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ABSTRACT 

A family of tests for the presence of regression effect under proportional and non-proportional hazards models is de- 
scribed. The non-proportional hazards model, although not completely general, is very broad and includes a large num- 
ber of possibilities. In the absence of restrictions, the regression coefficient,  t , can be any real function of time. 

When   ,t   we recover the proportional hazards model which can then be taken as a special case of a non-pro- 

portional hazards model. We study tests of the null hypothesis;  0 :H t 0  for all t against alternatives such as; 

 or  for some t. In contrast to now classical approaches based on partial likelihood 

and martingale theory, the development here is based on Brownian motion, Donsker’s theorem and theorems from 
O’Quigley [1] and Xu and O’Quigley [2]. The usual partial likelihood score test arises as a special case. Large sample 
theory follows without special arguments, such as the martingale central limit theorem, and is relatively straightforward. 

   : dH t F t 1  0 0 1 :H t 
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1. Introduction 

1.1. Background 

The complex nature of data arising in the context of sur- 
vival studies is such that it is common to make use of a 
multivariate regression model. Cox’s semi-parametric 
proportional hazards model [3] has enjoyed wide use in 
view of its broad applicability. The model makes the key 
assumption that the regression coefficients do not change 
with time and much study has gone into investigating and 
correcting for potential departures from these assump- 
tions [4-10]. Sometimes we can anticipate in advance 
that the proportional hazards model may be too restric- 
tive. The example which gave rise to our own interest in 
this question concerned 2174 breast cancer patients, fol- 
lowed over a period of 15 years at the Institut Curie in 
Paris, France. For these data, as well as a number of 
other studies in breast cancer, the presence of non-pro- 
portional hazards effects has been observed by several 
authors. Often this is ignored but this can seriously im- 
pact inferences. 

The model used to make inferences will then often dif- 
fer from that which can be assumed to have generated the 
observations. In situations of non proportional hazards, 
unless dealing with very large data sets relative to the 

number of studied covariates, it will often not be feasible 
to study the whole, possibly of infinite dimension,  t . 
Xu and O’Quigley [11] argue that an estimate of average 
effect can be used in a preliminary analysis of a data set 
with time varying regression effects. For a given sample, 
a single average effect can be estimated more accurately 
(and more easily) than the whole . Xu and O’Quig- 
ley [11] derive an estimate 

 t
  of an average regression 

effect   . They provide an interpretation of    as a 
population average effect. It is approximated by  

      dt F t E T    under certain conditions, where  

F is the marginal distribution function of the failure time 
random variable T. The purpose here is to test the null 
hypothesis;  0 :H t 0  for all t against the alterna- 
tives    : dH t F t1 0  or  for some t. 
The development is based on Brownian motion, Don- 
sker’s theorem and theorems from O’Quigley [1] and Xu 
and O’Quigley [2]. We show that the usual partial likely- 
hood score test arises as a special case. Large sample 
theory is straightforward. 

 1 :H t  0

1.2. Notation 

The probability structure, although quite simple, is not 
the immediate one which would come to mind. The ran- 
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dom variables of interest are the failure time, i , the 
censoring time,  and the possibly time dependent 
covariate, ,  We view these as a ran- 
dom sample from the distribution of T, C and 

T
,iC
 iZ  1, , .i  n

 Z  . It 
will not be particularly restrictive and is helpful to our 
development to assume that T and C have support on 
some finite interval. The time-dependent covariate  Z   
is assumed to be a predictable stochastic process and, for 
ease of exposition, taken to be of dimension one when- 
ever possible. Let    F t P T t  ,    A t P C t   

and           
0

d
t

H t F t F t F u A u   . For each sub-  

ject i we observe imin ,i i X T C , and  i i iI T C   . 
The “at risk” indicator  is defined as,  iY t  iY t   
 i I X t
 N t I

 The counting process i  is defined as, 
 and we also define  

N t 
 ,i iT t  i iT C

   n

1 iN t N t  . The inverse function,  1N j  cor-  

responds to the value jt  where  

    1 inf : .jt N j t N t j  


  It is of notational con-  

venience to define 
1

, in 
words a continuous function equal to zero apart from at 
the observed failures in which it assumes the covariate 
value of the subject that fails. The number of observed 
failures k is given by 

     , 1
n

i i iZ t Z t I X t  

 .k N   If there are ties in the 
data our suggestion is to split them randomly although 
there are a number of other suggested ways of dealing 
with ties. All of the techniques described here require 
only superficial modification in order to accommodate 
any of these other approaches for dealing with ties. 

1.3. Models 

Insight is helped when we group the models together 
under as general a heading a possible. The most general 
model is then the non proportional hazards model writ- 
ten,  

         0 exp ,t Z t t t Z t          (1.1) 

where  t   is the conditional hazard function,  0 t  
the baseline hazard and  t  the time-varying regres- 
sion effect. Whenever  Z t  has dimension greater than 
one we view  as an inner product,   t Z t   t  hav- 
ing the same dimension as  Z t . In order to avoid prob- 
lems of identifiability we assume that  Z t , if indeed 
time-dependent, has a clear interpretation such as the 
value of a prognostic factor measured over time, so that 
 t  is precisely the regression effect of  Z t  on the 

log hazard ratio at time t. The above model becomes a 
proportional hazards model under the restriction that 
 t ,   a constant i.e.   

       0 exp .t Z t t Z t            (1.2) 

O’Quigley and Stare [12] introduced the name “partially 

proportional hazards models” to describe models in 
which at least one component of the function  t  is 
constrained to be constant. Such models can be shown to 
include the stratified proportional hazards model [13] 
whereby;  

      0, expwt Z t w t Z t            (1.3) 

as well as random effects models [12]. 

2. Model Based Probabilities 

The probability structure of the model, needed in our 
development, is described in O’Quigley [1]. We recall 
the main results in this section. Most often time is viewed 
as a set of indices to certain stochastic processes, so that, 
for example, we consider  Z t  to be a random variable 
having different distributions for different t. Also, the 
failure time variable T can be viewed as a non-negative 
random variable with distribution  F t  and, whenever 
the set of indices t to the stochastic process coincide with 
the support for T, then, not only can we talk about the 
random variables  Z t  for which the distribution corre- 
sponds to  P Z z T t   but also marginal quantities 
such as the random variable  Z T  having distribution 
   Z zG z P  . An important result concerning the 

conditional distribution of  Z t  given T  follows. 
First we need the following:  

t

Definition 1. The discrete probabilities   π ,i t t  
are given by;  

         
      1

exp
π , .

exp

i i
i n

j jj

Y t t Z t
t t

Y t t Z t










   (2.1) 

Under (1.2), i.e. the constraint  t  , the product 
of the ’s over the observed failure times gives the par-
tial likelihood [3]. When 

π
0  , 

i
 is the em-

pirical distribution that assigns equal weight to each sam- 
ple subject in the risk set. Based upon the 

 π 0,i t 

  π ,i t t  
we have:  

Definition 2. Moments of Z with respect to   π ,i t t  
are given by;  

        
1

π , , 1, 2,
n

k k
i it

i

Z t Z t t t k 


    (2.2) 

Definition 3. In order to distinguish conditionally in- 
dependent censoring from independent censoring we 
define  ,z t  where;  

 
   

     
d

, ,
P C t w g w w

z t g z G z
P C t z




 


 .  

Note that when censoring does not depend upon z then 
 ,z t  will depend upon neither z or t and is, in fact, 

equal to one. Otherwise, under a conditionally inde- 

Copyright © 2012 SciRes.                                                                                  AM 



J. O’QUIGLEY 643

pendent censoring assumption, we can consistently esti- 
mate  and we call this  The following 
theorem underlies our development.  

 ,z t  ˆ , .z t

Theorem 1. Under model (1) and assuming  t  
known, the conditional distribution function of  Z t  
given  is consistently estimated by   T t

  
      
    

 
   1

ˆexp

exp

t ,
ˆ

ˆ ,
i i i iz z

n

j j jj

Y t z t z t
P Z t z T t

Y t t z t z t

 

 




  



(2.3) 

Proof. (see [1]) 
Straightforward applications of Slutsky’s theorem en- 

able us to claim the result continues to hold whenever 
 t  is replaced by any consistent estimator  ˆ t , in 

particular the partial likelihood estimator when we as- 
sume the more restricted model (1.2). □ 

The theorem has many important consequences in- 
cludeing;  

Corollary 1. Under model (1) and an independent cen- 
sorship, assuming  t  known, the conditional distri- 
bution function of  Z t  given  is consistently 
estimated by  

T t

     j t t I   
1

ˆ π , .
n

j
j

P Z t z T t Z t z


     (2.4) 

Corollary 2. For a conditionally independent censor- 
ing mechanism we have   

    t    
1

ˆ , π , .
n

j j
j

P Z t z T t C t t I Z t z


    
(2.5) 

Again simple applications of Slutsky’s theorem shows 
that the result still holds for  t  replaced by any con- 
sistent estimate. When the hypothesis of proportionality 
of risks is correct then the result holds for the estimate 
̂ . Having first defined , it is also of 
interest to consider the approximation;  

  dt F  t 

    ,j t I   
1

ˆ , π
n

j
j

P Z t z T t C t Z t z


     (2.6) 

and, for the case of an independent censoring mecha- 
nism,  

    ,j t I Z   
1

ˆ π .
n

j
j

P Z t z T t t z


      (2.7) 

For small samples it will be unrealistic to hope to ob- 
tain reliable estimates of  t  for all of t so that, often, 
we take an estimate of some summary measure, in par- 
ticular  . It is in fact possible to estimate   without 
estimating  t  [11] although the usual partial likely- 
hood estimate does not accomplish this. In fact the partial 
likelihood estimate turns out to be equivalent to obtain- 
ing the solution of an estimating equation based upon 

 H t  and using  Ĥ t  as an estimate whereas, to con- 
sistently estimate  , it is necessary to work with some 
consistent estimate of  F t , in particular the Kap- 
lan-Meier estimate. We firstly need some definition of 
what is being estimated when the data are generated by 
model (1.1) and we are working with model (1.2). This is 
contained in the following definition for   .  

Definition 4. Let    be the constant value satisfying  

         d d .tTT
Z t F t Z t

t F       (2.8) 

The definition enables us to make sense out of using 
estimates based on (1.2) when the data are in fact gener- 
ated by (1.1). Since we can view T as being random, 
whenever  t  is not constant, we can think of having 
sampled from  T . The right hand side of the above 
equation is then a double expectation and    the best 
fitting value under the constraint that  t   We can 
show the existence and uniqueness of solutions to Equa- 
tion (8) [11] More importantly,  can be shown to 
have the following three properties; 1) under model (1.2) 
   ; 2) under a subclass of the Harrington-Fleming 
models,    tdt F 

T

    and 3) for general situa-  

tions    dt F t
T

    Estimates of  are discussed 

in [2,11] and, in the light of the foregoing, we can take 

 

these as estimates of  . We also have the further two 
corollaries to Therorem :  

Corollary 3. For 1,k

 1

2,     ,  ˆ
k

t
E Z t


 provides 

t estimatconsisten es of     k
tE Z t T t , under model 

(1). In particular  ˆE Z


k t  provides consistent esti- 

mates of   kE Z t T t  , under model (1.2).  

Further n under the model, if more,  agai we let  once

           2 2 ;t t tZ t E Z t E Z t     then,  V

Corollary 4. Under model (1.2),  Var Z t  is consis- 
tently estimated by  ˆV Z t


.  

Theorem 1 and its corollaries provide the ingredients 

3. Important Empirical Processes 

i [14];  

necessary to a construction from which several tests can 
be derived. 

Consider the partial scores introduced by We

        , d
t

U t Z s Z s N s
0        (3.1) 

was interested in goodness of fit for theWei 
pr

 two group 
oblem and based a test on  ˆsup ,t U t , large values 

indicating departures away fro nal hazards in 
the direction of non proportional hazards. Considerable 
exploration of this idea, and substantial generalization 
via the use of martingale based residuals, has been car- 
ried out by Lin, Wei and Ying [15]. These investigations 

m proportio

Copyright © 2012 SciRes.                                                                                  AM 



J. O’QUIGLEY 644 

showed that we could work with a much broader class of 
statistics that those based on the score so that a wide 
choice of functions, potentially describing different kinds 
of departures from the model, are available. Apart from 
the two group case, limiting distributions are complicated 
and usually approximated via simulation. Although the 
driving idea is that of goodness of fit, the same tech- 
niques can be applied to testing for the presence of re- 
gression effects against a null hypothesis that   0.t   
Furthermore, working directly with the incremen  
process rather than the process itself, we can derive re- 
lated processes for which the limiting distributions are 
available analytically. From the previous section the in-  

crements of the process  

ts of the

 d
t

0
Z s N s  at it X  have  

mean  E Z X  and varii ance  iV Z X . W  view e
ncrements ndent [16

 can
these i  as being indepe ,17]. Thus only 
the existence of the variance is necessary in order to 
carry out appropriate standardization and to be able to 
appeal to the functional central limit theorem. We can 
then treat our observed process as though arising from a 
Brownian motion process. Simple calculations allow us 
to also work with the Brownian bridge, integrated 
Brownian motion and reflected Brownian motion, proc- 
esses which will be useful under particular alternative to 
the model specified under the null hypothesis. Consider 
the process  * , ,U u  ,  0 1u  , in which   

   1/2

0

1
, , d , , 1, , .s j    

(3.2) 

jt
U V Z s U

k k
  


 
  

where 

j 
k

 1
jt N j . This process is only defi
d points o

ned on k 
equispace f the interval (0, 1] but we extend our 
definition to the whole interval via linear interpolation so 
that, for u in the interval j k  to  1j k , we write;  

 

 

, , , ,

1
, , , ,

j
U u U

k

j j

k





 

Breslow and 

uk j U U
k

   

   

 

 

  
 

        
  

As n goes to infinity, under the usual 
C

 




rowley conditions, then we have that, for each j 
( 1, , 1j k  ),  * , ,U j k   converges in distribution 
to  pr an zero and variance equal 
to 

 a Gaussian ocess with me
j k . This follows directly from Donsker’s theorem. 

Repl ng aci   by a consistent estimate leaves asymptotic 
properties unaltered.  

3.1. Some Remarks on the Notation  , ,α β u  *U

Various aspects of the statistic  , ,U  u  will be 
. 


We choose used to construct different tests the * symbol 

to indicate some kind of standardization as opposed to 

the non standardized U. The variance and the number of 
failure points are used to carry out the standardization. 
Added flexibility in test construction can be achieved by 
using the two parameters,   and  , rather than a sin- 
gle parameter  . In practi these a  replaced by quan- 
tities which are either fixed or estimated under some hy- 
pothesis. For goodness of fit procedures which we con- 
sider later we will only use a single parameter, typically 
ˆ

ce re

 . Goodness of fit tests are most usefully viewed as 
ts of hypotheses of the form 0

ˆ:Htes   . A test then 
of a hypothesis 0 : 0H    may not ery different. 
This is true in pr wever, for a test of 0 : 0H

 seem v
inciple. Ho   , 

we need keep in mind not only behaviour unde  
but also under the alternative. Because of this it is often 
advantageous, under a null hypothesis of 0

r the null

  , to work 
with ˆ   and 0   in the expression  , ,  . 
Unde ull, ˆ

*U u
r the n   remains consistent for  

and, in the light of Slutsky’s theorem, the large sample 
distribution of the test statistics will not be affected. Un- 
der the alternative however things look different. The 

increments of the process  

the value 0

 

 d
t

0
Z s N s  at it X  no  

longer have mean  i  
he n

E Z X  them will and adding  up 
indicate departures fr ull. But the denominator is 
also affected and, in order to keep the variance estimate 
not only correct but also as small as we can, it is prefer- 
able to use the value ˆ

om t

  rather than zero. 

3.2. Some Properties of  , ,α β u  

ests can

*U

iblA very wide range of poss  bee t  based upon 
the statistic  * , ,U u   and we consider a number of 
these below.  tests such as the partial likely- 
hood score test obtain as a special cases. First we need to 
make some observations on the properties of 

Well known

 , ,U u   
under different values of  ,   and u.  

Lemma 1. The process  , ,U u  , for all finite   
and   is continuous on [0  , ,0 0EU  , 1]. Also .   

Lemma 2. Under model 1.2 EU    converges ˆ, ,u 

, then  
in probability to zero.  

Lemma 3. Suppose that v  u

    u

mas

ˆ ˆ, , ; , ,v U v U    Co

to v.

the

 converges in

 are all imme

 

d

probability 

iate. Since 
 

Proofs of the above lem
 increments of the process are asymptotically inde-  

pendent we can treat  ˆ, ,U u   (as well as  , ,U u    

under some hypothesized  ) as though it were   Brownian
motion. From Corollary 3 we have that  ˆ

kE Z t


 pro-  

vides consistent estimates of   kE Z t T t , under 

model (1.2) and that    V Z t  is t consistent for  r Z t .  

Therefore, at 

Va

 ,t j k  , the variance1,k j   of  
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    1/2V Z t Z
   to the value one, ˆ

k
t E Z t   goes as a  

simple application of Slutsky’s theorem. A further appli- 
cation of Slutsky’s theorem, together with theorems of 
Cox and Andersen and Gill [16,17] provide that the in- 
crements    ˆd , , 1, ,U j k j k    are asymptotically 
uncorrelated. Let  

 
     d ,1 d , 2 d ,1

max , ,...,k

U k U k U
t

k k k

  


   
  

 

Then  

     
 

   
   

1

d ,
1 , ,

1 d ,1

1 1 d ,1 .

k k

k

k

P t P t

U j k
P j j

k

P U k k

P U k k

1, ,k

  




 

 

 


    



  

   


 

Applying the Chebyshev inequality,  

  





     3 3 3/2d ,1 d ,1P U k k E U k k      

from which   

  

  
  

3 3 3/2

3 3 1/2

1 1 d ,1

1 exp d ,1 0

k

k

P t

E U k k

O E U k t k

 

 

 



  

   

 


as k becomes large. Apart from the necessity for the ex- 

Replaci

istence of the third moment of Z we also require that, as k 
increases, the fluctuations of the process  ˆ,U u  be- 
tween successive failures become sufficien ll in 
probability, the so called tightness of the process [18]. 
We can assume this holds in real applications. We then  

conclude from Donsker’s theorem that  ˆ,U u  con-  

tly sma

verges in distribution to Brownian motion. ng   
by a consistent estimate leaves asymptotic propert  
unaltered. Suppose that the assumption of zero effect, i.e., 
  0t   is incorrect, and, in particular, that 

ies

 t  is a 
 changing monotonic function of time thout 

losing generality we will assume this monotonicity to be 
an increasing one. Now, at each time point t, instead of 
subtracting off  

smoothly . Wi

 tE Z t  from the observed value of Z 
at that point, we nstead  subtract i  0E Z t . The variance 
is also impacted but the varian lways positive 
(thereby impacting the average size but not the average 
sign of the increments). So, we will observe a positive 
trend in the standardized residuals, the early ones tending 
to be too large and the later ones tending to be too large 

also but negatively. A good model for this, at least as a 
first approximation, would be Brownian motion with 
drift [1]. For our purposes we note that, moving away 
from the model of zero regression effects, we anticipate 
observing some trend rather than zero mean Brownian 
motion. For decreasing 

ce is a

 t , the same argument holds 
leading to an approxima of Brownian motion with 
drift but with the sign changed. These assertions follow 
when 

tion 

 t  is monotone. Now suppose that  t  is 
not monoto e. There are two cases of interest. Th t is 
where 

n e firs
 t  is broadly monotone, by which we mean 

the following. Divide the time interval into non overlap- 
ping time segments and take the average value of  t  
for each segment. We then suppose that the av
value of 

erage 
 t , over the different time segments, is 

monotone. could make this intuitive idea more pre- 
cise if needed. For this case we would expect, again, the 
procedure to work well. The second case of interest is 
where 

We 

 t  changes over the time period in question in 
a way that s no obvious pattern or trend. We would not 
expect to be able to detect such behavior and the power 
of the test procedures would be low. We would most 
likely conclude that there is no effect, a conclusion that, 
even though not correct, would be reasonable, at least as 
an approximation. 

ha

4. Non- and Partially P

n m

r

pprox

oportional Haz

Th otion a imations of the a

ards 

bove sec

Models 

e Brownia - 
tion extend immediately to the case of non proportional 
hazards and partially proportional hazards models. The 
generalization of Equation (1) is natural and would lead 
to an unstandardized score;   

           
0

, d
t

tt Z s N sU t Z s  

 the nu


and, as nder ll hypothesis that 

    (4.1) 

 before, u  t  is 
correctly specified the function   ,U t t  will be a 
sum of zero mean random variable e of possi- 
ble alternative hypotheses is large and, mostly, we will 
not wish to consider anything too complex. Often the 
alternative hypothesis will specify an ordering, or a non 
zero value, for just one of the components of a vector 
values 

s. The rang

 t . In the exact same way as in the previous 
section, all of the calculations lean upon the main theo- 
rem and its corollaries. The increments of the process  

   d
t

0
Z s N s  at t = X  have mean i  E Z X  and vari-  i

ance   . A little bit of extra needed, in iX
in ord

V Z
e, 

care is 
practi er to maintain the view of the independ- 
ence of these increments. When 

c
t  is known there is 

no problem but if, as usually ha s, we wish to use 
estimates, then, for asymptotic theory to still hold, we 
require the sample size (number of failures) to become 

ppen
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infinite relative to the dimension of  t . Thus, if we 
wish to estimate the whole function  , then some 
restrictions will be needed because, fu enerality im- 
plies an infinite dimensional parameter  t . For the 
stratified model and, generally, partially proportional 
hazards models, the problem does not arise because we 
do not estimate  t . 

The sequentia standardiz

t
ll g

ed process will lly now be 
written       , , , 0 1U t t u u    , in which  

   

     1/2

0

, ,

1
d , 1, , .

t j
t

U t t
k

V Z s U t k
k



 




 
 

 
 

where 

  ,s j

j 



 1
jt N j . This process ca  cover 
le interval 

n be made to
the who (0, 1] continuously by interpolating in 
exactly the same way as in the previous section. For this 
process we reach the same conclusion, i.e., that as n goes 
to infinity, under the usual Breslow and Crowley condi- 
tions [17], then we have that, for each j ( 1, , 1j k  ), 

    , ,U t t j k   converges in distribu s- 
ean zero and variance equal to 

tion to a Gau
sian process with m j k . 
The only potential difficulty is making use of Slut  
theorem whereby, if we replace 

sky’s
t  and  t  by 

consistent estimates the result still ho The issue is that 
of having consistent estimates, which for an infinite di-
mensional unrestricted parameter we can not achieve. 
The solution is simply to either restrict these functions or 
to work with the stratified models in which we do not 
need to estimate them. Subsection 3.1 applies equally 
well here if we replace 

lds. 

  and   by  t  and  t . 
The lemmas of the above sectio descri  the pr  
ties of  , ,U t

n bing oper-
   apply equally we if we are working 

with  ,U t t , specifically, the process  
 U   all finite 

   ,t 

   , ,t t t  , for t  and  t  is  
continuous on [0, 1] and     0EU t  , , 0,t   

obab

un-  

der model 1.2   ˆ , ,EU t ility  u   converges 

 ˆ ,t u

s of th

 it were Br

ses can be con

in 



pr

 conv

t

to zero and for v u ,  

 erges in  

probability to v. Since the increment

t  under  

some hypothesize hough

5. Test Statistics 

t hypothe structed 

  ˆCov        , , ; ,U t t v U t 

e process are 
asymptotically independent we will treat  

    ˆ , ,U t t t   (as well as   ,U t ,

d  t ) as t ownian 
motion. 

Several tests of poin
based on the theory of the previous section. These tests 
can also be used to construct test based confidence inter- 
vals of parameter estimates, obtained as solutions to an 
estimating equation. Among these tests are the following.  

5.1. Distance Travelled at Time t 

At time t, under the null hypothesis that 0  ,
ch case 

 often a 
ihypothesis of absence of effect in wh 0 0  , 

we have that  0
ˆ, ,U t   can be appr ed by a 

normal distribution with mean zero and varianc  
p-value corresp e null hypothesis is then ob- 
tained from  

oximat
e t. A

onding to th

  ˆPr   0, , 1 .U t t z z      

This p-value is for a one-sided test in the di ction of 
the alternative 

re

0.   For a one-sided alternative in 
the opposite direction we would use;  

  0
ˆPr , ,U t t z     z  

and, for a two sided alternative, we would, as usual, con- 
sider the absolute value of the test statistic and multiply 

 1 z  by two. Under the alternative, say 0  , if 
we take the first two terms of a Taylor series expansion  

of  0
ˆ, ,U t   about   , we can deduce that a good  

app for this w uld be Brownian motion with 
drif this is the  a good test for absence of ef- 

roximation o
t. At time t n

fect (Brownian motion) against a proportional hazards 
alternative (Brownian motion with drift), good in the 
sense that type I error is controlled for and, under these 
alternatives, the test has good power properties. Power 
will be maximized by using the whole time interval, i.e., 
taking 1.t   Nonetheless there may be situations in 
which we may opt to take a value of t less than one. If we 
know for instance that, under both the null and the alter- 
native we can exclude the possibility of effects being 
persistent beyond some time   say, i.e., the hazard ra- 
tios beyond that point should be one or very close to that, 
then we will achieve greater power by taking t to be less 
than one, specifically some value around  . A confi- 
dence interval for 0  can be obtained using normal 
approximations or by constructing the interval  ˆ ˆ    
such that for any point b contained in the interval a test 
of the null hypothesis, 0 :H b  , is not rejected

5.2. Greatest Distanc rigin at Time t

. 

e from O  

than In cases where we wish to consider values of t less 
one, we may have knowledge of some   of interest. 
Otherwise we might want to consider several possible 
values of  . Control on Type I error will be lost unless 
specific account is made of the multiplicity of tests. One 
simple way to address this issue is to consider the maxi- 
mum value achieved by the process during the interval 
 0, .  Again we can appeal to known results for some 
well known functions of Brownian motion. In particular 

e;  we hav
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0

0,

*
0

ˆ2Pr , , .

t

U z



   


 
 

 

 

Under the null and proportional hazards alternatives 
this test, as opposed to the usual score test, would lose 
po

Since we are viewing the process  as though 
i n con- 

* ˆPr , ,supU t t z 
 



wer comparable to carrying out a two sided rather than 
a one-sided test. Under non-proportional hazards alterna- 
tives this test could be of use, an extreme example being 
crossing hazards where the usual score test may have 
power close to zero. As the absolute value of the hazard 
ratio increases so would the maximum distance from the 
origin. 

5.3. Brownian Bridge Test 

 0
ˆ, ,U t 

an motion, we ca
tions of Bro

it were a realization of a Brown
sider some other well known func wnian mo- 
tion. Consider then the bridged process  0 0

ˆ, ,U t  ;  
Definition 5. The bridged process is defined by the 

transformation  

     0 0 0 0
ˆ ˆ ˆ, , , , , ,1U t U t tU          

Lemma 4. The process  conve  in 
distribution to the Brownian  in particular, for 
la

 0 0
ˆ, ,U t 

 bridge,
0

rges

rge samples,  0 0
ˆ, ,EU t    and  

      0 0 0
ˆ ˆ , 1 .Cov U t s t     0, , , ,s U  

The Brownian bridge, also referred to as tied down 
Brownian motion for the obvious reason that at 0t   

more
an

l to 
s. 

d 1t   the process takes the value 0, will not be par- 
ticularly useful for carrying out a test at 1t  . It is  
usefu  consider, as a test statistic, the greatest distance 
of the bridged process from the time axi We can then 
appeal to;  

Lemma 5.  

  0 0Pr sup
u

U   2ˆ, , 2exp 2u a a          (5.1) 

which follows as a large sample result since;  

  
   

0 0
ˆPr , ,sup

u

U u a  

1 2 2

1

1 2 1 exp 2 , 0.
k

k

k a a






    
 

This is an alternating sign series and therefore, if we stop 
the series at k = 2 the error is bounded by  22exp 8a  

tives to the
which for most values of a that we will be interested in 
will be small enough to ignore. For alterna  
null hypothesis ( 0  ) belonging to the proportional 
hazards class, the Brownian bridge test will be less pow- 

erful than the distance from origin test. It is more useful 
under alternatives  non-proportional hazards nature, 
in particular an alternative in which 

of a
0

ˆ, ,1U    is 
close to zero, a situation we might anticipate when the 
hazard functions cross over. Its main use, in our view, is 
in testing goodness of fit, i.e., a hypoth the 
form 0

ˆ:H
esis test of 

   [1].  

5.4. Reflected Brownian Motion 

An in operty ofteresting pr  Brownian m ol- otion is the f
lowing. Let  W t  be Brownian mo
positive value r and define the proc

tion, e 
es

 choose som
s  rW t  in the 

following way: If  W t r  then    .rW t W t  If 
 W t r  then    2r t r W t  . It is easily shown that 

the reflected process 
W

 rW t  is also Brow motion. 
Choosing r to be negative  defining

nian 
  and  rW t  accord- 

 have th e process ingly we e same result. Th  rW t  coin- 
cides exactly with   untW t il such a time as a barrier is 
reached. We can imagine this barrier as a m  and be- 
yond the barrier the process 

irror
rW t  is a simp lection  

of 

le ref

 W t . So, consider the process  0
ˆ, ,rU t   defined 

to be  0
ˆ, ,U t   if  0, , ˆU t r   and to be equal 

to  ˆ , t   if 02 ,r U 0
ˆ, ,U t 

Lem t  converges in 
dis nian m ula
sam

r .  

,
ic r, for large 



The process 
tri o
p

ma 6. 
bution to Brow
les, 

 0
ˆ,rU  

tion, in part
 0

ˆrEU  , 0 , t   and 

    0 0
ˆ ˆ, , , , , .r rCov U s U t s       

Under p ds thereroporti
ed by Ur

rds alternativ

onal hazar  is n le to 
be play . However, imagine a no nal 
haza e where the effect re e 
po  

o obvious ro
n-pr ortio

verses at som
op

int, the so-called crossing hazards problem. The statis- 

tic  ˆ,0,U t  would increase up to some point and then  

decrease back to a value close to zero. If we knew this 
point, or ha some reasons for guessing it in advance, 
then ork with 

d 
we could w 0

ˆ, ,rU t   instead of  

 0
ˆ, ,U t  . A judicious choice of the point of reflection  

would result in a test sta ontinues to increatistic that c se 
unde
gin test m

r such a
ig

n alternative so that a distance from the ori- 
ht have reasonable power. In practice we may 

not have any ideas on a potential point of reflection. We 
could then consider trying a whole class of points of re- 
flection and choosing that point which results in the 
greatest test statistic. A bound for a supremum type test 
can be derived by applying the results of Davies [19,20]. 
Under the alternative hypothesis we could imagine in- 
crements of the same sign being added together until the 
value r is reached, at which point the sign of the incre- 
ments changes. Under the alternative hypothesis the ab- 
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solute value of the increments is strictly greater than zero. 
Under the null, r is not defined and, following the usual 
standardization, this set up fits in with that of Davies [19, 
20]. We can define r  to be the time point satisfying 

 0
ˆ, , .rU r     A two-sided test can then be based on  

the statistic   0
ˆ, ,1 : 0 1 .sup r

rM U       Infer- 

ased upon;   

r

ence can then be b

  
 

 
  

0

2

Pr s

1
1

2
110

ˆup , ,1 : 0 1

exp 2
d

2π

r
rU c

c
c

  

  

  

    
  (5.2) 

where Ф denotes the cumulative normal distributio

tion, 



n func- 

    2 2
11 ,

 
     


    and where  ,r s     

is the autocorrelation function between  0
ˆ, ,1rU    

and 

 

 0
ˆ, ,1sU   . In general the autocorrelation    function

 ,   , needed to evaluate the test statistic . is unknown
, it can b
g metho

How e consistently estimated using bootstrap 
resamp ds. For 

ever
lin r  and s  taken as fixed, we 

can take bootstrap samples from which several pairs of 


 

0
ˆ, ,1rU    and  0

ˆ, ,1sU    can be obtained. Using 

these pairs, an empirical, i.e. product moment, correla- 
tion c effic  be calculat

 

o i e
tions [21,22 mpirical est

ent can d. Under the usual condi- 
], the e imate provides a consis- 

tent estimate of the true value. This sampling strategy is 
investigated in related work by O’Quigley and Natarajan 
[23]. 

Davies also suggests an approximation in which the 
autocorrelation is not needed. This may be written down 
as  

    
 2exp 2

ˆPr sup , ,1r
V M

U M M
 


    0

8π
(5.3) 

where    0 0
ˆ ˆ, ,1 , ,1r s

i
V U U      , the i ,

ˆ

 rang-  

ing over (L, U), are the turning points of 0, ;T    and  

e observed maximum of M is th  ˆ0, ;T   . 

Turning points only occur at the k distinct times failure 
tent with that of the next and, to keep the notation consis

section, it suffices to take   2, ,i i k   as being lo- 
cated half way between adjacent failures, 1 0   and 

1k   any value greater than the largest failure time. We 
would though require differe rocedures for 
this. 

5.5. Partial Likelihood Score Test 

Supp

nt inferential p

ose that we wish to test 0 : 0H    

 ˆ,0,U t  we choose to work with U  0,0, t . In the  

readily se
sample nul t statistics
light of Slutsky’s theorem it is en that the large 

l distributions of the two tes  are the 
same. Next, instead of standardizing by  0 iZ XV  at 
each iX  we take a simple average of such quantities, 
over the observed failures. To see this, note tha   t

   ˆ
ˆdV Z t F t

  is consistent for E   .Var Z t  Rather  

than integrate with respect to  F̂ t  it is more common, 
in the counting rate withprocess context, to teg  respect  in
to  N t , the two coinciding in absence of censoring. 
It is also more common to fix 

 the 
̂  in  ˆV Z t


 at its null 

value ze o. This gives us:  
Definition 6. The empirical average c ional vari- 

ance, 0V  is defined as  

r
ondit

   1

0 00
dZ t N t V V . 

 V Z sIf, in Equation (3.2), we replace  by 
then the distance from origin test at tim  coinc
ex

0V  
ides 

is
e 1t 

hara
actly with the partial likelihood score test. Indeed th  

observation could be used to construct a c cterization 
of the partial likelihood score test. In epidemiological 
applications it is often assumed that the conditional vari- 
ance,  V Z t  is constant through time. Otherwise time 
independence is often a good approximation to the true 
situation nd ives further motivation to the partial like- 
lihood test. 

6. Multivariate Model 

a g

In practice it is the multivariate setting that we are most 
existence of effects in the interested in; testing for the 

presence of related covariates, or possibly testing the 
combined effects of several covariates. In this work we 
give very little specific attention to the multivariate set- 
ting, not because we do not feel it to be important but 
because the univariate extensions are almost always 
rather obvious and the main concepts come through more 
clearly in the relatively notationally uncluttered univari- 
ate case. Nonetheless, some thought is on occasion re- 
quired. The basic theorem giving a consistent estimate of 
the distribution of the covariate at each time point t ap- 
plies equally well when the covariate  Z t  is multi- 
dimensional. Everything follows through in the same 
way and there is no need for additional theor ms. In the 
multivariate case the product 

e
   it Z t  becomes a 

vector or inner product, a simple linear sum of the com- 
ponents of  iZ t  and the correspo mponents of nding co
 .t  Suppose, for simplicity, that  iZ t  is two di-  

mensional s  at       1 2, .
T

i i io th Z t Z t Z t  Then the  

  ,t t  give our estimate for the  distribution  jointπi 
of     1 2,i iZ t Z t  a ulti-dimen-  t time t. As for any mand instead of  
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sional distr
al distribution o

ibution if we wish to consider only the mar- 
gin f, say,  1Z t  then we simply sum the 

  π ,i t t  over the variable  2Z t . In practice we work 
with the   π ,i t t , defined be of the highest dimen- 
sion th e are interested in, for the problem in hand, 
and simpl  sum ver the subsets of vector Z needed. To 
be completely concrete let us return to the partial scores,   

   

to 
at w

y o

    
0

, d ,
t

U t Z s E Z s N s       (6.1) 

defined previously for the univariate case. Both  Z s  
and  E Z s  are vectors of the same dimension. So 
also is then  ,U t . The vector  ,U t  is made  
the com  marginal processes any of which we may 
be interested  each marginal covariate, let’s say 

1

up of
ponent

 in. For
Z  for instance, we also calculate  1E Z s  and we 
can do this either by first working out the marginal dis- 
tribution of 1Z  or just by summing over int prob- 
abilities. The result is the same and it is no doubt easier 
to work out all expectations with the respect to the joint 
distribution. Let us then write;   

   

the jo

    1 1 10
, , d

t
U Z t Z s Z s N s        (6.2) 

where the subscript “1” denotes the first co
the vector. The interesting thing is that 

mponent of 
E  does not 

require any such additional notation, depending only on 
the joint   π ,i t t . As for the univariate case we can 
work with any function of the random vector Z, the ex- 
pectation of the function being readily estimated by an 
application of an immediate generalization of Corollary 3. 
Note that the process we are constructing is not the same 
one that we would obtain were we to simply work with 
only 1Z . This is because the   π ,i t t  involve a uni- 
variate Z in the former case and a multivariate Z in the  

latter. The increments of the p  rocess  10
d

t
Z s N s  at  

t X  have mean 


i  E Z X  and variance 1 i  1V Z X . i

As before, these increments can be t de- aken to be in
at only th e variancpendent [16,17] so th e existence of th e 

is necessary to be able to appeal to the functional central 
limit theorem. This observed process will also be treated 
as though arising from a Brownian motion process. The 
same calculations as above allow us to also work with 
the Brownian bridge, integrated Brownian motion and 
reflected Brownian motion. Our development is entirely 
analogous to that for the univariate case and we consider 
now the process    1, , , , 0 1U Z u u    , in which   

   1/2

1 1 1

1
, , , , , ,

tj
U Z Z s

k
  

  

  0

d

1, , .

jV Z s U
k

j k









where  1
jt N j . This process is only defined o k 

equispaced points of the interval (0, 1] and, again, we 

our definiti

n 

extend on to the whole interval so that, for 
 , 1u j k j k     we can write  1, , ,U Z u   as;  

 

1, , ,

1
, , ,

U Z
k

j j
uk j U Z U Z

k k

 

   



 

 
 

1 1, , ,

j 

           
    

 

As n goes to infinity, under the usual Breslow and 
Crowley conditions [17], then we have that, for each j 
( 1, , 1j k  ),  1, , ,U Z j k   converges in distri- 
bution to a Gaussian process with mean zero and vari- 
ance equal to j n the same way as for 
the univariate case, directly from Donsker’s theorem. 
Replacing 

k . This follows i

   consistent estimate leaves asymptotic 
properties unaltered.  

6.1. Some Further R

by a

emarks on the Notation  

The notation  1, , ,U Z u   is a little heavy but 
comes even heavier if we wish to treat the situation in 

be- 

great generality ponent of Z is 1. The first com Z  but of 
course this could be any component. Indeed 1Z  can 
itself be a vector, some collection of compon ts of Z 
and, once we see the basic idea, it is clear wha o do 
even though the notation starts to become slightly cum- 
bersome. As for the notation,  , ,U u  , in which 
there is only one Z and no need to specify it, the * sym- 
bol continues to indicate standard he variance 
and number of failure points. For the multivariate situa- 
tion, the two parameters, 

en
t t

ization by t

  and  , are themselves, 
both vectors. The parameter   which indexes the vari- 
ance will be, in practice, the estimated ull vector  f  , i.e., 
ˆ.  Note that, as for the pro ss  ˆ, ,U u   we use, 

for the first argument to this function, the unrestricted 
imate. Exactly the same applies h umerator 

however, under some hypothesis for 1

ce

est ere. In the n
 , say 1 10   

then, for the increments  1d , ,U Z s , we would have 

1  fixed at 10  and the other compon ts of th  en e vector
  replaced by their rest tes, i.e., zeros of 

 estimating uations in which 1 10 .
ricte

 eq
d estima

the    

6.2. Some Properties of  1, , ,β Z u  *U α

The same range of possible
upon the statistic 

 tests as before can be based 
 1,Z, ,U   oru . To supp t this it is 

rocess 
worth noting:  

Lemma 7. The p 1, , ,Z u , for all finite U 

  and   is continuous on [0, 1]. Also  
 1, , ,0 0.Z EU    

Lemma 8. Under model 2  ˆ,EU     con- 
verges in probability to zero.  

 then  

1, ,Z u

Lemma 9. Suppose that v u ,

   ; ,v U u  1
ˆ ˆ, , , , ,Cov U Z Z    

1
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converges in probability to  
Since the increments of the process are asym

u  (as well as 

v .
ptotically 

independent we can treat   1
ˆ, , ,U Z 

 1, , ,Z u   under some hypothesized U  ) as though 
it were Brownian motion. 

6.3. Tests in the Multivariate Setting 

When we carry out a test of 0 1 10:H    it is im
to keep in mind the alternative hypothesis w

portant 
hich is, usu- 

ally, 1 1 10:H    together with ,j  1j   unspeci- 
fied. Such a test can be carried out using  1

ˆ, , ,U Z u   
where ond argument , for the sec  , th ce onent 1omp   
is replaced by 10  and the other components by esti- 

constraint that 1mates with the   is fixed at 10 . As- 
suming our del is correct, or ood enough approxi- 
mation, then we are testing for the effects of 1

mo a g
Z  h ing 

“account or” the effects of the other covariates. The 
somewhat imprecise notion “having accounted for” is 
made precise in the context of a model. It is not of course 
the same test as that based on a model with only 1

av
ed f

Z  
included as a covariate. 

Another situation of interest in the multivariate setting 
is one where we wish to test simultaneously for more 
than one effect. This situation can come under one of two 
headings. The first, analogous to an analysis of variance, 
is where we wish to see if there exists any effect without 
being particularly concerned about which component or 
components of the vector Z may be causing the effect. As 
for an analysis of variance if we reject the global null we 
would probably wish to investigate further to determine 
which of the components appears to be the cause. The 
second is where we use, for the sake of argument, two 
covariates to represent a single entity, for instance 3 lev-
els of treatment. Testing for whether or not treatment has 
an impact would require us to simultaneously consider 
the two covariates defining the groups. We would then 
consider, for a two variable model,  Z t  is a vector 
with components  1Z t  and  2Z t , step functions with 
discontinuities at the points iX , 1,i n , where they 
take the values 

,
1i i Z X  and i2iZ X

 consid
 respectively. For 

this two dimensional case we crements in 
the process  

    

er the in

 d
t

1 1 2 20
Z s Z s N s   

at , having mean  it X

   1 1 i iE Z X 2 2E Z X   

and variance  

     2 2
1 1 iV Z X 2 2 1 2 1 22 , .i iV Z X Cov Z Z X    

The remaining steps now follow through just as in the 
one dimensional case, 1  and 2  being replaced by 

 respectiv e conditional expecta- 

tio

mous 1972 pa- 
he two sample problem in a clinical 
 been re-examined by several authors 

[1] J. O’Quigley, “Khmaladze-Type Graphical Evaluation of 
the Proportion ” Biometrika, Vol. 
90, No. 3, 200

ely, and th

ns, variances and covariances being replaced using 
analogous results to Corollaries 3 and 4. 

7. An Example 

The classical example studied in Cox’s fa

1̂

per [3] concerning t
trial in leukemia has
and we reconsider those data in the light of the work here. 
Our development sidesteps the issue of ties, a problem of 
sufficient importance for the Freireich data that it war- 
ranted lengthy discussion in Cox’s paper. Here we sim- 
ply used a random split, although all of the suggested 
approaches for dealing with ties (see for example 
Kalbfleisch and Prentice [13] are accommodated without 
any additional difficulty. The distance from the origin at 
the maximum follow up time was equal to 3.92 (p < 
0.001), a result which is to be anticipated since the pro- 
portional hazards assumption is known to be a good one 
for these data, and effects are strong. The partial likely- 
hood test produced the figure 3.94, confirming, at least 
here, the agreement we would expect given that the esti- 
mated conditional variance of the covariate given time is 
fairly constant with time itself. If the process is reflected 
at the time point t = 12, roughly the marginal median, 
then we obtain the value 0.58 which is what we might 
well expect. On the other hand if we use the reflected 
process, maximized across all potential times, then we 
obtain, again, a p-value less than 0.001 suggesting that 
little has been sacrificed by this more general approach 
even when the proportional hazards assumption appears 
well founded. 
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