Nonconforming Mixed Finite Element Method for Nonlinear Hyperbolic Equations

Haihong Wang¹, Cheng Guo²

¹Department of Mathematical and Information Scientific, Henan University of Economics and Low, Zhengzhou, China
²Department of Mathematics, Zhengzhou Normal University, Zhengzhou, China
Email: {waih777, gc_scv}@163.com

Received December 22, 2011; revised February 13, 2012; accepted February 21, 2012

ABSTRACT

A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived for both the displacement and the stress.

Keywords: Nonconforming Mixed Finite Element; Hyperbolic Equations; Semi-Discrete Scheme; Error Estimates

1. Introduction

In this paper, we discuss a nonconforming mixed finite element method for the following nonlinear hyperbolic initial and boundary value problem.

\[
\begin{aligned}
&b(u)u_t - \nabla \cdot (a(u)\nabla u) = f(u), (x, y) \in \Omega, t \in (0, T) \\
&\quad u(X, t) = -g(X, t), (x, y) \in \partial \Omega, t \in (0, T) \\
&\quad u(x, y, 0) = u_0(x, y), u_t(x, y, 0) = u_t(x, y), (x, y) \in \Omega,
\end{aligned}
\]

(1)

In order to describe the results briefly, we suppose that Equation (1) satisfy following assumptions on the data:

1) \(a(u)\) and \(b(u)\) are smooth and there exist constants \(c_0, c_1, a_0, a_1\) satisfying

\[
0 < c_0 \leq b(u) \leq c_1, 0 < a_0 \leq a(u) \leq a_1.
\]

2) \(f(u), a(u), g(X, t), u_0(X)\) and \(u_t(X)\) are sufficiently smooth functions with bounded derivatives.

There have been many very extensive studies about this kind of hyperbolic equations. For example, [1-3] studied the linear situations and gave error estimates under semi-discrete and fully-discrete schemes by standard Galerkin methods. [4,5] considered the mixed finite element methods for linear hyperbolic equations and obtained \(L^2\) prior estimates about continuous time. In addition, [6] analyzed the mixed finite element methods for second order nonlinear hyperbolic equations. But all the above investigations are mainly about conforming situations and projections are indispensable. As we know, the nonconforming finite element methods with degree of freedom defined on the element edges or element itself are appropriate for each degree of freedom belong to at most elements.

In the present work, we focus on the nonconforming mixed finite element approximation scheme for nonlinear hyperbolic equations. Firstly, we introduce the corresponding space and the interpolation operators. Secondly, Existence and uniqueness of the solutions to the discrete problem are proved. Finally, Priori estimates of optimal order are derived for both the displacement and the stress.

Throughout this paper, \(C\) denotes a general positive constant which is independent of \(h = \max \{h_K\}\), and \(h_K\) is the diameter of the finite element \(K\).

2. Construction of the Elements

Let \(J_h\) be the a rectangular subdivision of \(\Omega \subset R^2\), and \(\Omega = \bigcup_{K \in J_h} K\) satisfy the regular condition. For every \(K\), let \((x_k, y_k)\) be the barycenter, the length of edges parallel to x-axis and y-axis by \(2h_x\) and \(2h_y\). Then there exists an affine mapping \(F_K : \hat{K} \rightarrow K, x = x_k + h_x \hat{x}, y = y_k + h_y \hat{y}\), where \(\hat{K} = [0,1] \times [0,1]\) is the reference element in \((\hat{x}, \hat{y})\) plane and \(l_i\) is the edges. We define the finite element \((\hat{K}, \hat{P}^i, \hat{L}^i)(i = 1, 2, 3)\) on \(\hat{K}\) as

\[
\begin{aligned}
\hat{\Sigma}^1 &= \left\{ \frac{1}{|K|} \int_{\hat{K}} \hat{x} \hat{d}x\hat{d}y \right\}, \hat{P}^1 = span \{1\}, \\
\hat{\Sigma}^2 &= \{ \hat{q}_1, \hat{q}_2, \hat{q}_3, \hat{q}_4 \}, \hat{P}^2 = span \{1, \hat{x}, \hat{y}, \hat{y}^2\},
\end{aligned}
\]
Thus the corresponding weak formulation of Equation (1) is to find a pair of \(\{u, p\} \), such that
\[
[0, T] \rightarrow H^1_0(\Omega) \times H(div; \Omega) \quad \text{satisfying}
\]
\[
(b(u)u_x + \nabla \cdot p, v) + (f(u), v) \quad \forall v \in L^2(\Omega)
\]
\[
(\alpha(u) p, w) - (u, \nabla w) + (g, w \cdot n) \quad \forall w \in H(div; \Omega)
\]
(2)
\[
u(x, 0) = u_0(x), u_x(x, 0) = u_1(x), x \in \Omega,
\]
where \(g, w \cdot n \) is given.

The semi-discrete mixed finite element procedure is determined as \(\{u_h, q_h\} : [0, T] \rightarrow V_h \times W_h \), such that
\[
\begin{align*}
(b(u_h)u_{hx} + \nabla \cdot p_h, v_h) + (f(u_h), v_h) & = (f(u_0), v_h), \forall v_h \in V_h, \\
(\alpha(u_h) p_h, w_h) - (u_h, \nabla w_h) & = (g, w_h \cdot n), \forall w_h \in W_h
\end{align*}
\]
(3)
\[
u_h(x, 0) = u_{0h}(x), u_{hx}(x, 0) = u_{1h}(x), x \in \Omega,
\]
where \(g, w_h \cdot n \) is given. We define that
\[
\begin{align*}
\|v_h\|_h & = \left(\sum_k \|v_k\|_{1,2}^2 \right)^{1/2}, \quad \forall v_h \in V_h, \\
\|w_h\|_h & = \left(\sum_k \|w_k\|_{1,2}^2 + \|\nabla \cdot w_k\|_{1,2}^2 \right)^{1/2}, \quad \forall w_h \in W_h.
\end{align*}
\]

It can be seen that \(\|v_h\|_h \) and \(\|w_h\|_h \) are the norms for \(V_h \) and \(W_h \), respectively.

Theorem 1. The above problem (3) has a unique solution.

Proof: Let \(\{\psi_i\}_{i=1}^n \) and \(\{\phi_i\}_{i=1}^n \) are bases of \(V_h \) and \(W_h \), which satisfy
\[
\begin{align*}
u_h & = \sum_{i=1}^n \phi_i(t) \psi_i, p_h = \sum_{j=1}^n \lambda_j(t) \phi_j
\end{align*}
\]
Then semi-discrete scheme can be rewritten as: Find \(\phi_i(t)(i = 1, 2, \cdots, r_i) \) and \(\lambda_j(t)(j = 1, 2, \cdots, r_j) \), such that for every \(t \in (0, t_f) \) satisfy
\[
\begin{align*}
d^2 \phi_i(t) + B(t) \phi_i(t) & = A(t) \\
E(t) \phi(t) & = F(t)
\end{align*}
\]
where
\[
\begin{align*}
A & = \left(b \left(\sum_{i=1}^n \phi_i(t) \psi_i, \psi_j \right) \right)_{i \neq j}, \\
B & = \left(\left(\nabla \cdot \phi_i, \phi_j \right) \right)_{i \neq j}, \\
D & = \left(f \left(\sum_{i=1}^n \phi_i(t) \psi_i, \psi_j \right) \right)_{i \neq j}, \\
F & = \left((g, \phi_i \cdot n) \right)_{i \neq j}, \\
G & = \left(\lambda \left(\sum_{j=1}^n \lambda_j(t) \phi_j, \phi_i \right) \right)_{i \neq j}
\end{align*}
\]
By the definition of the approximation spaces, we
know that \(E \) is reversible and \(\lambda(t) = E^{-1}(G - F\psi(t)) \). Thus there holds that

\[
A \frac{d^2(\varphi(t))}{dt^2} - BE^{-1}F\varphi(t) = D - BE^{-1}G.
\]

Since \(A, BE^{-1}F \) and \(D - BE^{-1}G \) are Lipschitz continuous, it has a unique solution according to the theory of differential equations [8].

Lemma 1. For \(\forall u \in H^1(\Omega) \), \(\rho \in H(div;\Omega) \), \(v \in V_h \), there hold that

\[
\text{div}V_h = W_h,
\]

\[
\left\{ u - I^h u, \psi \right\} = 0, \left\{ \nabla \cdot (p - I^h \rho), v \right\} = 0,
\]

Proof: Firstly, by the interpolation condition and definition, it is easy to see that \(\text{div}V_h = W_h \) and \(\left\{ u - I^h u, \psi \right\} = 0 \). Secondly, for every \(v \in V_h \), \(v \) is a constant, by application of Green’s formula and the interpolation definition yields that

\[
\left\{ \nabla \cdot (p - I^h \rho), v \right\} = \sum_{k} \int_{\Omega} \nabla \cdot (p - I^h \rho) \psi \, dx \, dy
\]

\[
= \sum_{k} \int_{\Omega} (p - I^h \rho) \psi \, dx \, dy + \sum_{k} \int_{\Omega} (p - I^h \rho) \cdot \psi \, ds.
\]

Thus, we complete the proof of Lemma 1.

Lemma 2. [9] For \(u, u_i \in H^2(\Omega) \), there hold that

\[
\sum_{k} \int_{\Omega} u_i \cdot (\psi \cdot n) \, dr \leq C \|u\| \|\psi\|, \quad \forall \psi \in W_h.
\]

Now we give the main result of this paper.

Theorem 2. Let \(\{u, \rho\} \) and \(\{u_i, \rho_i\} \) be the solutions of Equations (2) and (3), respectively. For \(u, u_i \in H^1(\Omega) \), \(u_i, u \in H^1(\Omega) \), \(p \in \{H^2(\Omega)\}^2 \), there hold that

\[
\sum_{k} \int_{\Omega} u_i \cdot (\psi \cdot n) \, dr \leq C \|u\| \|\psi\|,
\]

and

\[
(\alpha(u) \theta, w_i) - (\xi, \nabla \cdot w_i) = (\alpha(u) \sigma, w_i)
\]

\[
+ \left(\left((\alpha(u) - \alpha(u_i)) \rho, w_i \right) + \sum_k w_i \cdot \rho \right).
\]

Using derivation about time \(t \) of Equation (4), combining Equation (5), we obtain

\[
(\alpha(u) \theta, \psi_i) + (\alpha(u) \sigma, \psi_i) + \int_0^t \left((\alpha(u) - \alpha(u_i)) \rho, \psi_i \right) + \sum_k \int_{\Omega} w_i \cdot \rho \, ds
\]

Choosing \(\psi_i = \xi, \) and \(\theta = \theta \) in Equation (6), and integrating from 0 to \(t \), we have

\[
\int_0^t \left((\alpha(u) - \alpha(u_i)) \rho, \xi \right) + \int_0^t \left(\alpha(u) \sigma, \xi \right) + \int_0^t \left(\alpha(u) \theta, \xi \right) + \int_0^t \left(\alpha(u_i) \sigma, \theta \right) \, dr + \sum_k \int_{\Omega} w_i \cdot \rho \, ds
\]

We will give the analysis result of Equation (7) in detail. Firstly, by the initial condition, it is followed that

\[
\int_0^t \left((\alpha(u) - \alpha(u_i)) \rho, \xi \right) + \int_0^t \left(\alpha(u) \sigma, \xi \right) + \int_0^t \left(\alpha(u) \theta, \xi \right) \, dr
\]

\[
\geq C \left(\|\xi\|^2 + \frac{1}{\alpha_i} \|\theta\|^2 + \|\xi^2\| + \|\theta^2\| \right) \, dr
\]

Secondly, by Cauchy-Schwartz’s inequality and Young’s inequality, we obtain

\[
\int_0^t \left(\alpha(u) \sigma - \alpha(u_i) \sigma, \theta \right) + \left(\alpha(u) \theta, \theta \right) \, dr \leq C \int_0^t \left(\|\xi\|^2 + \|\xi^2\| + \|\theta\|^2 + \|\theta^2\| \right) \, dr
\]

Similarly, by the initial condition of \(f(u), b(u) \) and \(a(u) \), we use Young’s inequality to get

Copyright © 2012 SciRes.
Substituting the above estimates, and applying Lemma 2, we get

\[\int_0^t \left(f(u_h) - f(u), \xi \right) dt \leq C \int_0^t \left(\| \eta \|_{L^2}^2 + \| \xi \|_{L^2}^2 + \| \xi_\tau \|_{L^2}^2 \right) dt, \]

\[\int_0^t \left((b(u) - b(u_h)) u_h, \xi \right) dt \leq C \int_0^t \left(\| \eta \|_{L^2}^2 + \| \xi \|_{L^2}^2 + \| \xi_\tau \|_{L^2}^2 \right) dt, \]

\[\int_0^t \left(\left((\alpha(u) - \alpha(u_h)) \right) \theta, \theta \right) dt \leq C \int_0^t \left(\| \theta \|_{L^2}^2 \right) dt. \]

(10)

Substituting the above estimates, and applying Lemma 2, we get

\[\| \xi \|_{L^2}^2 + \| \xi_\tau \|_{L^2}^2 + \| \xi_{\tau \tau} \|_{L^2}^2 \leq C \int_0^t \left(\| \eta \|_{L^2}^2 + \| \xi \|_{L^2}^2 + \| \xi_\tau \|_{L^2}^2 + \| \theta \|_{L^2}^2 \right) dt. \]

(11)

Then adding \(\| \xi \|_{L^2}^2 \) at both sides Equation (11), and noticing that \(\| \xi \|_{L^2}^2 \leq C \int_0^t \| \xi \|_{L^2}^2 dt \), we obtain that

\[\| \xi \|_{L^2}^2 + \| \xi_\tau \|_{L^2}^2 + \| \theta \|_{L^2}^2 \leq Ch^2 \int_0^t \left(\| u \|_{L^2}^2 + \| u_\tau \|_{L^2}^2 + \| u_\tau \|_{L^2}^2 + \| \rho \|_{L^2}^2 \right) dt. \]

Further, using Gronwall’s inequality to yield

\[\| \xi \|_{L^2}^2 + \| \xi_\tau \|_{L^2}^2 + \| \theta \|_{L^2}^2 \leq Ch \left(\int_0^t \left(\| u \|_{L^2}^2 + \| u_\tau \|_{L^2}^2 + \| u_\tau \|_{L^2}^2 + \| \rho \|_{L^2}^2 \right) dt \right)^{1/2}. \]

By the interpolation theory (see [10]), we have

\[\| u \|_{H^1}^2 + \| u_\tau \|_{H^1}^2 \leq Ch \left(\int_0^t \left(\| u \|_{L^2}^2 + \| u_\tau \|_{L^2}^2 + \| u_\tau \|_{L^2}^2 + \| \rho \|_{L^2}^2 \right) dt \right)^{1/2}. \]

Finally, by the triangle inequality, we complete the proof.

REFERENCES

