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Abstract 
 
In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for 
solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting non- 
linear ODEs from the nonlinear PDEs using the wave transformation. Also, we use a transformation related 
to those integration constants. Some examples are considered to find their exact solutions such as KdV- 
Burgers class and Fisher, Boussinesq and Klein-Gordon equations. Moreover, we discuss the geometric in-
terpretations of the resulting exact solutions. 
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1. Introduction 
 
The importance of nonlinear partial differential equations 
(PDEs) appears in describing the nonlinear phenomena 
in various fields of sciences. Many powerful methods 
have been developed to find the exact solutions of non- 
linear PDEs, among them inverse scattering method [1], 
Hirota bilinear form [2], Painlevé analysis [3], direct 
algebraic method [4], tanh-function method [5,6] and it’s 
extensions [7-9] and the sine-cosine method [10,11]. 

Herman et al. [12] introduced a general physical 
approach to solitary wave construction from linear 
solutions and obtained many exact solution of nonlinear 
PDEs using the direct algebraic method [4]. 

In this paper, we introduce a similar technique to [12] 
using the tanh-function method to obtain exact solutions 
for nonlinear evolution and wave equations. The first 
step in the tanh-function method is using an independent 
variable to turn the nonlinear PDEs into other nonlinear 
ordinary differential equations (ODEs) which may or 
may not be integrable and neglecting the integration con- 
stants in case of integrable ODEs. Here, we add integra- 
tion constants in the resulting integrable nonlinear ODEs. 
Also, we use a new transformation in which we express 
the solution function as a sum of another independent 
function and a constant which are determined later. By 
means of this modification, we get the exact solutions in 
which a free constant appears which for some values 
gives the solutions of the tanh-function method. When 

the resulting nonlinear ODEs is non integrable, we use 
the transformation only to get the same exact solutions of 
the tanh-function method. 

 
2. Expanding the Tanh-Function Method for 

Solving Nonlinear Equations 
 

The tanh-function method, pioneered by Malfliet [5,6], is 
a common powerful method for solving nonlinear equa- 
tions. Here, we introduce a modification of the tanh- 
function method through the following: 

Consider the nonlinear evolution and wave equations 
in the forms 

( ) ( ), , , , = 0, , , , , = 0,t x xx tt x xxP u u u u P u u u u   (1) 

respectively. Introducing the wave transformation 

( ) ( ) ( ), = , = ,u x t U k x tξ ξ ω−         (2) 

to change (1) into a nonlinear ODE 

( ), , , , = 0,O U U U U′ ′′ ′′′
             (3) 

where > 0k  is the wave number and ω  is the 
travelling wave velocity. 

Assuming (3) is integrated with respect to ξ  as many 
times as possible without neglecting the integration 
constants. For the evolution equations the maximum 
number of integration is 1 and for the wave equations is 
2. For reasons that will be explained below, we only 
leave the integration constant of the last integration. 
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To obtain the exact solitary wave solution, possibly 
having a determined constant term 1c , we introduce the 
transformation 

1= .U cφ +              (4) 

Substituting (4) into (3) and setting the constant part 
equals to zero in the resulting nonlinear ODE in φ  
assuming that the function φ  and its derivatives have 
the following asymptotic values, 

( ) as ,φ ξ φ ξ±→ → ±∞        (5) 

and for 1n ≥  

( )( ) 0 as ,nφ ξ ξ→ → ±∞        (6) 

where the superscripts denotes differentiation to the 
order n , with respect to ξ , also we assume that φ±  
satisfies the algebraic equation in φ , then we get the 
values of 1c . 

Applying the tanh-function method by introducing the 
new independent variable = tanhY ξ  which leads to the 
change of derivatives in the forms 

( )

( ) ( )

2

2 2
2 2

2 2

d d= 1 ,
d d

d d d= 1 2 1 ,
dd d

Y
Y

Y Y Y
Y Y

ξ

ξ

−

 
− − + − 

 


  (7) 

and using the finite expansion 

( ) ( )
=0

= = ,
m

n
n

n
S Y a Yφ ξ ∑         (8) 

where m  is a positive integer determined by the balan- 
cing procedure in the resulting nonlinear ODE in S . 
Thus, we have an algebraic system of equations from 
which the constants ( ), , = 0, ,nk a n mω   are obtained 
and determine the function φ , hence we get the exact 
solutions of (1). 

Now, we obtain exact solutions for some examples of 
nonlinear evolution and wave equations using the 
suggested method. 
 
3. KdV-Burgers Class 
 
Consider the KdV-Burgers class in the form 

= 0,t x xx xxxu uu u uα β γ+ + +           (9) 

where ,α β  and γ  are real constants. The class (9) 
gives the Burgers equation and the KdV equation at 

= 0γ  and = 0β  respectively. 
 
3.1. Burgers Equation 
 
Consider the Burgers equation in the form 

= 0.t x xxu uu uα β+ +              (10) 

Using (2), for = 1k , to change (10) into the following 
nonlinear ODE 

= 0.U UU Uω α β′ ′ ′′− + +      (11) 

Integrating (11) once to get a new nonlinear ODE in 
the form 

2
1

1 = 0,
2

U U U c Cω α β ′− + + +      (12) 

where 1c C  is the integration constant. 
Introducing (4) into (12), we have 

( ) 2
1 1 1

1 1 = 0.
2 2

c c c Cα ω φ αφ βφ α ω ′− + + + + − 
 

 (13) 

Using the conditions (5), (6) and that φ±  satisfies the 
algebraic equation 

( ) 2
1

1 = 0,
2

cα ω φ αφ± ±− +             (14) 

then the constant term in (13) equals to zero, 

1 1
1 = 0.
2

c c Cα ω + − 
 

            (15) 

Then we have the following two cases according to the 
values of 1c . 

Case (1). 1 = 0 :c  
Using (8), in this case we have 

( )2 21 d1 = 0.
2 d

SS S Y
Y

ω α β− + + −       (16) 

Applying the tanh-function method by balancing the 

nonlinear term 2S  with the derivative term d
d

S
Y

, we 

get = 1m , and using (8) we have 

( ) ( ) 0 1= = .S Y a a Yφ ξ +      (17) 

Substituting (17) into (16), we obtain 

( ) ( ) ( )2 2
0 1 0 1 1

1 1 = 0.
2

a a Y a a Y a Yω α β− + + + + −  (18) 

Setting zero all the coefficients of ( )= 0,1,2nY n , we 
get the algebraic system of equations 

2
0 0 1

1 0 1

2
1 1

1 = 0,
2

= 0,
1 = 0.
2

a a a

a a a

a a

ω α β

ω α

α β

− + +

− +

−

      (19) 

From which we have 

0 1
2 2= , = , = 2 .a aβ β ω β
α α

± ±    (20) 

Using (4), we get the exact solutions of the tanh- 
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function method in the form [13] 

( )1,2
2 2= tanh 2 ,u x tβ β β
α α

± +      (21) 

these solutions represent 2-dimensional surfaces in the 
Monge form as shown in Figure 1 for = = 1α β . 

Case (2). ( )1
2= :c Cω
α

−  

Using the same way as in Case (1), we obtain the 
exact solutions in the form 

( )( )1,2
2 2 2= tanh 2 2 .Cu x C tβ β β

α α
+ −



   (22) 

These relations represent surfaces whose Gaussian 
curvature K  and mean curvature H  are given by (23) 

Thus the solutions (22) represent a family of parabolic 
surfaces ( )= 0, 0K H ≠ , and a family of planes 
( )= 0K H =  at ( )= 2 2x C tβ  as shown in Figure 2 
for = 0, 1, = = 1C α β± ; when = 0C , we get the 
solutions (21). 

 
3.2. KdV Equation 
 
Consider the KdV equation in the form 

= 0.t x xxxu uu uα γ+ +         (24) 

Using (2), for = 1k , to change (24) into a nonlinear 
ODE, then integrating once, we obtain 

2
1

1 = 0,
2

U U U c Cω α γ ′′− + + +      (25) 

where 1c C  is the integration constant. 
Introducing (4) into (25), we get 

( ) 2
1 1 1

1 1 = 0.
2 2

c c c Cα ω φ αφ γφ α ω ′′− + + + + − 
 

 (26) 

Using the conditions (5), (6) and (14), we get (15), 
hence we obtain the following two cases according to the 

values of 1c . 
Case (1). 1 = 0 :c  
In this case, we get the exact solutions of the tanh- 

function method in the forms [14] 

( )

( )

2
1

2
2

4 12= 4 ,tanh

12 12= 4 ,tanh

u x t

u x t

γ γ γ
α α
γ γ γ
α α

− +

− −
    (27) 

these solutions represent 2-dimensional surfaces in the 
Monge form as shown in Figure 3 for = = 1.α γ  

Case (2). ( )1
2= :c Cω
α

−  

In this Case, we have the exact solutions in the forms 

( )( )

( )( )

2
1

2
2

2 4 12= 2 4 ,tanh

2 12 12= 2 4 .tanh

Cu x C t

Cu x C t

γ γ γ
α α

γ γ γ
α α

+
− − −

+
− − +

  (28) 

These relations represent surfaces whose Gaussian 
curvature K  and mean curvature H  are given by (29) 

Thus the solutions (28) represent a family of parabolic 
surfaces ( )= 0, 0K H ≠ , and a family of planes 
( )= 0K H =  at ( ) ( )1= 2 4 2coshx C t −+  as shown in 
Figure 4 for = 0, 1, = = 1C α γ ; when = 0C , we get 
the solutions (27). 
 
3.3. KdV-Burgers Equation 
 
Consider the KdV-Burgers equation in the form: 

= 0.t x xx xxxu uu u uα β γ+ + +      (30) 

Using (2) to change (30) into a nonlinear ODE, then 
integrating once 

2 2
1

1 = 0,
2

' ''
U U kU k U c Cω α β γ− + + + +    (31) 

 

( ) ( )( ) ( )( )

( ) ( )( )( )
( )

1,2

2 2 2 2

1,2 3
2 2 2 2 4 2

1,2 1,2

= 0,

2 1 4 8 4 sech 2 2 tanh 2 2
= ,

4 1 4 8 4 sech 2 2

= = 0 at = 2 2 .

K

C C x C t x C t
H

C C x C t

K H x C t

α β β β β β

α β β β β

β

− + − + − −

+ + − + −

 





           (23) 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )( )
( ) ( )

1,2

2 2 2 4

1,2 3
2 2 2 2 4 2

1
1,2 1,2

= 0,

12 1 4 16 16 sech 2 4 2 cosh 2 4
= ,

576 1 4 16 16 sech 2 4 tanh 2 4

= = 0 at = 2 4 2 .cosh

K

C C x C t x C t
H

C C x C t x C t

K H x C t

α β γ γ γ γ

α β γ γ γ γ
−

+ + − − + −

+ + + − −

+

  

  



    (29) 
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Figure 1. u1 and u2 in (21). 

 

 
Figure 2. u1 and u2 in (22). 

 

 
Figure 3. u1 and u2 in (27). 

 

 
Figure 4. u1 and u2 in (28). 
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where 1c C  is the integration constant. 

Introducing (4) into (31) we have 

( ) 2 2
1

1 1

1
2

1 = 0.
2

c k k

c c C

α ω φ αφ β φ γ φ

α ω

′ ′′− + + +

 + + − 
 

    (32) 

Using the conditions (5), (6) and (14), we get (15), 
then we get the following two cases according to the 
values of 1c . 

Case (1). 1 = 0 :c  
In this case, we get the exact solutions of the tanh- 

function method in the forms [13] 
2

2 2

1

2
2 2 2

2

3 6= 1 tanh ,
25 10 25

12 3 6= 1 tanh ,
25 25 10 25

u x t

u x t

β β β
αγ γ γ

β β β β
αγ αγ γ γ

   
− − +        

   
− − −        

 (33) 

these solutions represent 2-dimensional surfaces in the 
Monge form as shown in Figure 5 for = = = 1.α β γ  

Case (2). ( )1
2= :c Cω
α

−  

In this case, we have the exact solutions in the forms 
2

2 2

1

2

2

2
2 2

2 3 6 50= 1 tanh ,
25 10 25

2 12=
25

3 6 501 tanh .
25 10 25

C Cu x t

Cu

Cx t

β β β γ
α αγ γ γ

β
α αγ

β β β γ
αγ γ γ

   − +
− − −        

+

   +
− − −        

 

(34) 
These relations represent surfaces whose Gaussian 

curvature K  and mean curvature H  are given by (35) 
where 1 2, ,a a k  and ω  are given in (34), thus the 
solutions (34) represent a family of parabolic surfaces 
( )= 0, 0K H ≠ , and a family of planes ( )= 0K H =  at 

( )11= 3 4sinh
2

x t
k

ω −+ −  as shown in Figure 6 for 

 

= 0,1, = = 1C α γ ; when = 0C , we get the solutions 
(33). 
 
4. Fisher Equation 
 
Consider the Fisher equation 

( )1 = 0.t xxu u u u− − −      (36) 

Using (2) to change (36) into the nonlinear ODE 

( )2 1 = 0.kU k U u uω ′ ′′− − − −     (37) 

Introducing (4) into (37), we get 

( ) ( )2 2
1 1 12 1 1 = 0.k k c c cω φ φ φ φ′ ′′− − + − + + −  (38) 

Using conditions (5), (6) and that φ±  satisfies the 
algebraic equation 

( ) 2
12 1 = 0,c φ φ± ±− +           (39) 

then the constant term in (38) equals to zero 

( )1 1 1 = 0.c c −             (40) 

Then we have the following two cases according to the 
values of 1c . 

Case (1). 1 = 0 :c  
In this case, we get the exact solutions of the tanh- 

function method in the form [14] 
2

1,2
1 1 5= 1 tanh ,
4 2 6 6

u x t
   
± ±         

   (41) 

these solutions are plotted as shown in Figure 7 for 
= = 1.α β  
Case (2). 1 = 1:c  
In this case, we get the same exact solutions (41). 

 
5. Boussinesq Equation 

 
Consider the Boussinesq equation in the form 

( )2 = 0.tt xx xxxxxx
u u u uα β− + +     (42) 

Using (2), for = 1k , to change (42) into the nonlinear 
ODE, we get 

( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )( )
( )

1,2

2 2 4
2 2 1

1,2 3
2 22 2 6

1 2

1
1,2 1,2

= 0,

1 sech 4 2 cosh 2 sinh
= ,

2 1 1 sech cosh 2 sinh

1= = 0at = 3 4 ,sinh
2

K

k k x t a a k x t a k x t
H

k k x t a k x t a k x t

K H x t
k

ω ω ω ω

ω ω ω ω

ω −

− + − − + − + −

 + + − − + − 
 

+ −

         (35) 
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Figure 5. u1 and u2 in (33). 

 

 
Figure 6. u1 and u2 in (34). 

 

 
Figure 7. u1 and u2 in (41). 

 

( ) ( )2 21 = 0.U U Uω α β′′′ ′′′′− + +    (43) 

Integrating twice and leave the integration constant of 
the last integration, we have 

( )2 2
11 = 0.U U U c Cω α β ′′− + + +    (44) 

Introducing (4) into (44), we obtain 

( ) ( )2 2 2
1 1 12 1 1 = 0.c c c Cα ω φ αφ βφ α ω′′+ − + + + + + −  

(45) 
Using the conditions (5), (6) and that φ±  satisfies the 

algebraic equation 

( )2 2
12 1 = 0,cα ω φ αφ± ±+ − +      (46) 

then the constant term in (45) equals to zero 

( )2
1 1 1 = 0.c c Cα ω+ + −         (47) 

Then we have the following two cases according to the 
values of 1c . 

Case (1). 1 = 0c : 
In this case, we get the exact solutions of the tanh- 

function method in the forms [15] 

2
1,2

2
3,4

2 6= 1 4 ,tanh

6 6= 1 4 ,tanh

u x t

u x t

β β β
α α
β β β
α α

 − ± + 

 − ± − 

     (48) 

these solutions represent 2-dimensional surfaces in the 
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Monge form as shown in Figure 8 for = 1, = 1.α β ±  
Case (2). ( )2

1
1= 1c Cω
α

− − : 

In this case, we get the exact solutions in the forms 

( )
( )

2
1,2

2
3,4

2 6= 1 4 2 ,tanh

6 6= 1 4 2 .tanh

Cu x Ct

Cu x Ct

β β β
α α

β β β
α α

+
− ± + −

+
− ± − −

  (49) 

These relations represent surfaces whose Gaussian 
curvature K and mean curvature H are given by (50)(51). 
then the solutions (49) represent a family of parabolic 
surfaces ( )= 0, 0K H ≠ , and a family of planes  
( )= = 0K H  at 

( )11= 1 4 2 2cosh
2

x Ctβ −− − + , 

( )11= 1 4 2 2cosh
2

x Ctβ −+ − +  as shown in Figure 9 

for = 0,1C  and = 1, = 1α β ± ; and when = 0C , we 
get the solutions (48). 
 
6. Klein-Gordon Equation 
 
Consider the Klein-Gordon equation in the form 

3 = 0.tt xxu u u uα β γ− + +      (52) 
Using(2) to change (52) into the nonlinear ODE 

( )2 2 3 = 0.k U U Uω α β γ′′− + +    (53) 

Introducing (4) into (53) 

( ) ( )
( )

2 2 2 2
1 1

3 2
1 1

3 3

= 0.

k c c

c c

ω α φ β γ φ γ φ

γφ β γ

′′− + + +

+ + +
   (54) 

Using the conditions (5), (6) and that φ±  satisfies the 
 

algebraic equation 

( )2 2 3
1 13 3 = 0,c cβ γ φ γ φ γφ± ± ±+ + +    (55) 

then the constant term in (54) equals to zero 

( )2
1 1 = 0.c cβ γ+          (56) 

Then we have the following two cases according to the 
values of 1c . 

Case (1). 1 = 0c : 
In this case, we obtain the solutions of the tanh- 

function method in the form [7] 

( )

( )

1,2 2

2

= tanh ,
2( )

> 0.
2

u x tβ β ω
γ ω α

β
ω α

 
± − −  − 

−

   (57) 

these solutions are plotted as shown in Figure 10 for 
= = = 1α β γ−  and = 2.ω  

Case (2). 1 = :c β
γ

± −  

In this case, we get the same exact solutions (57). 
 

7. Conclusions 
 
In this paper, we introduced a new technique, by adding 
an integration constant and a new transformation (4) then 
using the tanh-function method, to obtain exact solitary 
wave solutions in case of the nonlinear evolution and 
wave equations that turn into nonlinear integrable ODEs 
using the wave transformation (2). 

By this technique, we obtained exact solutions of the 
Burgers equation in (22), the KdV equation in (28), the  

( ) ( )( )( ) ( )( )
( ) ( )( ) ( )( )( )

( )

1,2

2 4

1,2 3
22 2 4 2

1
1,2 1,2

= 0,

12 2 1 2 cosh 2 1 4 2 sech 2 1 4 2
= ,

1152 1 2 sech 2 1 4 2 2 1 4 2tanh

1= = 0 at = 1 4 2 2 ,cosh2

K

C x Ct x Ct
H

C x Ct x Ct

K H x Ct

α β β β β

α β β β β

β −

+ − − + ± + − ± + −

+ + − + − + −

− − +

 



       (50) 

( ) ( )( )( ) ( )( )
( ) ( )( ) ( )( )( )

( )

3,4

2 4

3,4 3
22 2 4 2

1
3,4 3,4

= 0,

12 2 1 2 cosh 2 1 4 2 sech 2 1 4 2
= ,

1152 1 2 sech 2 1 4 2 2 1 4 2tanh

1= = 0 at = 1 4 2 2 ,cosh2

K

C x Ct x Ct
H

C x Ct x Ct

K H x Ct

α β β β β

α β β β β

β −

− − + − + ± − − ± − −

+ − + ± − − ± − −

+ − +

      (51) 
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Figure 8. u1 and u2 in (48). 

 

 
Figure 9. u1 and u2 in (49). 

 

 
Figure 10. u1 and u2 in (57). 

 
KdV-Burgers equation in (34) and the Boussinesq equation 
in (49) which all give the exact solutions obtained before 
by the tanh-function method as a special cases [13-15]. 
Moreover, we discussed the geometric interpretations of 
the resulting exact solutions. 

Also, we get the same exact solutions by using (4) 
then using the tanh-function method. In case of the 
nonlinear evolution and wave equations that turn into 
nonlinear non integrable ODEs using (2), Fisher and 
Klein-Gordon equations are considered to illustrate our 
technique. 

The presented technique can be applied to obtain exact 
solutions for many nonlinear evolution and wave equa- 

tions. 
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