co cation llo 6.839E–012 1.026E–013 

B ]-spline method [3 2.109E–04 1.071E–05 

 
imum ror for e

ror 

Table 3. Max  absolute er xample 2. 

N 
Max. absolute error 

in u1 
Max. absolute er

in u2 

10 4.059E–001 3.270E–002 

20 1.698E–006 8.060E–007 

30 8.140E–008 3.817E–008 

40 6.401E–009 2.816E–009 

 
The c re mmariz  4. 
Example 4: Another example is also a singular problem  

omputational sults are su ed in Table

 
2

 
2

2 22 2
2 1 2 22 2 2

dd

d d1 1 1

dd

2 21 1
1 2 1 12 2 2

d d1 1 1
,

u u
u u

x xx x x

u u
u u x u f x

x x

x u f x

x x x
    

 

where 

    

     

   

     

24
1 2

2
2 2

2

sin π2
5 1

1
π sin π

π 1
cos π sin sin π 1 .

x
f x x x

x x

f x x
x

x x x
x x

    

   
 

  

 



subject to the boundary conditions  

     1 1 20 1 0, 0u u u  2 1u 0   

whose exact solutions are  

 

  2
1 au x x x   2nd sin π .u x x  

Maximum absolute errors for  and  are tabu- 
lated in Table 5 for the sinc-collocation me  

1u 2u
thod. 

Example 5: Our final example is the singularly per- 
turbed problem 
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Table 4. Maximum absolute error for example 3. 

N Max. absolute error in u1 Max. absolute error in u2

10 4.589E–004 4.629E–003 

20 1.535E–004 7.790E–004 

30 2.918E–005 1.608E–004 

40 5.404E–006 5.265E–005 

 
ble 5. Ma lute error fo . 

N u2

Ta ximum abso r example 4

 Max. absolute error in u1 Max. absolute error in 

10 1.279E–003 2.517E–003 

20 7.488E–006 3.419E–005 

30 6.742E–006 7.779E–006 

40 1.616E–007 5.188E–008 

 

 

 

2
21

1 2 12

2
2 22

2 1 22

d
4 2 , 0

d

d

d

u
x u xu f x x

x

u
x u x u f x

1,

x





    

  

 

where 

   
   

3
1

2 2 3
2

2 4 1 2 sin π

π sin π sin π 1 .

f x x x x x

f x x x x x





    

    
 

x

subject to the boundary conditions  

whose exact solutions are  

Table 6 the maximum absolute errors obtained by 
using the sinc-collocation method for N = 40 d 
re

     1 1 20 1 0, 0u u u  2 1 0,u     

 1u x x x   2
2and sin π .u x x  

an diffe- 
nt  . 

6. C nco lusions 

d an efficient method for solvin
der boundary value problems. Our 

 variety of linea
no

This paper describe
system of second-or

g the 

approach was based on the sinc-collocation method. Pro- 
perties of the sinc-collocation method are utilized to 
reduce the computation of this problem to some linear or 
nonlinear algebraic equations. The method is computa- 
tionally attractive and applications are demonstrated 
through illustrative examples. Numerical examples in- 
cluding regular, singular as well as singularly perturbed 
problems are presented. As expected, the accuracy in- 
creases as the number of terms N in the sinc expansion 
increases. The obtained results showed that this approach 
can solve the problem effectively. 

The sinc-collocation method is a simple method with 
high accuracy for solving a large r and 

nlinear system of differential equations. So it may be  

Table 6. Maximum absolute error for example 5. 

  Max. absolute error 
in u1 

Max. absolute e
in u2 

rror 

10–2 1.587E–007 1.773E–007 

10–3 8.4 07 6.7 07 27E–0 49E–0

10–6 1.488E–006 8.433E–007 

10–8 4.777E–007 1.483E–007 

10–10 1.728E–006 1.553E–006 

 
easily applied by resea ngineer ith 

e sinc function. Extension of the method for solving 
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