No Degeneracy of the Ground State for the Impact Parameter Model

Héctor C. Merino1, Juan Héctor Arredondo2

1Universidad Autónoma de Guerrero, Unidad Academica de Matemáticas, Chilpancingo, México
2Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Distrito Federal, México

E-mail: mech@xanum.uam.mx, iva@xanum.uam.mx

Received May 25, 2011; revised July 6, 2011; accepted July 13, 2011

Abstract

A time dependent Hamiltonian associated to the impact parameter model for the scattering of a light particle and two heavy ones is considered. Existence and non degeneracy of the ground state is shown.

Keywords: Impact Parameter Model, Non Degeneracy of the Ground State

1. Introduction

In \cite{1,2}, the impact parameter model for the scattering of two heavy particles and a light one is studied, where it is assumed that the heavy particles are infinitely massive and that their motion along a classical trajectory is not affected by the light particle. Also, rigorous proof from first principles of the validity of Massey’s criterion is given \cite{1,3}.

The above mentioned results were proved for a simple Hamiltonian, by means of an adiabatic argumentation. Now we study a more complicated one than in \cite{1}, where a precise knowledge of the discrete spectrum of the corresponding Hamiltonian was needed.

A physical ground state is a state of minimal energy, and therefore it has a relevant role in quantum theories. See for instance \cite{4-17}.

In this work we prove non degeneracy of the ground state for the Hamiltonian

\[H(t) = -\frac{1}{2} \Delta - \lambda_1 V_1 - \mu_1 V_2 - \lambda_2 V_{1,\rho} - \mu_2 V_{2,\rho}, \]

defined as an operator in the Hilbert space $L^2(\mathbb{R}^n)$ of all complex valued Lebesgue measurable square integrable functions on \mathbb{R}^n, with domain $H^2(\mathbb{R}^n)$, the Sobolev space of order two \cite{18}. Δ is the Laplace operator \cite{11}.

with derivatives in the distribution sense, and, $\lambda_1, \lambda_2, \mu_1, \mu_2$ are positive constants. Also, for $k=1,2$, we will take the potentials V_k of rank one:

\[V_k \phi = (g_k, \phi) g_k, \quad \forall \phi \in L^2(\mathbb{R}^n), \]

with g_1, g_2 fixed elements in $L^2(\mathbb{R}^n)$. Here (\cdot, \cdot) denotes the scalar product in $L^2(\mathbb{R}^n)$, antilinear on the factor on the left. Moreover,

\[V_{x,\rho} \phi = (g_{x,\rho}, \phi) g_{x,\rho}, \quad g_{x,\rho} (x) := g_x (x - \rho(t)), \]

$\rho(t)$ being a continuous function on \mathbb{R} with values in \mathbb{R}^n satisfying $\rho(0) = 0 \in \mathbb{R}^n$ and

\[\lim_{\|x\| \to \infty} (\rho(t)) = \infty. \]

We denote by $^\wedge$ the Fourier transform \cite{19}, as an unitary operator in $L^2(\mathbb{R}^n)$:

\[\hat{g} (p) = \lim_{K \to \infty} \int_{|x| \leq K} e^{ipx} g(x) dx, \quad g \in L^2(\mathbb{R}^n), \]

where the limit is taken in the L^2-norm.

2. Main Theorem

From Weyl’s theorem \cite{16}, one knows that for each $t \in \mathbb{R}$, $H(t)$ is a self-adjoint operator with discrete spectrum in $(-\infty, 0)$. The eigenvector corresponding to the infimum of the spectrum of $H(t)$ is called the
ground state for $H(t)$. The following theorem was proved in [20].

Theorem 2.1. For $i = 1, 2$, let $g_i \in L^2(\mathbb{R}^n)$ and \dot{g}_i nonnegative functions obeying $|p|\dot{g}_i \in L^2(\mathbb{R})$. Moreover, we suppose the constants λ_i, μ_i in Equation (1) satisfy

$$\lambda_i > \mu_i + \mu_2 > \mu_1 > \lambda_2 > \mu_2 > 0.$$

such that $0 < E_0(2) < E_1$ and $0 < E_{\lambda_1} < E_{\lambda_2}$. Here $-E_1, -E_0(2), -E_{\lambda_2},$ and $-E_{\mu_2}$ are the ground state eigenvalues associated to

$$\frac{1}{2} \Delta - \lambda_i V_1, - \frac{1}{2} \Delta - (\mu_i + \mu_2) V_2,$$

respectively. Then the following statements are valid:

1) The eigenvalue $-E_0$, corresponding to the ground state for the operator

$$H(0) = - \frac{1}{2} \Delta - (\lambda_1 + \lambda_2) V_1 - (\mu_1 + \mu_2) V_2,$$

and the eigenvalue $-E_\alpha$, corresponding to the ground state for the operator

$$H(\pm \alpha) = - \frac{1}{2} \Delta - \lambda_i V_1 - \mu V_2,$$

are strictly negative and the inequality $-E_0 < -E_\alpha$ holds.

2) The eigenvalue $-E(t)$, corresponding to the ground state for $H(t)$ for all $t \in \mathbb{R}$ lies in the interval $[-E_0, -E_\alpha]$.

3) In the interval $(-E_\alpha, -E_1)$ there are no eigenvalues of $H(t)$ for every $t \in \mathbb{R}$.

We mention that for a given function $0 \neq g \in L^2(\mathbb{R}^n)$, one can find a sufficiently large positive constant α_0 such that the operator

$$- \frac{1}{2} \Delta - \alpha (g, \cdot) g$$

has a (unique) negative eigenvalue $-E_\alpha$ for $\alpha \geq \alpha_0$. In fact, $-E_\alpha$ is a negative eigenvalue iff [1]

$$\frac{1}{\alpha} \left(\frac{\dot{g}}{|p|^2 + E} \right)^{1/2} = 0,$$

where we denote $p^2 := |p|^2$. Note also that for a given g the right hand side of (5) is a monotone decreasing function of E. Therefore, given functions $g_i \in L^2(\mathbb{R}^n)$ one can find constants $\lambda_i, \mu_i (i = 1, 2)$ large enough for the hypotheses of the theorem to hold.

We will prove in this manuscript that under the hypotheses of theorem 2.1, for $t \in \mathbb{R}$ the ground state of $H(t)$ is not degenerate.

Let $-E(t)$ be the ground state eigenvalue of the time dependent operator given by Equation (1). We define

$$\Theta(p) := \frac{p^2}{2} + E(t)$$

and

$$a_\mu = \left(\frac{\dot{g}}{\Theta(p)} \right)^2; \quad d_\mu = \left(\frac{\dot{g}_2}{\Theta(p)} \right)^2$$

for $i = 1, 2$. (6)

Moreover,

$$a_{\mu} = -\left(\dot{g}_i, \Theta^{-1} \dot{g}_{1,\mu} \right),$$

$$b_{\mu} = -\left(\dot{g}_i, \Theta^{-1} \dot{g}_{2,\mu} \right),$$

$$d_{\mu} = -\left(\dot{g}_{2,\rho}, \Theta^{-1} \dot{g}_{1,\rho} \right)$$

(7)

Lemma 2.1. Let $-E(t)$ be the ground state eigenvalue of the time dependent operator $H(t)$ given by Equation (1). Then, the matrix equation

$$M = \begin{pmatrix} x \\ y \end{pmatrix} = 0 \in \mathbb{R}^n,$$

has a nontrivial solution. Furthermore

$$\det(D) = \det \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix} > 0 \quad (\forall t \in \mathbb{R}).$$

Proof: Let $\psi(t)$ the eigenvector for $H(t)$ with respective eigenvalue $-E(t)$, then the Fourier transform of $\psi(t)$ is given by

$$\hat{\psi}(t) = \lambda_1 (g_1, \psi) \hat{g}_1(\Theta(p)) + \lambda_2 (g_{1,\rho}, \psi) \hat{g}_{1,\rho}(\Theta(p))$$

$$+ \mu_1 (g_2, \psi) \hat{g}_2(\Theta(p)) + \mu_2 (g_{2,\rho}, \psi) \hat{g}_{2,\rho}(\Theta(p)),$$

(9)

where $\Theta(p) := \frac{p^2}{2} + E(t)$. The Plancherel theorem implies that $(u, v) = (\hat{u}, \hat{v}) \forall u, v \in L^2(\mathbb{R}^n)$. Taking inner products in (9) with \hat{g}_i and $\hat{g}_{1,\rho}$ for $i = 1, 2$, we get
\[
\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 (\hat{g}_1, \hat{\psi}) \\ \lambda_2 (\hat{g}_1, \hat{\psi}) \end{pmatrix} \\
\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \mu_1 (\hat{g}_2, \hat{\psi}) \\ \mu_2 (\hat{g}_2, \hat{\psi}) \end{pmatrix}
\]

(11)

From Theorem 2.1 we deduce the existence of a non-trivial solution to Equation (8).

Now we fix \(E > 0 \). For every \(t \in \mathbb{R} \) let us consider the function,

\[
R_E(t) = \left(\frac{1}{\mu_1} - \frac{\hat{g}_2}{(p^2 + E)^{1/2}} \right) \left(\frac{1}{\mu_2} - \frac{\hat{g}^*_2}{(p^2 + E)^{1/2}} \right)
\]

and observe that for \(E_0(2) < E \),

\[
H(0) = \frac{1}{2} \Delta - (\lambda_1 + \lambda_2) V_1 - (\mu_1 + \mu_2) V_2
\]

is not degenerate.

Proof: Lemma (2.1) assures that \(D^{-1} \) exists. Equation (8) implies,

\[
y = -D^{-1}Bx, \quad (A - B^T D^{-1} B) x = 0.
\]

We take \(C := A - B^T D^{-1} B \), so that,

\[
C = \begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix}
\]

where
\[c_{11} = a_{11} - \frac{\left(b_{12}d_{22} - 2b_1b_2d_{12} + b_{21}d_{11}\right)}{\det D}, \]
\[c_{12} = a_{12} - \frac{\left(b_1b_2d_{22} + b_1b_2d_{11} - b_2^2d_{12} - b_2b_{12}d_{12}\right)}{\det D}, \]
\[c_{22} = a_{22} - \frac{\left(b_1^2d_{11} - 2b_1b_2d_{12} + b_{21}^2d_{22}\right)}{\det D}. \]

From Theorem 2.1, we know that there exists a non-trivial solution to system (8). Thus \(\det C = 0 \). Accordingly,
\[C = \begin{pmatrix} c_{11} & c_{12} \\ k_{c_{11}} & k_{c_{12}} \end{pmatrix}, \] (15)
for some constant \(k = k(t) \). Moreover, for \(t = 0 \) the matrix \(C = C(t) \) is not null. In fact, for this value of \(t \), the following terms simplify
\[a_{12} = -\left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_1, \]
\[d_{12} = -\left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2, \]
\[b_{11} = b_{12} = b_{11} = -\left(\frac{p^2}{2} + E_0\right)^{-1} \hat{g}_2. \]

It follows that,
\[c_{12} = a_{12} - \frac{b_{11}^2 (d_{11} + d_{22}) - 2d_{12} b_{11}}{\det D} = -\left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_1 \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_1, \]
\[\left(\hat{g}_1, \hat{g}_2 \right) \left(\frac{p^2}{2} + E_0\right)^{-1} \hat{g}_2 \left(\frac{p^2}{2} + E_0\right)^{-1} \hat{g}_2 \right) \]
\[\frac{\mu_1 + \mu_2 - 2}{\mu_1 \mu_2} \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \right) \]
\[\left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \right)^2 \frac{\mu_1 + \mu_2 - 2}{\mu_1 \mu_2} \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \right) \]
\[\left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \right)^2 \frac{\mu_1 + \mu_2 - 2}{\mu_1 \mu_2} \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \right) \]
\[\left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \right)^2 \frac{\mu_1 + \mu_2 - 2}{\mu_1 \mu_2} \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \left(\frac{p^2}{2} + E_0\right)^{-1/2} \hat{g}_2 \right) \]
\[< 0, \] (16)
where we use equation (5), the hypothesis \(E_0(2) < E_1 \) and statement (3) of theorem 2.1. Therefore,

Equations (11)-(16) imply,
\[\mu_i \left(\hat{g}_2, \hat{\psi}\right) = \left(\frac{b_1b_2d_{22} - b_1d_{12} + c_{11}b_1d_{22} - b_2b_{12}d_{12}}{\det D} \right) x_i \]
\[\mu_j \left(\hat{g}_2, \hat{\psi}\right) = \left(\frac{b_1d_{12} - b_2d_{11} + c_{11}b_{12}d_{11} - b_2b_{12}d_{12}}{\det D} \right) x_i \] (17)

Substitution of these equalities in Equation (9) gives,
\[\hat{\psi}(0) = x_i \left(\frac{\hat{g}_2 + k_1 \hat{g}_{1,\rho}}{\frac{p^2}{2} + E_0} \right) \]
\[+ k_2 \left(\frac{\hat{g}_2 + k_1 \hat{g}_{1,\rho}}{\frac{p^2}{2} + E_0} \right). \] (18)

Here,
\[k_1 = -\frac{c_{11}}{c_{12}} \]
\[k_2 = \frac{\left(c_{12}b_2d_{12} + c_1b_1d_{12}\right) - \left(c_{12}b_2d_{12} + c_1b_1d_{22}\right)}{c_{12} \det D} \]
\[k_3 = \frac{\left(c_{12}b_1d_{11} + c_1b_2d_{11}\right) - \left(c_{12}b_1d_{11} + c_1b_2d_{22}\right)}{c_{12} \det D}. \] (19)

This determines the vector \(\hat{\psi}(0) \) up to a multiplicatively constant, and from the Plancherel theorem, also the eigenspace associated to the ground state for \(H(0) \), proving the statement of the lemma. \(\square \)

Theorem 2.2. Let \(H(t) \) be defined by Equation (1) and suppose the hypotheses of theorem 2.1 hold true. Moreover, we take the curve \(\rho : \mathbb{R} \to \mathbb{R}^n \) so that \(\rho(t) = a + vt, \ \forall |t| \leq M, \) for some positive constant \(M \) and fixed vectors \(a, v \in \mathbb{R}^n \). Then the dimension of the spectral projection onto the interval \([-E_0, -E_\alpha] \), associated with the selfadjoint operator \(H(t) \), is equal to one for each \(t \in \mathbb{R} \).

Proof: The resolvent \(R(A) \) of a self-adjoint operator \(A \) at \(t \in \mathbb{C} \) is defined by \((iI - A)^{-1} \) with \(I \) denoting the identity operator on \(L^2(\mathbb{R}^n) \). We take \(H_t = H(t_1) \), \(H_1 = H(t_1) \), for two distinct values \(t_1 \) and \(t_2 \) and calculate the difference \(R(H_2) - R(H_1) \).

\[R(H_2) - R(H_1) = \left[(iI - H_2^{-1}) - (iI - H_1^{-1}) \right] R(H_1) \]
\[= \lambda_2 R(H_2) \left[V_{1,\rho} - V_{2,\rho} \right] R(H_1) \]
\[+ \mu_2 R(H_2) \left[V_{2,\rho} - V_{1,\rho} \right] R(H_1) \] (20)
Here $V_{1,\rho}$ is given as in Equation (3) with $g_{i,\rho}(x) = g_i(x - \rho(t))$ replaced with $g_{1,\rho}(x) = g_1(x - \rho(t_1))$. Also $V_{1,\rho}, V_{2,\rho^1}, \text{ and } V_{2,\rho^2}$ being defined similarly. It follows from Equation (1) and standard arguments that

$$\| R(\lambda_1) - R(\lambda_2) \| \leq \| Y(t_2) - t_1 \|,$$

where Y is a constant uniform in $t_1, t_2 \in \mathbb{R}/\mathbb{Z}$. Depending on $\| \lambda_1 \|_\ell$ and $\| \lambda_2 \|_\ell$, $\ell = 1, 2$. This implies that $R(\lambda(t))$ is uniformly continuous on \mathbb{R} with respect to the norm topology. Let $P_\lambda(B)$ denote the spectral projection of a self-adjoint operator B corresponding to the Borel set $S \subseteq \mathbb{R}$. By functional calculus, we get

$$P_{\lambda_2} - P_{\lambda_1} \in \mathcal{L}(H(t_2)) \rightarrow P_{\lambda_2} - P_{\lambda_1} \in \mathcal{L}(H(t_1))$$

as $t_2 \rightarrow t_1$ in the operator norm. Therefore, by standard arguments

$$\dim P_{\lambda_2} - \dim P_{\lambda_1} \leq 1$$

For t_2 close enough to t_1. It follows from Lemma 2.2 that

$$\dim P_{\lambda_2} - \dim P_{\lambda_1} = 1 \quad (\forall t \in \mathbb{R}).$$

Remark: We mention that the hypothesis for the curve $\rho(t)$ can be relaxed to the condition that $\rho(t)$ is asymptotic to a straight line.

3. References

