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Abstract

One of the important problems of stochastic process theory is to define the Laplace transforms for the distri-
bution of semi-markov random processes. With this purpose, we will investigate the semi-markov random
processes with positive tendency and negative jump in this article. The first passage of the zero level of the
process will be included as a random variable. The Laplace transforms for the distribution of this random
variable is defined. The parameters of the distribution will be calculated on the basis of the final results.
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1. Introduction

There are number of works devoted to definition of the
Laplace transforms for the distribution of the first pas-
sage of the zero level. (Borovkov 2004) [1] defined the
explicit form of the distribution, while (Klimov 1996) [2]
and (Lotov V. L) [3] indicated implicit form of the dis-
tribution of the first passage of zero level. The presented
work explicitly defines the Laplace transforms for the
unconditional and conditional distribution of the
semi-markov random processes with positive tendency
and negative jump.

2. Problem

Let’s assume that £ and ¢,, k>1random variables
of independent {&,,}  random variable sequence

evenly distributed in {Q,F,P(~)} probability face are
given. Using these random variables we will derive the
following semi-markov random process:

X(t)= z+t—z::§i )
if
Y G St< Y gk=Lw

X(t) process is the (asymptotic) semi-markov random
processes with positive tendency and negative jump.
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Let’s include thez! random variable defined as be-
low:

7 =min{t: X (t)<0}

where 7', is the time of the first passage of X(t) process.
We need to find Laplace transform for distribution of
7 random variable.

3. Definition of Laplace Transform for the
Distribution of 77 Random Variable

Let us set Laplace transform for the distribution of 7}
random variable as L(6):

L(6)=Ee ™, 6>0,
L(elz)=E(e"

X(O):z), 220

In this case we can express the equation as

2'0: §1, Z+§1_§1<0’
VEAT, z+&-¢ >0,

Thus, T and 7/ are evenly distributed random vari-
ables.

Our goal is to find Laplace transform of relative and
non-relative distribution of z{ random variable.

According to the formula of total probability, we can
put it as
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E(e X (0)=2) - j e'P(do)= [ e%P(do)+ e "4 P (dw)
{w Z+§|7§|<0} {(uzz+§17(;l >0}
If to consider the following substitution where
S=s5=y;T=p g(t):{o’t<0
we derive Lt>0.
E (e_gﬁ“ X (O) _ Z) _ L’:) I;z+se765P {égl eds;¢ e dy} In this case Ej:anon (2) will be as follows:
+[ jj AP lg eds;¢, edy;T e dp) L(flz)=—"——re™
=0 £=0 ! ! (/1 +u+ 9) 3)
:L: e*'?sP{g1 edS}.[ ~ Sp{é’l Edy} _ﬂm—,u 1,zJ‘°° e—(1+;z+9)ssm IJZ+Se”x (0|OC)dOCdS
(m-1! =0 *=0

o[ aP i <y (a <L (02 +5-y)

= [ e"P{& eds}P{¢ > 2+5)

e LA B)dP{S <z+s-pLdP{g <)
or

L(6|z :Lioe""sP{g”l > 7+ P{E eds)
[ (B2 s-y)xP{Cedy} P g ds)

Let’s assume that z+S—Yy =« . In this case we will

receive the following integral equation:

[Pl sl
e ol Pl <2 aplet]

L(¢9 z

)

We will solve this integral equation in special case.

Let’s assume that & random variable has the Erlan-
gian distribution of m construction, while ¢, random
variable has the single construction Erlangian distribu-

tion:

P{g (0)<t}

2
={1{1+/1t+%+m+

((j]t—zml_)!}e”}s(t), t>0,

We can derive differential equation from this integral
equation. For this purpose, we will multiply both sides of
Equation (3) by e**:

e’L(6]z)=

lmﬂ O (A+u+8)s .m-1 [T o
_—(m—l)!-[s:oe (FeusO)sg 'L:Ze" L(6]oc)d o ds

A
(A+u+6)"

If we increment both sides by z, we will get:
e“’L(6]z)+e*L'(6]2)
e

(m-1!
In this case we will receive the differential equation
with (m+1) construction:

S Cal ) (0f2)+ L (el2)
x e ()" (2 +o)""
=(-1)" A"ue "L (6]2)

The general solution of this differential equation will
be

(éz)=¢

By finding C, (6’),---

~(Arur0)s qm-lg s | (3| 74+ s) ds

“)

e
,C, (@) from Equation (3) we

6’)Le ZC(H) @z 4 .. +C()

P{¢ (o)<t} = [1 —e ] &(t), t>0. will get the following systematic equations:
L(6]0)= A 2 [7 e rrlo ™ s gmi[* et (g]oc)d oc ds
(A+u+0)"  (m-T1)tis=0 5=0 =0
. AT ©  _(ar _

L (l9|0)= —,uL(9|O)+ (m _’Lll)!L:Oe (2+0)s o gm 1L(6’|s)ds ©

-1

écnﬁ[ “)(0]0)+ L<k“>(¢9|o)] “1)" A" e L (6] x) dx
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By exploitation of Equation (5), Equation (6) becomes

m A" Amﬂ ®(A+u+d)s m-1 (S N ki(0)e
C(0)= + e XS e »C,(0)e
250 (A+u+0)" (m—l)!L:° ) Zl )
m M Am,u ® + XM
2C(O)k0+ 3 C ()= T e 0150, (0)e

m

S| uSie (o)1, (0)| (1) 2l e S (o)

k=0 i=1 i=1

After simplification of the last system we will get

G ()= A GO (Mol (mo)

(A+pu+0)"  (M=1)1=" gtk (

N ﬂ,m/u m (m—l)!
ZI lclek (9 ’UZ|1 |( )) (m—l) Z (i_’_e kI(H)) CIH
m ~k m . m m ., m+l . m C,¢9
S0 Cu 4T KTC,(0)+ X7 K™ (6) ] = (<1)" A"w XY, o @
o (A+u+0)"—(A+6-k (0))" o
Z[l g ﬂ(,u+ki(9))(/1+,u+t9)m(ﬂ+t9—ki(9))m]Ci(9)_(/1+,u+t9)m
| ik (0) - Ao ()=
;[y 4(9) (/1+49—ki(49))m](:|(9) °
= ki, m +k _ ﬂ’m:u ) —
gcmk [,u ki (6) (,1+¢9—ki(¢9))m]C'(6) 0
By exploitation of

Equation (9) becomes

ill_(/ﬂﬁHﬁ)m_(ﬂ+9_ki(9))m]C (Q)ZL
i ( m

(A+u+0)"

or
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)(2+6-k(0))" (A+0+u)"

(7

®)

©
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i[me—ki (0)]" C.(6)=2"

;Oxci(ﬁ)zo (10)

ioxci(9)=o

Thus, (9) is a linear dependence equation system, as
C,(0)=C;(6)=--=C,(6)=0

4
alo)= [2+0-k (6)]

Then the general solution of integral Equation (3) will
be as follows:

A" k
L(6lz)=C. (o kg _ 1(0)z2

This expression is the Laplace transform for relative
distribution of 7z random variable. Then, we will need
to find L(#). In accordance with formula of total prob-
ability,

L(6)=]",L(6]z)dP{x(0) <z}

and as the distribution of X(0) and ¢ (®) random
variables are same,

L(o)=[",c, (6)e""dP{X (0) <z}
o Kyg) ﬁm m-1.-Az
=GO

_ ﬂmC] (9) on e_[g—kl(a)jzzquz
(m—1)! *==0

lm

YT

dz

C(9)

Therefore,
- A"

[/1 -k ('9)]m
This expression is the Laplace transform for non-rela-

tive distribution of 7/ random variable.
Respectively, we will get the following characteristics

L(9) 1)
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for Am > u:
Eff:-L'(o)=%
’ _m3y2(3—m)+ m’u
MO ey TR ma)
+m(m+1)/1
(2-mu)
Dz =L'(0)—(L'(0))’ :%

2 s
A(A—p)(A-mu)
. mm+)A  m* (A+mu)’
(A-mu) 22 (A-mu)

m(1+zu)
A—-mu

. m((m+1))(m+zu)u
(A-mu)’

4. Conclusions

In this article we have defined Laplace transforms for
relative and non-relative distribution of the first passage
of zero level of semi-markov random process with posi-
tive tendency and negative jump.
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