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Abstract 
 
We study the existence of competitive equilibria when the excess demand function fails to satisfy the stan-
dard boundary behavior. We introduce alternative boundary conditions and we examine their role in proving 
the existence of strictly positive solutions to a system of non-linear equations (competitive equilibium prices). 
In addition, we slightly generalize a well-known theorem on the existence of maximal elements, and we un-
veil the link between the hypothesis of our theorem and one of the boundary conditions introduced in this 
work. 
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1. Introduction 
 
The purpose of this paper is twofold. In general, we 
provide a set of sufficient conditions in order for a sys- 
tem of N non-linear equations in N unknown to possess a 
strictly positive solution. In particular, since we deal with 
excess demand functions (vector fields) defined on suit- 
able price-domains, from the standpoint of Economic 
Theory the natural interpretation of our results is the 
existence of a price-vector that clears every markets that 
are assumed perfectly competitive. In other words, the 
existence of a vector of strictly positive prices such that 
demand equals supply on every market. Such state of the 
economy is called competitive equilibrium. 

Note that the literature about the existence of compe- 
titive equilibria is vast, and a survey of the numerous and 
remarkable contributions would hardly do justice to them. 
So, why yet another paper on the existence of compe- 
titive equilibria? To answer this question, first it is worth 
recalling briefly the established literature. 

Let : N NZ     be a function satisfying the fol- 
lowing properties: 

1) Z is continuous. 
2) ( ) ( )Z p Z p  for all Np   and all 0   

(homogeneity of degree zero). 
3)  for all ( ) 0p Z p  Np   (Walras law) 
4) There exists a s > 0 such that ( )iZ p  

5) If , where p ≠ 0 and pi = 0 for some i, then np  p

    1Max , ,n N nZ p Z p  . 

Recall that any finite-dimensional economy with con- 
tinuous, strictly convex and strictly monotonic prefe- 
rences, and with production sets that are closed, strictly 
convex, bounded above, and such that a strictly-positive 
aggregate consumption bundle is producible from the 
aggregate endowment, gives rise to an aggregate excess 
demand function enjoying the above properties (see, e.g., 
Aliprantis et al. [1], Arrow and Hahn [2], Mas-Colell et 
al. [3]). Notice that property  is the standard bound- 
ary behavior. Clearly, a competitive equilibrium price 
vector is a 

5)

Np
  such that .   = 0Z p

Obviously, with constant returns-to-scale production, 
the production set is neither strictly convex nor bounded 
above. We borrow the formulation of the economy and 
the definition of competitive equilibrium from Geana- 
koplos [4]. 

Specifically, assume that preferences are continuous, 
strictly convex and strictly monotonic. Then, a constant 
returns-to scale economy can be formalized by an agg- 
regate net demand function-technology pair  ,Z Y , 
where : N NZ     and  is a closed and 
convex cone that allows for free disposal. Clearly, we 
must restrict attention to the set of 

NY  

Np   such that 
0pY  , i.e., 0py   for all y Y . One can assume, 

without much loss in generality, that the set of Np   
s  for all 

Np   and all . 1, 2, ,i N 
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such that  is nonempty.1 Under these assump- 
tions, 

0pY 
Z  still satisfies properties 1) through 5) above. A 

competitive equilibrium for a constant returns-to-scale 
production economy can now be defined as a price 

Np  such that  Z p Y  and 0pY  . 
To summarize: if one is dealing with general pro- 

duction economies, then Z  defined above is the (pro- 
duction-inclusive) aggregate excess demand function. If, 
rather, one is dealing with constant returns-to-scale 
economies, then Z  is the aggregate net demand func- 
tion that stems solely from consumers’ preference maxi- 
mization. In either cases, when preferences are con- 
tinuous, strictly convex and strictly monotonic, Z  sati- 
sfies properties 1) through 5) above. 

Now, let us turn to our contribution in this paper: we 
weaken the continuity of the excess demand function, we 
drop the standard boundary behavior (replacing it with 
alternative boundary conditions), and we prove a new 
mathematical theorem which is then utilized to study the 
existence of competitive equilibria. More precisely, fol- 
lowing in Tian’s footsteps [5], we do not assume that the 
aggregate excess demand function is lower semicon- 
tinuous, whereas in the literature the excess demand fun- 
ction is typically continuous (see above). 

Moreover, we address hypothetical economies in 
which the standard boundary behavior of the aggregate 
excess demand function (property 5) above) is not ne- 
cessarily satisfied, and we prove two theorems on the 
existence of competitive equilibria. Indeed, to motivate 
our work, in Section 3 we exhibit two model-economies: 
in the former, the standard boundary behavior fails. In 
the latter, the sufficient conditions for the standard boun- 
dary behavior are violated, and therefore the standard 
boundary behavior may or may not be satisfied. On the 
other hand, it is well-known that, whenever the excess 
demand function is defined on a relatively-open price- 
domain2 (as it is the case in this paper), some sort of 
boundary conditions are needed to demonstrate the exi- 
stence of a zero for such a function. In fact, loosely put, 
proper boundary conditions remedy the lack of compact- 
ness of the price-domain, and thus enable the application 
of specific fixed-point theorems. For these reasons, we 
introduce two alternative boundary conditions and we 
study how they are related to one another. Our alterna- 
tive assumptions on the boundary behavior formalize 
inward-pointing conditions of the aggregate excess de- 
mand function. The former condition is formalized by 
means of the projection mapping (see Section 2), and the 
latter by means of convex combinations. This comes in 
handy because this method of modelling the boundary 
conditions enables us to retain the central idea of the first 

existence theorem in the proof of the second one, which 
thus becomes a variant of the first theorem. Hence, this 
approach offers a somewhat unified framework for two 
seemingly different problems 

Finally, in the context of Hilbert spaces, we prove a 
slight generalization of a theorem on the existence of 
maximal elements due to Yannelis and Prabhakar [6] 
(Theorem 5.1). Interestingly, one of the assumptions in 
our theorem lends itself to be interpreted in terms of 
boundary behavior 1 defined in Section 2. This strong 
analogy enables us to prove again the existence of a stri- 
ctly positive equilibrium price vector as a short corollary 
of our new theorem. 

Clearly, in this work we treat the excess demand fun- 
ction as the primitive of the economy at hand. This may 
be regarded by economists as an unconventional route to 
proving the existence of competitive equilibria. Never- 
theless, the approach we follow, based directly upon the 
excess demand function, is well-suited to highlight the 
mathematical aspects of our contribution. Indeed, in 
Section 4 we shall develop a unifying treatment that can 
handle both general production economies and constant 
returns-to-scale economies. We shall detail the proof of 
the existence of competitive equilibria only for the for- 
mer, since virtually the same method may be used to 
analyze constant returns-to-scale production economies 
as well. 

The lay-out of the paper is as follows: In Section 2, we 
set our notation and we develop some background. Also, 
we introduce two alternative boundary conditions on the 
excess demand function. We also explain how our con- 
ditions relate to the literature we know of, and finally we 
state the main mathematical theorem that will be used in 
this paper. It is a celebrated selection theorem due to 
Michael [7]. In Section 3, we construct two model eco- 
nomies for which the standard boundary behavior of the 
excess demand function is not necessarily satisfied. This 
justifies our interest in proving existence of competitive 
equilibria under alternative boundary conditions. In Sec- 
tion 4, we prove two theorems on the existence of com- 
petitive equilibria or, rather, on the existence of a strictly 
positive solution to a finite system of non-linear equa- 
tions. In the process, we also compare our approach to 
the relevant literature. In subsection 4.1, we prove a 
theorem on the existence of maximal elements for corre- 
spondences3 whose domain is different from the range, 
and domain and range are both subset of a Hilbert space. 
It is a natural generalization of Yannelis and Prabhakar 
[6], and thus it may be interesting in its own right. In 
subsection 4.2 we employ our new theorem to study the 
existence of competitive equilibria. In Section 5 we con- 
clude and we outline a few directions for future research. 

1See [4]. 
2For instance, when the excess demand function stems from consumers 
with strictly-monotonic preferences. 

3Throughout this paper, by correspondence we mean a set-valued func-
tion. 
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2. Background, Notation, and Boundary 

Conditions 
 
Let : N NZ     be the aggregate excess demand 
function of a general production economy. The question 
we are after in this paper is: 

Problem: Does there exist some Np
  such that 

? ( ) = 0Z p

To set the stage for the subsequent analysis, let 
, where 1 is the dimensional = :Np p  1

(1,1, ,1)
= 1

= 1

N 

 Nvector , and let . = :Int p p  1

Also, given any > 0 , let = :p p    1 . 
Finally, given any > 0 , we let  

.  =  for  = : some  p p = 1, 2 ,i N  i

Normalization: Clearly, since we are searching for a 
Np
  such that , by virtue of property 2) 

above we can restrict the domain of 
( ) = 0Z p

Z  to Int . We 
choose this normalization over other admissible ones (for 
example, one might have Z  defined on the intersection 
of the unit sphere with N

 ) because convexity is very 
handy in our proofs. 

Recall that the standard boundary behavior (property 
5)) plays a crucial role in proving the existence of a 
strictly positive vector, , such that  (see, 
e.g., Aliprantis et al. [1], and Mas-Colell et al. [3]). 
When production exhibits constant returns-to-scale, the 
standard boundary behavior of the aggregate net demand 
still comes into play to prove the existence of competi- 
tive equilibria. For details see, for example, Geanakoplos 
[4]. 

p ( ) = 0Z p

For our purposes it will be convenient to use a for- 
mulation of the standard boundary behavior which does 
not involve asymptotic conditions. To this end, the fol- 
lowing result is a straightforward consequence of the 
standard boundary behavior of the excess demand func- 
tion (and of property 4). It is not difficult to prove: 

Proposition 2.1: Let : NZ Int    be a map satis- 
fying properties 4) and 5) listed above. Assume 

that  is such that , with    =1n n
p In

  t np p 

= 0ip  for some i. Then, for any π Int   there exists 
a  such that .  n π ( ) > 0nZ p

As the examples in Section 3 demonstrate, one can 
conceive of an economy for which the standard boundary 
behavior may fail. 

Therefore, we still wish to provide an affirmative 
answer to Problem above, but we have to drop the 
standard boundary behavior hypothesis. To this end, we 
shall now introduce two alternative boundary conditions 
for the aggregate excess demand function, but first we 
need to provide some mathematical background. 

For any > 0 , define the restriction of the (metric) 
projection mapping to , that is  :P .    It is 

known that  is well-defined and continuous, and that P
 π = πP  for all π   (see, e.g., Aliprantis and Bor- 

der [8], pp. 247-249). It’s easy to see that  πP   
for each π \   . We are now ready to introduce: 

Boundary behavior 1: There exists a > 0  such 
that  ( )P p 0p Z   for all . p

Remark 2.1: To the best of our knowledge, the 
projection mapping was introduced in Economics by 
Todd [9] in a general equilibrium model of production 
with activity analysis. It was used also by Kehoe [10]. In 
this paper we utilize the projection function in a different 
manner. Basically, boundary behavior 1 formalizes the 
assumption that the excess demand function is “inward- 
pointing” on  . A different “inward-pointing” condi- 
tion on the excess demand function was introduced by 
Neuefeind [11], and Husseinov [12]. We stress, however, 
that Neuefeind works with continuous excess demand 
functions, whereas in the next section we are able to 
address Problem above without assuming continuity of 
the excess demand function.  

Boundary behavior 2: There exists a > 0  such 
that if π   and , with  π > 0p Z p , then 
there is a 0 < < 1  such that  1 πp     .  

It is logical to investigate the relationship between 
boundary behavior 1 and boundary behavior 2. The next 
theorem, due to Iryna Topolyan4, serves this purpose:  

Theorem 2.1 (Topolyan): If : NZ Int    satisfies 
properties 3) above, and boundary behavior 2, then it 
also satisfies boundary behavior 1.  

Proof: Assume that Z  satisfies boundary behavior 2. 
Let > 0  be such that if π   and  π > 0p Z , 
with p , then there is a 0 < < 1  such that 

 π1p     . Begin by noticing that, by 3), for 
each p 

))
 we have that . We claim 

that 
( (p Z P ))p = 0

( (P p 0p Z   for all . Indeed, suppose, 
by contradiction, that there exists a  such that 

p
p 

( (p Z P p)) > 0  . Then,  must lie in p \   . Put 
π = ( )P p  . By assumption, there exists 0 < < 1  
such that  π1p     . Hence, by definition of 

projection mapping,   π 1p p p      π , but 

the latter inequality implies that 0  , which is im- 
possible. The proof is complete.  

In the proofs presented in Section 4 we shall invoke 
the following selection theorem due to Michael [7], 
(Theorem 3.1’’’):5 

Theorem 2.2 (Michael): Let X be a perfectly normal 

1 pological space, and let Y  be a separable Banach 
space. Let 
T  to

 D Y  be the collection of all nonempty and 
convex subsets of Y which are either finite-dimensional, 

4Personal communication. 
5For our purposes it will suffice to state the theorem as done in Tian 
[5]. 
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or closed, or have an interior point. Suppose that 
: F X D Y  

dence. Then, th
is a lower hemicontinuous correspon- 

ere exists a continuous function 
:f X Y  such that    f x F x  for all x X .  

. Illustrative Examples 

e now present two examples of economies whose 

ple 1: Consider a competitive economy with one 
re

 
3
 
W
excess demand function does not necessarily satisfy pro- 
perty 5). The former example is very simple, admittedly 
artificial, but its virtue is to convey the main ideas. As 
for the latter, we refer the reader to Impicciatore et al. 
[13]. The key ingredient in both models is that not all of 
the goods and services traded affect consumers prefe- 
rences, while agents are endowed with strictly-mono- 
tonic preferences over a subset of commodities and ser- 
vices. 

Exam
presentative consumer and one representative firm. 

There are two commodities. A consumption good, de- 
noted by c, which is produced by the firm with linear 
technology and consumed by the consumer. We let p be 
the price of the consumption good. The second com- 
modity, denoted by x , is a production input, owned by 
the consumer, which is available in fixed and limited 
quantity, say 

 
x . The production input is not produced 

and is supplied by the consumer to the firm. We let w  
be the price of the input production services. T
consumer is endowed with 

 
he 

x  units of the production 
input, but she is not endowed ith the consumption good. 
Consumer’s preferences are represented by the utility 
function :u     which is a function only of the 
consumpt nd is assumed to be strictly in- 
creasing. The production technology is such that 

w

ion good a
x  

units of the production input yield ax  units of th  
consumption good, with > 0a . 

Thus, the firm’s profit- ization p

e

maxim roblem is  
axi- 0ax x pax wx  , and the consumer’s preference m

 can be described as 

 

m
mization problem

( , ) 0max c x u c

. .

=

0  

s t

pc wx

x x

 

It is very easy to see that, if a competitive equilibrium 
pr  ice vector ( , )p w   exists, then we must have 
( , ) 0p w   . So, in equilibrium prices must be strictly 

 is why in Section 4 we will be concerned 
with the existence of strictly positive equilibrium price 
vectors. It is routine matter to check that the consumer’s 

net demand function is:  

positive. This

, = ,
w

Z p w x x
 

 . 
p 

 

for this economy the standard 
e net demand function does not 

ho

Now we show that 
boundary behavior of th

ld. This is why in Section 4 we shall put forward a 
method for proving existence of competitive equilibria 
under alternative boundary conditions of the aggregate 
net demand functions. To see that the standard boundary 
behavior fails, note that in view of Proposition 2.1 above 
it will suffice to exhibit a price vector ˆ ˆ( , ) 0p w   such 
that, for each > 0  with ˆ >p   and ˆ >w  , there 
exists a vector    , = 1 ,p w    satisfying 

 ˆ ˆ, , 0x x


1
p w


 

 
Indeed, simple calculations reveal that, if we take 

  . 

  1 1
ˆ ˆ, = ,

2 2 
p w

 
  , then 

1 1
, , < 0x x

         for any 
2 2 1    

1
0 < <

2
 . 

One might ask what goes wrong in this model, with 
regard to the standard boundary behavior. Basically, in 
this example what causes the standard boundary behavior 
of the net demand function to fail is the presence of a 
non-reproducible input available in fixed quantity. Also, 
consumer’s preferences over both goods are convex, but 
not strictly-convex, and monotonic, but not strictly- 
monotonic (see Section 1). 

Example 2: Another example one might think of, 
deals with a mainstream reformulation of the original 
Walras’ theory of savings and capital accumulation. We 
refer the reader to Impicciatore et al. [13] for the details. 
Here we just sketch informally a few elements of the 
model. 

Time-horizon is finite with two periods, = 0,1t . In 
each period there are C  consumption goods, and J  
labor/leisure services; there are M capital goods, as  
as a consistent number of capital goods’ production 
services. 

There exists a complete array of Arrow-Debreu for- 
ward markets open at = 0t . Consumers purchase capi- 
tal

well

ods i
ec

 goods produced at = 0t  in order to sell their pro- 
duction services at = 1t . We assume that consumers 
have to store capital go n order to supply their ser- 
vices to the production s tor in the next period. 

There is a finite number H  of consumers, indexed 
by = 1, ,h H . We assume that capital goods are not 
consumed, nor do they affect agents’ preferences. Hence, 
consumers’ preferences are defined on the consumption 
set )= J

hX  . Preferences on h
2(C X  are continuous, 

strictly increasing and strictly quasi-concave.  
At = 0t  each consumer is endowed with labor/lei- 

sure services and capital goods. Similarly, at = 1t  each 
consumer is endowed with labor/leisure services. At 

= 0 ces from owned capital goods are inelasti- t  servi
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pplie

 the produc or. 

 feasible qu
tored at vai- 

lable to the pr

or ea

Each consume s a 
bundle of consum tion go r/leisure and capital 
goods that maxim es his u ty. The consum ect 
to

e of equilibria. It h underscori n 
th

cally supplied. Capital goods purchased at  are 
stored for one period; at = 1t  their services are su- 

d to the production sector. 
Since we are concerned with the behavior  the 

aggregate net demand functi e shall omit the forma- 
lization of and the assumptions o

= 0t

 of

tion sect

vices a

e

er is subj

ng that i

on, w
n

ods, labo
tili

is wort

We assume that consumers are endowed with indi- 
vidual storage technologies, formalized as follows: for 
each  1,2, ,h H   and each capital good 

 1, 2, , M  , the storage function :h
m     

maps any antity of the capital good purchased 
and s the quantity of ser

m

 = 0t  
odu

into 
ction sector at = 1t . 

A capacity constraint on the storage technology is in 
place. That is, f ch  1, 2, ,h H   and each  

m  1, 2, , M  , there exists a ˆ > 0h
mk  such that  

ˆ: 0,h h
m mk 
    . 

r takes prices as given, and choos
p

iz
 the storage capacity constraint and the budget con- 

straint. 
The authors then define the notion of virtual aggregate 

net demand function, which is instrumental in proving 
existenc

is model the virtual aggregate net demand function 
may fail to satisfy the standard boundary behavior. To 
see this, note that we may well think of each consumer as 
being equipped with monotonic, and convex preferences 
defined over every goods and services traded in the 
economy. On the other hand, we know from Section 1 
that sufficient conditions for the standard boundary 
behavior are strictly convex and strictly monotonic pre- 
ferences. In other words, the sufficient conditions for the 
standard boundary behavior are violated. Furthermore, 
suppose we are given an arbitrary sequence  πn  of 
strictly positive prices that converges to π 0 , where 
π  belongs to the boundary of N

 . By the capacity 
constraint on storage, the demand for capital goo s is 
bounded above, and one can prove that ast one 

nsumers’ income is finite and positive. In a nutshell, 
these are the reasons why the virtual aggregate net 
demand function does not necessarily satisfy the standard 
boundary behavior. Therefore, as we pointed out above, 
we seek a method to prove existence of equilibria that 
does not hinge on the standard boundary behavior. 

 
4. Main Existence Theorems 

 

d
 leat

co

Su pose we are given a funp ction : NZ Int 
ence
 . In t

 of 
his 

some 
 such that 

ing assumption

section we are concerned with the exist
p Int   ( ) = 0 . Z p

We begin by making the follow : 
Assumption 4.1: : NZ Int    satisfies the Wal- 

hat is ( )p Zras law, t = 0p  for all p Int  . Also, Z  
sa h that 
th

tisfies boundary behavior 1. Moreover, Z is suc
e correspondence  

    
: defined by

π := : π > 0

 

 

U

U p p Z


      (4.1) 

is lower hemicontinuous.6  
Remark 4.1: If : NZ Int  

o see that U
 is low

tinuous, then it’s easy t  is lower 
assumption is weaker than 

as ontinuity of Z.
 4.1 bel

e, the first part of 
ou

nal version of Browder’s selection 
th

er semicon- 
:  

hemicontinuous. Thus, our 
suming lower-semic   
Before we state and prove Theorem ow, let us 

comment on the strategy of the proof, and on the relation 
to the established literature. By and larg

r proof is inspired by Tian [5] and Ewald’s approach 
to proving the basic Ky-Fan theorem (see Ewald [14], 
Lemma 3.6.1, and Theorem 3.6.5). Our proof, though, 
departs from Ewald’s in two significant ways. First of all, 
the correspondences defined in [14] are assumed to have 
open lower sections. In contrast, we posit the assumption 
of lower hemicontinuity (see Assumption 4.1 above) 
because, in general, it is weaker. Moreover, we assume 
lower hemicontinuity to facilitate a comparison with the 
approach followed by Tian [5], and because we believe it 
is a more natural assumptions when dealing with Eco- 
nomic models. 

Secondly, since Ewald deals with correspondences 
with open lower sections, he finds it natural to employ 
the finite-dimensio

eorem. In contrast, we work directly with a lower 
hemicontinuous correspondence, U defined in (4.1), and 
therefore we shall employ Michael’s selection theorem 
(Theorem 2.2 above). Incidentally, Theorem 2.2 above is 
a generalization of the finite-dimensional version of 
Browder’s selection theorem used by Ewald.  

Theorem 4.1: If Assumption 4.1 holds, then there 
exists a π̂   such that  π̂ = 0Z .  

Proof: Clearly, :U    is convex-valued. By 
Walras law we have that  

 π πU for all π           (4.2) 

Put   = π : πW U   . If , then it’s 

easy to see that we are done. So, assume, 
generality, that 

 =W 

without loss in 
 W . Pick an itrary y arb π W . By 

finiti     Now, take de on of , there exists a W  πU . 
any open neighborhood of   in  , say   . 
Clearly,    πU     . Since U is lowe con- 
tinuous, there e ts an open neighb f π  in 

r hemi
xis orhood o  , 

6ε appearing in the definition of the above correspondence is the ε in-
volved in the definition of boundary behavior 1. 
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say  πV  , such that  

 r every π πU V     fo  π  .    (4.3) 

It follow m (4.3) that  πV W . Hence, W  is 
n in 

s fro
ope




, that is 

nuous selection, t

.
 

7 N n 

Th above. Th , admits a conti- 
hat is ther exists a c nuous function 

ext, consider the restrictio of U  to 
W

| :WU W

It should be clear that |WU  meets the conditions of 
eorem 2.2 

 . 

erefore
e 

|WU  
onti

   : such that π π for all π .f W f U W     

Now define a new correspondence :     as 
follows: 

  π if π
π

if π

f W 
W


 

  

Clearly,   
 

is convex and compact valued. We wish 
to prove that   is upper hemicontinu . To this end, 

d graph theorem it will suffice to show that 
ous

by the close

  has clos  graph. To see this, let  ed  π ,n n  be a se- 

quence satisfying  πn n  , for all n , π πn  , and 

n  . We must show that π  er  . So
= 

, we consi
. Sin

d
o cases: 1) If π W , then  π ce tw   is 

closed, it follows that  at once     = π . 2) 
 because π πn   and open in πW :  W  is   (see 

above), there is a h that or all n N . 
Thus, for all n N  we have that 

N  suc πn W  f
   πn n n . 

 by continu
π = f 

Hence, ity of f , we g

 π =lim n
n

f f


Thus,    π = .f   Now,

et 

 = π . 

π  take the composi- 
tion of   with P  ( P  is the projection function de- 
fine n 2), and define the new correspondence d in Sectio

:P    

Since P  is continuous and   is upper hemiconti- 
nuous, P   is upper hemicontinuous. By construction, 

P 
va

 is no
 th

 

. Th

= f

n-empty valued, co -valued and closed- 

en, ion, e, 

nve
ta

x
lued. It en follows from Kaku ni’s fixed point theo- 

rem that there exists a π   such that 

 (π )P  . Now, set   ˆπ = πP  . We claim that 

π̂ W . To see this, assume, by contradiction, that 

π̂ W

π

by construct ˆ= πf . Henc    π̂

   ˆ ˆπ πU , which implies that π   > 0 . 

 π̂ = 
s, 

ˆπ πZ
e preceding inequality contradicts boundary 



But
havi
entails  π̂

 th
or 

p Z

be- 
1. Therefore, π̂ W  an ,  whichd so  U

0  for all p . Thu  π̂ 0Z  , 
and since π̂ 0 , Walras law immediately implies that 

 π̂ = 0Z . The proof i hed.  
Rema  Theorem 4 ould be co o 

Theorem 4.1 and Theorem 6.1 in Tian [5]. Tian relaxes the 
 of lower semicontinuity

s finis
 4.2: Our .1 sh mpared t

 of Z too. However, he 

rk

assumption
assumes that the excess demand function is defined on 
the whole  , and demonstrates the existence of a  
q   such that ( ) 0Z q  . Neuefeind [11] formalizes 
a condition that the excess demand function is 
“inward-po ting” close to the boundary of the p

. His assum oes not require the excess 
demand function to satisfy property 5) above. However, 
Neuefeind assumes that the excess demand function is 
continuous. We dispense with the standard boundary 
condition on the excess demand function too, but unlike 
Neuefeind we relax the assumption of continuity of the 
excess demand function.  

Now, we assume that :

in rice- 
ption dsimplex

NZ Int    satisfies boun- 
dary behavior 2. Specifically: 

Assumption 4.2: : NZ In  satisfies the Wal- t  
ras law, that is   = 0  for p Z p p Int  . Also, all 
Z  satisfies boundary behavior 2. Moreover, Z  is such 

e  that the correspondenc

   π : defined by π := : > 0   U U p p Z  

is lower hemicontinuous.  
Rema

4.1, the fo

sh

rk 4.3: In light of Theorem 2.1, and Theorem 
llowing theorem is obvious, and requires n  

ive a direct proof in order to 
o

proof. However, we will g
ow that our way of proving existence is quite general, 

and can handle different types of boundary conditions. 
Incidentally, in the proof of Theorem 4.2 we will make 
use of a fixed point theorem due to Halpern and Berg- 
man; it is of some interest to observe that, to the best of 
our knowledge, such a theorem has never been used 
before to prove existence of competitive equilibria. 

Theorem 4.2: If Assumption 4.2 holds, then there 
exists a π̂   such that  π̂ = 0Z .  

Proof: The first part of the proof up to the construc- 
tion of the correspondence :     is identical to 
the proo heorem 4.1 tha  is f of T . Recall t :   
defined as follows: 

  π
π

if π

if πf W

W







 

  

Clearly,   is convex and compact valued. Further- 
more,   
Theorem 4.

is u
1).

pper hemicontinuous (see the proof of 
 Now, we will prove that   is inward 

pointing.8 T this end, pick any πo  . If π W , then 
 π =  , and therefore  π π π     for any 
> 0 . On the other hand, if π W , then 

    π = πf , and therefore   o, we  π π > 0f Z . S
7So far we have demonstrated that, if U is lower hemicontinuous, then 

8For the definition of inward pointing correspondence see Aliprantis its domain is open. This is a well-known fact, but we have worked out 
the proof for the sake of completeness. and Border [8], Definition 17.53.
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consider two cases. 1): If π \   , then clearly 

  π πfπ     for so > 0me   small enough. 
2): If π   then, since  f boundary  π πZ

n
> 0 , 

behavior 2 immediately implies the existe ce of a > 0  
such t π .hat  π f π     , Hence   is inward 
pointing fore we have established that . There   meets 
the sufficient conditions of Halpern-Bergman fixed point 
theorem (see Alipra  [8], Theorem 17.54). 
Thus, 

ntis and Border
  has a fixed point.  That is, there exists a 

π̂

9

  such that  ˆ ˆπ π . Now, if π̂ W , then 
     ˆ ˆ ˆ ˆπ π = π πf U  , which contradicts (4.2) above. 

Thus, we must have that π̂ W . Hence, by definition of 
W  and U , we obtain  π̂ 0Zp    for all p , 

 π̂ ther hand, since π̂ 0 , 
Walras law immediately implies that  π̂ = 0Z , as was 
to be proven.  
 
4.1. Some Instrumental Results 
 
We begin this 

and so 0Z  . On the o

section by reminding the reader an open 
which will be used 
6] (Proposition 2). 

graph theorem for correspondences 
later on. It was first proven by Zhou [1

Theorem 4.1.1: Let : NU X   be a correspon- 
dence, where X  is a topological space. Assume that 
U  has convex and open upper sections. Then, U is 
lower h and only if U hemicontinuous if as open graph. 

In the context of Hilbert spaces, we can now prove a 
theorem which is a natural generalization of Theorem 5.1 
in Yannelis and Prabhakar [6]. It is a generalization in 
that we do not require the domain and range of the 
correspondence at hand to be the same. Moreover, in 
place of the first condition in Theorem 5.1 of Yannelis 
and Prabhakar [6], we posit a more general assumption 
(see assumption 1) below). It is more general in the sense 
that it collapses to Yannelis and Prabhakar’s condition 
whenever the domain and range of the correspondence 
coincide. Interestingly, our assumption 1) below bears a 
natural economic interpretation in terms of boundary 
behavior 1 defined in Section 2. Consequently, we shall 
show, in Section 4.2, that our Theorem 4.1.2 can be 
employed to provide another short proof of Theorem 4.1. 

Let   be a Hilbert space, and let X  and Y  be 
non-empty, convex and compact subsets of  , with 
X Y . Let :P Y X  be the (metric) projection 

mapping defined in Section 2. For any subset A  of , 
we denote by conA  the convex-hull of A . 

Theorem 4.1.2: Let :U X Y  be a correspondence 
such that: 1) For each y Y ,  ( )y conU P y ; 2) U  
has open lower sections in X . Then, there exists a  
x̂ X  such that U x

Proof: Assume, by w ining a contradiction, 

that for every 

  ˆ =  .  
ay of obta

x X , . Then, th U x   e corre- 
spondence : X Y  , d ed by  efin  =x conU

ery 
x  

x  in Xfor ev , is co
va

nve valuex- d and nonempty- 
lued. By assumption 2), it’s easy to see that   has 

open lower sectio X.10  Browder selection 
theorem (se  [17]) there exists  
function 

ns in 
rowder

 Hence, by
e B
:

a continuous
f X Y  such that    f x x  for any  

x X . Now, consider the composition of ma ings 
:

pp
f P Y Y . By Brouwer-Schauder-Tychonoff theo- 

rem, :f P Y Y  has a fixed point. That is, there exi- 
sts a y Y   such that 

        =P y P y conU P y   , which con- 

tradic 1). The proof is finished.  
 
4.2. Bound

=y f

ts assumption 

ary Behavior and Existence of 
Maximal Elements  

onsider, again, the correspondence defined in (4.1) 
whose 

exis undary behavior 1. Define 
e auxiliary correspondence 

 

 
C U  
above. Recall that ε therein is the positive number 

tence is guaranteed by bo
th

    : by π := : π > 0    N NU U p p Z  

and let : NS    be defined by  π =S   for every 
π  . Clearly, 

=U U S . 

Assum : : Nption 4.2.1 Z Int   s the Wal- 
ras law and boun behavior 1. Mo

 
re

satisfie
dary over, Z  is such 

:that NU 


Next we show
   is tinuous.

 that T be established as 
a rollary of Theo

sponds to ass  

lower hemicon
heorem 4. can 

  
1 

simple and short co rem 4.1.2. In this 
regard, it is interesting to notice that boundary behavior 1 
corre umption 1) in Theorem 4.1.2.

Corollary 4.2.1: If Assumption 4.2.1 holds, then there 
exists a π̂   such that ˆ(π) = 0Z .  

Proof: By Theorem 4.1.1, : NU    has open 
graph. Obviously, : NS    has open lower sec- 
tions. Thus, =U U S  has open lower sections as well. 
Now, no at boundary r 1 imptice th  be

 exists a π̂

havio
orem 4.1.2. 

lies that 
sa

U  
tisfies assumption 1) of The Hence, by 

Theorem 4.1.2, there   such that 
ˆ(π) =U  . T ˆ(π) 0Zhat is, p    for all p . As in 

the proof of Theorem 4.1, Walras law readily impl  
that ˆ(π) = 0Z . 
 

 
From dp

ies

5. Concluding Remarks  

 the stan oint of applied mathematics, we believe 
at this work is self-contained. From the perspective of 

 be improved and ex- 
th
economic theory, this paper can

9We remark that the existence of a fixed point for γ may be proven also 
by invoking Theorem 4 in Tian [15]. 

10See the proof of Lemma 5.1 in Yannelis and Prabhakar [6]. 
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nded. Let us outline what it would be worth under- 

 D. Aliprantis, D. J. Brown and O. Burkinshaw, “Exis-
tence and Optimality of Competitive Equilibria,” Spri

990. doi:10.1007/978-3-642-61521-4

te
taking for future research. First of all, one should in- 
vestigate the relationship between the standard boundary 
behavior and our boundary behavior 1. Secondly, if it 
turns out that neither of them implies the other, or that 
the standard boundary behavior implies our boundary be- 
havior 1, then it would be interesting to construct rele- 
vant economic models for which the standard boundary 
behavior does not hold, but our boundary conditions are 
satisfied by the excess demand function of the model 
itself. 
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