Strong Convergence of an Iterative Method for Generalized Mixed Equilibrium Problems and Fixed Point Problems

Lijun Chen, Jianhua Huang*
Institute of Mathematics and Computer, Fuzhou University, Fuzhou, China
E-mail: chenlijun861010@163.com, *fjhjh57@yahoo.com.cn
Received April 24, 2011; revised July 4, 2011; accepted July 11, 2011

Abstract

In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of a finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.

Keywords: Generalized Mixed Equilibrium Problem, Hybrid Iterative Scheme, Fixed Point, Nonexpansive Mapping, Strong Convergence

1. Introduction

Equilibrium problems theory provides us with a natural, novel and unified framework for studying a wide class of problems arising in economics, finance, transportation, network and structural analysis, elasticity and optimization. The ideas and techniques of this theory are being used in a variety of diverse areas and proved to be productive and innovative.

Let \(H \) be a Hilbert space with inner product \(\langle \cdot, \cdot \rangle \) and norm \(\| \cdot \| \). Let \(C \) be a nonempty closed convex subset of \(H \) and \(T : C \to 2^H \) a multivalued mapping. Let \(\phi : C \times C \to \mathbb{R} \) be a real-valued function and \(\Theta : H \times C \times C \to \mathbb{R} \) be an equilibrium-like function, i.e., \(\Theta(w,u,v) + \Theta(w,v,u) = 0 \) for each \((w,u,v) \in H \times C \times C \). The generalized mixed equilibrium problem (for short, GMEP) is to find \(u \in C \) and \(w \in T(u) \) such that

\[
\Theta(T(u),u,v) + \phi(v,u) - \phi(u,u) \geq 0, \quad \forall v \in C.
\]

In particular, if \(T \) is single-valued mapping, this problem is equivalent to finding \(u \in C \) such that

\[
\Theta(T(u),u,v) + \phi(v,u) - \phi(u,u) \geq 0, \quad \forall v \in C.
\]

Denote the set of solutions of GMEP by \(\Omega \).

Now, we recall the following definitions.

A mapping \(f : C \to C \) is said to be contractive if there exists a constant \(\alpha \in (0,1) \) such that

\[
\| f(x) - f(y) \| \leq \alpha \| x - y \| \quad \text{for any} \quad x, y \in C.
\]

A mapping \(g : C \to C \) is said to be firmly nonexpansive if

\[
\| g(x) - g(y) \| \leq \frac{1}{2} \| x - y \| \quad \text{for any} \quad x, y \in C.
\]

A mapping \(T : C \to C \) is said to be nonexpansive if

\[
\| Tx - Ty \| \leq \| x - y \| \quad \text{for any} \quad x, y \in C.
\]

The set of fixed points of \(T \) is denoted by \(F(T) \).

Let \(\{T_i\}_{i=1}^N \) be a finite family of nonexpansive mappings of \(C \) into \(H \) and \(\bigcap_{i=1}^N F(T_i) \neq \emptyset \). Define the mappings

\[
U_{n,1} = \lambda_{n,1} T_1 + (1 - \lambda_{n,1}) I, \\
U_{n,2} = \lambda_{n,2} T_2 U_{n,1} + (1 - \lambda_{n,2}) I, \\
\vdots \\
U_{n,N} = \lambda_{n,N} T_N U_{n,N-1} + (1 - \lambda_{n,N}) I
\]

where \(\{\lambda_{n,i}\}_{i=1}^N \subseteq (0,1) \) for all \(n \geq 1 \). Such a mapping \(W_n \) is called \(W \)-mapping generated by \(T_1, \cdots, T_N \) and \(\{\lambda_{n,i}\}_{i=1}^N \).

2. Preliminaries

Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Then, for any \(x \in H \), there exists a unique nearest point in \(C \), denoted by \(P_C(x) \), such that

\[
\| x - P_C(x) \| \leq \| x - y \| \quad \text{for all} \quad y \in C.
\]

Such a \(P_C \) is called the metric projection.
of H into C. We know that P_C is nonexpansive. What's more,
\[x^* = P_C(x) \Leftrightarrow \{x-x^*, x^*-y\} \geq 0, \forall y \in C. \]

Let C be a convex subset of a real Hilbert space H, $\eta : C \times C \rightarrow H$ and $k : C \rightarrow R$ a Frechet differential function. Then k is said to be η-strongly convex if there exists a constant $\mu > 0$ such that
\[k(y) - k(x) - (k'(x), \eta(y,x)) \geq \frac{\mu}{2} \|y-x\|^2, \forall x, y \in C. \]

If $\mu = 0$, then k is said to be η-convex. In particular, if $\eta(y,x) = y - x$ for all $y, x \in C$, then k is said to be strongly convex.

Let C be a nonempty subset of a real Hilbert space H. A bifunction $\phi(\cdot, \cdot) : C \times C \rightarrow R$ is said to be skew-symmetric if
\[\phi(u,v) + \phi(v,u) - \phi(u,u) - \phi(v,v) \leq 0, \forall u, v \in C. \]

It is easy to see that if the skew-symmetric bifunction $\phi(\cdot, \cdot)$ is linear in both arguments, then
\[\phi(u,v) \geq 0, \forall u \in C. \]

We denote \rightharpoonup for weak convergence and \rightarrow for strong convergence. A bifunction $\phi : C \times C \rightarrow R$ is called weakly sequentially continuous at $(x_n, y_n) \in C \times C$ if $\phi(x_n, y_n) \rightarrow \phi(x_0, y_0)$ as $n \rightarrow \infty$ for each sequence $\{(x_n, y_n)\}$ in $C \times C$ converging weakly to (x_0, y_0).

The function $\phi(\cdot, \cdot)$ is called weakly sequentially continuous on $C \times C$ if it is weakly sequentially continuous at each point of $C \times C$.

Let $CB(X)$ denote the set of nonempty closed bounded subset of X. For $A, B \in CB(X)$, define the Hausdorff metric h as follows:
\[h(A, B) = \max \{\sup_{a \in A} \inf_{b \in B} d(a, b), \inf_{b \in B} \sup_{a \in A} d(a, b)\}. \]

In order to solve the generalized mixed equilibrium problems for an equilibrium-like bifunction $\Theta : H \times C \times C \rightarrow R$, we assume that Θ satisfies the following conditions with respect to the multivalued mapping $T : C \rightarrow 2^H$:

- For each fixed $v \in C$, $(w, u) \mapsto \Theta(w, u, v)$ is an upper semicontinuous function from $H \times C$ to R, that is, $w_n \rightarrow w$ and $u_n \rightarrow u$ imply $\limsup_{n \rightarrow \infty} \Theta(w_n, u_n, v) \leq \Theta(w, u, v)$;
- (Θ_2) for each fixed $(w, v) \in H \times C$, $u \mapsto \Theta(w, u, v)$ is a concave function;
- (Θ_4) for each fixed $(w, u) \in H \times C$, $v \mapsto \Theta(w, u, v)$ is a convex function;
- (Θ_4) $\Theta(w_1, T_1(x), T_2(y)) + \Theta(w_2, T_2(y), T_1(x)) \leq \gamma \|T_1(x) - T_2(y)\|^2$

for all $x, y \in C$ and $r, s \in (0, \infty)$, where $r > 0$, $w_1 \in T(x)$ and $w_2 \in T(y)$.

Let $k : C \rightarrow R$ be a differential function with Frechet derivative $k'(x)$ at x satisfying the following:

- (k_1) k' is continuous from the weak topology to the strong topology;
- (k_2) k' is Lipschitz continuous with constant $\nu > 0$.

Let $\eta : C \times C \rightarrow H$ be a function satisfying the following:

- (η_1) $\eta(x, y) + \eta(y, x) = 0$ for all $x, y \in C$;
- (η_2) $\eta(\cdot, \cdot)$ is affine in the first coordinate variable;
- (η_3) for each fixed $y \in C$, $\eta(x, y)$ is sequentially continuous from the weak topology to the weak topology.

Let C be a nonempty closed convex subset of a real Hilbert space and $T : C \rightarrow 2^H$ a multivalued mapping. For $x \in C$, let $w \in T(x)$. Let $\phi : C \rightarrow R$ be a real-valued function satisfying the following:

- (ϕ_1) $\phi(\cdot, \cdot)$ is skew symmetric;
- (ϕ_2) for each fixed $y \in C$, $\phi(\cdot, y)$ is convex and upper semicontinuous;
- (ϕ_3) $\phi(\cdot, \cdot)$ is weakly continuous on $C \times C$.

Recently Wei-You Zeng, Nan-Jing Huang and Chang-Wen Zhao [1] introduce and consider a new class of equilibrium problems, which is known as the generalized mixed equilibrium problems. Furthermore, they introduce an iterative scheme (1.4) by the viscosity approximation method for finding a common element of the set of common solutions for generalized mixed equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings in Hilbert space.
Motivated and inspired by the research going on in this important field, we introduce the following hybrid iterative scheme (1.5) for finding a common element of the set of common solutions for generalized mixed equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings. We show that the approximation solution converges strongly to a unique solution of a class of variational inequalities under some mild conditions. Results obtained in this paper can be viewed as an improvement and refinement of the recent results in this direction.

Algorithm 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H, $T : C \to CB(H)$ be a multivalued mapping, f be a contraction of C into itself with coefficient $\alpha \in (0,1)$. Let $W_n : C \to C$ be defined by (1.3), and $r > 0$. For given $x_1 \in C$ and $w_i \in T(x_i)$, there exists sequences $\{x_n\}, \{u_n\}$ in C and $\{w_n : w_n \in T(x_n)\}$ in H such that for all $n = 1, 2, \cdots$

\[
\begin{align*}
\left\|w_n - w_{n+1}\right\| & \leq \left(1 + \frac{1}{n}\right)h(T(x_n), T(x_{n+1})), \\
\Theta(w_n, u_n, v) + \phi(v, u_n) - \phi(u_n, u_n) + \frac{1}{r}(k'(u) - k'(x_n), \eta(v, u_n)) & \geq 0, \forall v \in C
\end{align*}
\]

(2.2)

where $\{a_n\}, \{b_n\}$ and $\{c_n\}$ are three sequences in $(0, 1)$ such that $a_n + b_n + c_n = 1$.

It is easy to see that the iterative scheme (1.5) may be well defined.

Let r be a positive number. For a given point $x \in C$ and $w_n \in T(x)$, consider the following auxiliary problem for GMEP: find $u \in C$ such that

\[
\begin{align*}
\Theta(w_n, u, v) + \phi(v, u) - \phi(u, u) + \frac{1}{r}(k'(u) - k'(x), \eta(v, u)) & \geq 0, \forall v \in C,
\end{align*}
\]

(2.3)

It is easy to see that if $u = x$, then u is a solution of GMEP.

Then there hold the following:
1) the auxiliary problem (1.6) has a unique solution;
2) T_r is single-valued;
3) if $\lambda \nu / \mu \leq 1$, it follows that T_r is firmly nonexpansive;
4) $F(T_r) = \Omega$;
5) Ω is closed and convex.

Lemma 1.2. [3] Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\{T_{n,r}\}$ be a finite family of nonexpansive mappings of C into H and $\bigcap_{n=1}^{N} F(T_n) \neq \emptyset$, and let $\{\lambda_{n,i}\}_{i=1}^{N}$ be a sequence in $(0, b]$ for some $b \in (0, 1)$. Then,

\[
F(W_n) = \bigcap_{n=1}^{N} F(T_n).
\]

Lemma 1.3. [4] If the sequences $\{u_n\}$ and $\{x_n\}$ are bounded and W_n is defined by (1.3), then the following estimates hold:

\[
\left\|W_n x_{n+1} - W_n u_n\right\| \leq \left\|x_{n+1} - x_n\right\| + 2M \sum_{i=1}^{N} \left|\lambda_{n+1,i} - \lambda_{n,i}\right|, \quad \forall n \geq 0
\]

and

\[
\left\|W_n u_{n+1} - W_n x_n\right\| \leq \left\|u_{n+1} - x_n\right\| + 2M \sum_{i=1}^{N} \left|\lambda_{n+1,i} - \lambda_{n,i}\right|, \quad \forall n \geq 0
\]
for some constant \(M > 0 \).

Lemma 14. [4] In a real Hilbert space \(H \), \(\forall x, y, z \in H \) and \(t_1, t_2, t_3 \in [0,1] \) with \(t_1 + t_2 + t_3 = 1 \), there holds the following equality:

\[\|x + t_2y + t_3z\| \leq t_1\|x\| + t_2\|y\| + t_3\|z\| \]

Lemma 15. [6] Let \(\{x_n\} \) and \(\{u_n\} \) be bounded sequences in a Banach space \(X \) and let \(\{b_n\} \) be a sequence in \([0,1]\) with \(0 < \liminf_{n \to \infty} b_n \leq \limsup_{n \to \infty} b_n < 1 \). Suppose

\[x_{n+1} = (1-b_n)x_n + b_nu_n \]

for all integers \(n \geq 0 \) and

\[\limsup_{n \to \infty} \left(\|x_{n+1} - x_n\| - \|x_{n+1} - x\| \right) \leq 0. \]

Then,

\[\lim_{n \to \infty} \|x_n - x\| = 0. \]

Lemma 16. [5] Let \(\{a_n\} \) is a sequence of nonnegative real numbers such that

\[a_{n+1} \leq (1-\delta_n)a_n + b_n, \quad \forall n = 1,2,\ldots \]

where \(\{\delta_n\} \) is a sequence in \((0,1), \sum_{n=1}^{\infty} \delta_n = \infty \) and \(\limsup_{n \to \infty} b_n/\delta_n \leq 0 \), then \(\lim_{n \to \infty} a_n = 0 \).

Lemma 17. [2] Let \(\{x_n\} \) be a sequence in a normed space \((X,\|\cdot\|)\) such that

\[\|x_{n+1} - x_{n}\| \leq \theta \|x_n - x_{n-1}\| + r_n, \forall n = 1,2,\ldots \]

where \(\theta \in (0,1) \), \(\{s_n\} \) and \(\{r_n\} \) are sequences satisfying the following conditions:

1) \(s_n \geq 1 \) and \(\sum_{n=1}^{\infty} (s_n - 1) < \infty \);
2) \(r_n \geq 0 \) and \(\sum_{n=1}^{\infty} r_n < \infty \).

Then \(\{x_n\} \) is a Cauchy sequence.

Lemma 18. [7] Let \(A, B \in CB(X) \) and \(a \in A \). Then for \(\rho > 1 \), there must exist a point \(b \in B \) such that \(d(a,b) \leq \rho d(A,B) \).

Lemma 19. [5] In a real Hilbert space \(H \), there holds the following equality:

\[\|x+y\| \geq \|x\| + 2\{y, x+y\}, \forall x, y \in H. \]

3. Main Results

Theorem 21. Let \(C \) be a nonempty closed convex bounded subset of a real Hilbert space \(H \) and \(r > 0 \), \(T : C \to CB(H) \) be a multivalued \(h \)-Lipschitz continuous mapping with constant \(L > 0 \), and let \(\phi : C \times C \to R \) be a real-valued function satisfying \((\phi_1) \cdot (\phi_2) \) and \(\Theta : H \times C \times C \to R \) be an equilibrium-like function satisfying the conditions \((\Theta_1) \cdot (\Theta_2) \). Assume that \(\eta : C \times C \to H \) is a Lipschitz function with lipschitz constant \(\lambda > 0 \) which satisfies the conditions \((\eta_1) \cdot (\eta_2) \). Let \(k : C \to R \) be an \(\eta \)-strongly convex function with constant \(\mu > 0 \) which satisfies the conditions \((k_1) \cdot (k_2) \) with \(\lambda + \mu \leq 1 \). Let \(\{T_n\}_{n=1}^{\infty} \) be a finite family of nonexpansive mappings on \(H \) such that \(\bigcap_{n=1}^{\infty} F(T_n) \cap \Omega \neq \emptyset \). Let \(f \) be a contraction of \(C \) into itself with coefficient \(\alpha \in (0,1) \). Let \(\{x_n\}, \{u_n\}, \{w_n\} \) be sequences generated by (1.5), where \(\{a_n\}, \{b_n\} \) and \(\{c_n\} \) are three sequences in \((0,1)\) with \(a_n + b_n + c_n = 1 \) satisfying the following conditions:

1) \(\lim_{n \to \infty} a_n = 0, \sum_{n=1}^{\infty} a_n = \infty \) and
2) \(0 < \liminf_{n \to \infty} b_n \leq \limsup_{n \to \infty} b_n < 1; \)
3) \(\lim_{n \to \infty} \|\lambda_{n+1} - \lambda_n\| = 0; \)
4) \(\sum_{n=1}^{\infty} c_n = \infty \).

Then

1) \(\lim_{n \to \infty} \|x_n - u_n\| = 0, \lim_{n \to \infty} \|x_n - x_{n-1}\| = 0; \)
2) \(\lim_{n \to \infty} \|x_n - W_n^\alpha\| = 0, \lim_{n \to \infty} \|x_n - u_n\| = 0. \)
and set \(z_n = \frac{x_n - b_n x_n}{1 - b_n} \), we obtain

\[
\begin{align*}
 z_{n+1} - z_n &= \frac{x_{n+1} - b_n x_{n+1}}{1 - b_n} - \frac{x_n - b_n x_n}{1 - b_n} \\
 &= \frac{a_{n+1}}{1 - b_{n+1}} f(W_{n+1}x_{n+1}) + \frac{a_n}{1 - b_n} f(W_n x_n) - \frac{a_n}{1 - b_n} f(W_n x_n) \\
 &= \frac{c_{n+1}}{1 - b_{n+1}} (W_{n+1}u_{n+1} - W_n u_n) + \frac{c_n}{1 - b_n} W_n u_n \\
 &= \frac{c_{n+1}}{1 - b_{n+1}} (W_{n+1}u_{n+1} - W_n u_n) + \frac{c_n}{1 - b_n} W_n u_n
\end{align*}
\]

By Lemma 1.3, we arrive at

\[
\begin{align*}
 \|z_{n+1} - z_n\| &\leq \frac{\alpha_{n+1}}{1 - b_{n+1}} \|f(W_{n+1}x_{n+1}) - f(W_n x_n)\| + \frac{\alpha_n}{1 - b_n} \left(\|f(W_n x_n)\| + \|W_n u_n\|\right) \\
 &\quad + \frac{\alpha_n}{1 - b_n} \left(\|f(W_n x_n)\| + \|W_n u_n\|\right) \\
 &\quad + \frac{\alpha_{n+1}}{1 - b_{n+1}} \left(\|W_{n+1}u_{n+1} - W_n u_n\| + \sum_{i=1}^{N} \lambda_{n+1,i} - \lambda_{n,i}\right) \\
 &\quad + \frac{\alpha_n}{1 - b_n} \left(\|W_n u_n\| + \sum_{i=1}^{N} \lambda_{n+1,i} - \lambda_{n,i}\right) \\
 &\leq \frac{\alpha_{n+1}}{1 - b_{n+1}} \|x_{n+1} - x_n\| + 2M \sum_{i=1}^{N} \lambda_{n+1,i} - \lambda_{n,i} \\
 &\quad + \frac{\alpha_n}{1 - b_n} \left(\|f(W_n x_n)\| + \|W_n u_n\|\right) + 2M \sum_{i=1}^{N} \lambda_{n+1,i} - \lambda_{n,i} \\
 &\quad \leq \|x_{n+1} - x_n\| + \frac{\alpha_n}{1 - b_n} \left(\|f(W_n x_n)\| + \|W_n u_n\|\right) + 2M \sum_{i=1}^{N} \lambda_{n+1,i} - \lambda_{n,i}
\end{align*}
\]

It follows from conditions (a) and (c), we have

\[
\limsup_{n \to \infty} (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \leq 0.
\]

Hence by Lemma 1.5, we can see that

\[
\lim_{n \to \infty} \|z_n - x_n\| = 0
\]

Consequently

\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = \lim_{n \to \infty} (1 - b_n) \|z_n - x_n\| = 0
\]

From (2.1), we get

\[
\lim_{n \to \infty} \|u_{n+1} - u_n\| = 0
\]

2) In view of (1.5), we conclude that

\[
\begin{align*}
 \|x_n - W_n u_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - W_n u_n\| \\
 &\leq \|x_n - x_{n+1}\| + \alpha_n \|f(W_n x_n) - W_n u_n\| \\
 &\quad + \beta_n \|x_n - W_n u_n\|
\end{align*}
\]

that is

\[
\|x_n - W_n u_n\| \leq \|x_n - x_{n+1}\| + \alpha_n \|f(W_n x_n) - W_n u_n\| \\
 + \beta_n \|x_n - W_n u_n\|
\]

For \(p \in \Gamma = \cap_{i=1}^{N} F(T_i) \cap \Omega \), note that \(T_i \) is firmly nonexpansive, we can see that

\[
\|u_n - p\| \leq \|T_i x_n - p\| \leq \langle T_i x_n - T_i p, x_n - p \rangle \\
 = \langle u_n - p, x_n - p \rangle \\
 = \frac{1}{2} \left(\|u_n - p\|^2 + \|x_n - p\|^2 - \|x_n - x_n\|^2 \right)
\]

and so

\[
\|u_n - p\|^2 \leq \|x_n - p\|^2 - \|x_n - x_n\|^2 \leq \|x_n - p\|^2
\]

In view of Lemma 1.4, (2.6) and (2.7), we compute
which follows that
\[c_n \|x_n - u_n\| \leq (\|x_n - p\| + \|x_{n+1} - p\|)(\|x_n - x_n\|) + a_n \|f(W_{x_n}) - p\| \]
and hence
\[\lim_{n \to \infty} \|x_n - u_n\| = 0 \]

This completes the proof.

Proof of Theorem 2.1. We divide our proof into 3 steps.

Step 1. We prove that there exists \(x^* \in C \), such that \(x_n \to x^* \), \(u_n \to x^* \) and \(w_n \to w \) as \(n \to \infty \), where \(w \in T(x^*) \). From (1.5), (2.1) and Lemma 1.3, we compute

By Lemma 1.7 and conditions (a)-(d), we conclude that \(\{x_n\} \) is a Cauchy sequence in \(C \) such that \(\lim_{n \to \infty} x_n = x^* \). On the other hand, \(\lim_{n \to \infty} \|x_n - u_n\| = 0 \) implies that \(\lim_{n \to \infty} u_n = x^* \). From (1.5), we have

\[\|w_n - w_m\| \leq \left(1 + \frac{1}{n} \right) h(T(x_n), T(x_{n+1})) \]

Hence
\[\sum_{i=n}^{m-1} \|x_i - x_{i+1}\| \leq \frac{\theta}{1 - \theta} \|x_n - x_{n+1}\| + \sum_{i=n}^{m-1} r_i \]

In view of (2.4) and (2.8), we obtain
\[\lim_{m \to \infty} \|w_m - w_n\| = 0 \]

which implies that \(\{w_n\} \) is a Cauchy sequence in \(H \) and therefore there exists an element \(w \) in \(H \) such that \(\lim_{n \to \infty} w_n = w \). Next we can see that

\[d \left(w, T(x^*) \right) = \inf_{b \in T(x^*)} d \left(w, b \right) \leq \|w - w_n\| + d \left(w, T(x^*) \right) \]

Hence, we derive that \(d \left(w, T(x^*) \right) = 0 \), that is
w ∈ T (x') as T (x') ∈ CB (H).

Step 2. Let Q = P_T (T (x')) f. Then Q is a contraction of C into itself. In fact, for all x, y ∈ C

\[\| Q (x) - Q (y) \| ≤ \| f (x) - f (y) \| ≤ \alpha \| x - y \| \]

Therefore there exists a unique element q ∈ C such that q = Q (q). Noting that q ∈ C and Q(q) ∈ ∩_i=1^n F (T_i) ∩ Ω, we get that q ∈ ∩_i=1^n F (T_i) ∩ Ω.

Then

\[\langle f (q) - q, p - q \rangle ≤ 0, \quad \forall p ∈ ∩_i=1^n F (T_i) ∩ Ω \]

(3.13)

Next, we show that x' ∈ ∩_i=1^n F (T_i) ∩ Ω. Since x_n → x' and u_n → x', we know that k'(u_n) − k'(x_n) → 0. From (1.5) and (2.7), we have

\[Θ (w, x', v) + φ (v, x') - φ (x', x') ≥ 0 \]

that is x' ∈ Ω. We shall show x' ∈ F (W_n). Assume

\[x' ∈ F (W_n), \text{ that is } x' ≠ W_n x'. \]

Since \{u_n\} is bounded, there exists a subsequence \{u_{n_j}\} of \{u_n\} which converges weakly to x'. By Lemma 2.1, we conclude that \[\| W_n u_n - u \| → 0. \]

From Opial’s condition, we have

\[\liminf_{j → ∞} \| u_{n_j} - x \| < \liminf_{j → ∞} \| u_{n_j} - W_n x' \| \]

\[≤ \liminf_{j → ∞} \| u_{n_j} - W_n u_{n_j} + \| W_n u_{n_j} - W_n x' \| \]

\[≤ \liminf_{j → ∞} \| u_{n_j} - x' \| \]

This is a contradiction. So, we get

\[\lim_{n → ∞} (f (q) - q, x_n - q) = (f (q) - q, x_n - q) ≤ 0 \]

(3.14)

By Lemma 1.9, (1.5) and (2.7), we compute

\[\| x_{n+1} - q \| ≤ \frac{1 - a_n}{1 - a_n} \| x_n - q \| + \frac{a_n}{1 - a_n} \| q - x_n \| \]

Hence

\[\| x_{n+1} - q \| ≤ \frac{1 - a_n^2}{1 - a_n} \| x_n - q \| + \frac{a_n}{1 - a_n} \| q - x_n \| + \frac{2a_n}{1 - a_n} \| (f (q) - q, x_{n+1} - q) \| \]

\[≤ \left(1 - \frac{1 - a_n^2}{1 - a_n} \right) \| x_n - q \| + \frac{a_n}{1 - a_n} \| q - x_n \| + \frac{2a_n}{1 - a_n} \| (f (q) - q, x_{n+1} - q) \| \]

\[≤ \left(1 - \frac{1 - a_n^2}{1 - a_n} \right) \| x_n - q \| + \frac{a_n}{1 - a_n} \| q - x_n \| + \frac{2a_n}{1 - a_n} \| (f (q) - q, x_{n+1} - q) \| \]

where \(M_i = \sup \{ \| x_n - q \| : n ≥ 1 \} \), \(δ_n = \frac{2a_n}{1 - a_n} \), and \(σ_n = \frac{a_n M_i}{2 (1 - α)} + \frac{1}{1 - a_n} \]

It is easy to see that \(δ_n → 0, \sum_1^∞ δ_n = ∞, \) and \(\limsup_{n → ∞} σ_n ≤ 0. \) Hence, by Lemma 1.6, the sequence \{x_n\} converges strongly to q. Consequently, we can obtain that \{u_n\} also converges strongly to q, and so x' = q. This completes the proof.

Putting T,x = x for all i ≥ 1 in Theorem 2.1, we obtain

Corollary 2.1. Let C be a nonempty closed convex bounded subset of a real Hilbert space H,

\[T : C → CB (H) \]

be a multivalued h-Lipschitz continuous mapping with constant L > 0, and let \(φ : C × C → R \) be a real-valued function satisfying \((φ) - (φ) \) and \(Θ : H × C × C → R \) be an equilibrium-like function satisfying the conditions \((Θ) - (Θ) \) and \(Ω ≠ \emptyset. \) Assume that \(η : C × C → H \) is a Lipschitz function with lipschitz constant λ > 0 which satisfies the conditions \((η) - (η) \). Let k : C → R be an η-strongly convex function with constant μ > 0 which satisfies the conditions \((k) - (k) \) and \(λ + μ ≤ 1. \) Let F be a contraction of C into itself with coefficient \(α < 0, 1). \) Then the sequences \{x_n\}, \{u_n\}, and \{w_n\} generated iteratively by
converge strongly to $x^* \in \Omega$, and $\{w_n\}$ converges strongly
to $w^* \in T(x^*)$, where $x^* = P_\Omega f(x^*)$, and $\{a_n\}$, $\{b_n\}$
and $\{c_n\}$ are sequences in $(0, 1)$ with $a_n + b_n + c_n = 1$, and
$r > 0$ satisfying the following conditions:
1) $\lim_{n \to \infty} a_n = 0$, $\sum_{n=1}^{\infty} a_n = \infty$ and
$\sum_{n=1}^{\infty} |a_{n+1} - a_n| < \infty$;
2) $0 < \liminf_{n \to \infty} b_n \leq \limsup_{n \to \infty} b_n < 1$ and
$\sum_{n=1}^{\infty} |b_{n+1} - b_n| < \infty$;
3) $\sum_{n=1}^{\infty} |c_{n+1} - c_n| < \infty$.

4. References

