Definition of Laplace Transforms for Distribution of the First Passage of Zero Level of the Semi-Markov Random **Process with Positive Tendency and Negative Jump**

Tamilla I. Nasirova, Ulvivva Y. Kerimova

Baku State University, Baku, Azerbaijan E-mail: shaxbazi a@vahoo.com, ulvivve kerimova@vahoo.com Received May 5, 2011; revised May 26, 2011; accepted May 29, 2011

Abstract

One of the important problems of stochastic process theory is to define the Laplace transforms for the distribution of semi-markov random processes. With this purpose, we will investigate the semi-markov random processes with positive tendency and negative jump in this article. The first passage of the zero level of the process will be included as a random variable. The Laplace transforms for the distribution of this random variable is defined. The parameters of the distribution will be calculated on the basis of the final results.

Keywords: Laplace Transforms, Semi-Markov Random Process, Random Variable, Process With Positive Tendency And Negative Jumps

1. Introduction

There are number of works devoted to definition of the Laplace transforms for the distribution of the first passage of the zero level. (Borovkov 2004) [1] defined the explicit form of the distribution, while (Klimov 1996) [2] and (Lotov V. I.) [3] indicated implicit form of the distribution of the first passage of zero level. The presented work explicitly defines the Laplace transforms for the unconditional and conditional distribution of the semi-markov random processes with positive tendency and negative jump.

2. Problem

Let's assume that ξ_k and ζ_k , $k \ge 1$ random variables of independent $\{\xi_k, \zeta_k\}_{k>1}$ random variable sequence evenly distributed in $\{\Omega, F, P(\cdot)\}$ probability face are given. Using these random variables we will derive the following semi-markov random process:

if

$$\sum_{i=1}^{k-1} \xi_i \leq t < \sum_{i=1}^k \xi_i k = \overline{1,\infty}$$

 $X(t) = z + t - \sum_{i=1}^{k-1} \zeta_i ,$

X(t) process is the (asymptotic) semi-markov random processes with positive tendency and negative jump.

Let's include the τ_1^0 random variable defined as below:

$$\tau_1^0 = \min\left\{t : X\left(t\right) \le 0\right\}$$

where τ_1^0 , is the time of the first passage of X(t) process. We need to find Laplace transform for distribution of τ_1^0 random variable.

3. Definition of Laplace Transform for the Distribution of τ_1^0 Random Variable

Let us set Laplace transform for the distribution of τ_1^0 random variable as $L(\theta)$:

$$L(\theta) = Ee^{-\theta \tau_1^0}, \ \theta > 0,$$

$$L(\theta|z) = E\left(e^{-\theta \tau_1^0} | X(0) = z\right), \ z \ge 0$$

In this case we can express the equation as

$$\tau_1^0 = \begin{cases} \xi_{1,} & z + \xi_1 - \zeta_1 < 0, \\ \xi_1 + T, & z + \xi_1 - \zeta_1 > 0, \end{cases}$$

Thus, T and τ_1^0 are evenly distributed random variables.

Our goal is to find Laplace transform of relative and non-relative distribution of τ_1^0 random variable.

According to the formula of total probability, we can put it as

Copyright © 2011 SciRes.

$$E\left(e^{-\theta\tau_1^0}|X(0)=z\right) = \int_{\Omega} e^{-\tau_1^0} P(\mathrm{d}\omega) = \int_{\{\omega:z+\xi_1-\zeta_1<0\}} e^{-\theta\xi_1} P(\mathrm{d}\omega) + \int_{\{\omega:z+\xi_1-\zeta_1>0\}} e^{-\theta(\xi_1+T)} P(\mathrm{d}\omega)$$

If to consider the following substitution

$$\xi_1 = s; s_1 = y; T = \beta$$

we derive

$$E\left(e^{-\theta \tau_{1}^{0}}|X(0) = z\right) = \int_{s=0}^{\infty} \int_{y=z+s}^{\infty} e^{-\theta s} P\left\{\xi_{1} \in ds; \zeta_{1} \in dy\right\}$$

+
$$\int_{s=0}^{\infty} \int_{y=0}^{z+s} \int_{\beta=0}^{\infty} e^{-\theta(s+\beta)} P\left\{\xi_{1} \in ds; \zeta_{1} \in dy; T \in d\beta\right\}$$

=
$$\int_{s=0}^{\infty} e^{-\theta s} P\left\{\xi_{1} \in ds\right\} \int_{y=z+s}^{\infty} P\left\{\zeta_{1} \in dy\right\}$$

+
$$\int_{s=0}^{\infty} e^{-\theta s} \int_{y=0}^{z+s} dP\left\{\zeta_{1} < y\right\} dP\left\{\xi_{1} < s\right\} L\left(\theta|z+s-y\right)$$

=
$$\int_{s=0}^{\infty} e^{-\theta s} P\left\{\xi_{1} \in ds\right\} P\left\{\zeta_{1} > z+s\right\}$$

+
$$\int_{s=0}^{\infty} e^{-\theta s} \int_{\beta=z+s}^{0} L\left(\theta|\beta\right) dP\left\{\zeta_{1} < z+s-\beta\right\} dP\left\{\xi_{1} < s\right\}$$

or

$$L(\theta|z) = \int_{s=0}^{\infty} e^{-\theta s} P\{\zeta_1 > z+s\} P\{\xi_1 \epsilon ds\}$$

+
$$\int_{s=0}^{\infty} e^{-\theta s} \int_{y=0}^{z+s} L(\theta|z+s-y) \times P\{\zeta_1 \epsilon ds\} P\{\xi_1 \epsilon ds\}$$
(1)

Let's assume that $z + s - y = \alpha$. In this case we will receive the following integral equation:

$$L(\theta|z) = \int_{s=0}^{\infty} e^{-\theta s} P\{\zeta_1 > z+s\} P\{\xi_1 \epsilon ds\}$$

$$-\int_{s=0}^{\infty} e^{-\theta s} \int_{\alpha=0}^{z+s} L(\theta|\alpha) d_{\alpha} P\{\zeta_1 < z+s-\infty\} dP\{\xi_1 \epsilon ds\}$$
(2)

We will solve this integral equation in special case.

Let's assume that ξ_1 random variable has the Erlangian distribution of m construction, while ζ_1 random variable has the single construction Erlangian distribution:

$$P\left\{\xi_{1}(\omega) < t\right\}$$

$$= \left\{1 - \left[1 + \lambda t + \frac{(\lambda t)^{2}}{2!} + \dots + \frac{(\lambda t)^{m-1}}{(m-1)!}\right]e^{-\lambda t}\right\}\varepsilon(t), \quad t > 0,$$

$$P\left\{\zeta_{1}(\omega) < t\right\} = \left[1 - e^{-\mu t}\right]\varepsilon(t), \quad t > 0.$$

where

$$\varepsilon(t) = \begin{cases} 0, t < 0\\ 1, t > 0. \end{cases}$$

In this case Equation (2) will be as follows:

$$L(\theta|z) = \frac{\lambda^{m}}{(\lambda + \mu + \theta)^{m}} e^{-\mu z}$$

$$-\frac{\lambda^{m} \mu}{(m-1)!} e^{-\mu z} \int_{s=0}^{\infty} e^{-(\lambda + \mu + \theta)s} s^{m-1} \int_{x=0}^{z+s} e^{\mu x} L(\theta|\infty) d\infty ds$$
(3)

We can derive differential equation from this integral equation. For this purpose, we will multiply both sides of Equation (3) by $e^{\mu z}$:

$$e^{\mu z} L(\theta|z) = \frac{\lambda^m}{(\lambda + \mu + \theta)^m}$$
$$-\frac{\lambda^m \mu}{(m-1)!} \int_{s=0}^{\infty} e^{-(\lambda + \mu + \theta)s} s^{m-1} \int_{s=0}^{z+s} e^{\mu \infty} L(\theta|\infty) d\infty ds$$

If we increment both sides by *z*, we will get:

$$e^{\mu z} L(\theta|z) + e^{\mu z} L'(\theta|z)$$

= $-\frac{\lambda^m \mu e^{\mu z}}{(m-1)!} \int_{s=0}^{\infty} e^{-(\lambda+\mu+\theta)s} s^{m-1} e^{\mu s} L(\theta|z+s) ds$

In this case we will receive the differential equation with (m+1) construction:

$$\sum_{k=0}^{m} C_{m}^{k} \left[\mu L^{(k)}(\theta|z) + L^{(k+1)}(\theta|z) \right]$$

$$\times e^{(\lambda+\theta)z} (-1)^{m-k} (\lambda+\theta)^{m-k}$$

$$= (-1)^{m} \lambda^{m} \mu e^{-(\lambda+\theta)z} L(\theta|z)$$
(4)

The general solution of this differential equation will be

$$(\theta|z) = C_1(\theta) L e^{k_{1(\theta)z}} C_2(\theta) e^{k_{2(\theta)z}} + \dots + C_m(\theta) e^{k_{m(\theta)z}}$$
(5)

By finding $C_1(\theta), \dots, C_m(\theta)$ from Equation (3) we will get the following systematic equations:

$$L\left(\theta|0\right) = \frac{\lambda^{m}}{\left(\lambda + \mu + \theta\right)^{m}} + \frac{\lambda^{m}\mu}{(m-1)!} \int_{s=0}^{\infty} e^{-(\lambda + \mu + \theta)s} \int_{s=0}^{\infty} \times s^{m-1} \int_{x=0}^{s} e^{\mu x} L\left(\theta|x\right) d \propto ds$$

$$L\left(\theta|0\right) = -\mu L\left(\theta|0\right) + \frac{\lambda^{m}\mu}{(m-1)!} \int_{s=0}^{\infty} e^{-(\lambda + \theta)s} \times s^{m-1} L\left(\theta|s\right) ds$$

$$\vdots$$

$$\sum_{k=0}^{m-1} C_{m}^{k} \left[\mu L^{(k)}\left(\theta|0\right) + L^{(k+1)}\left(\theta|0\right)\right] = (-1)^{m} \lambda^{m} \mu \int_{x=0}^{\infty} e^{-(\lambda + \theta)x} L\left(\theta|x\right) dx$$

$$(6)$$

Copyright © 2011 SciRes.

909

By exploitation of Equation (5), Equation (6) becomes

$$\sum_{k=0}^{m} C_{i}(\theta) = \frac{\lambda^{m}}{(\lambda + \mu + \theta)^{m}} + \frac{\lambda^{m}\mu}{(m-1)!} \int_{s=0}^{\infty} e^{-(\lambda + \mu + \theta)s} \times s^{m-1} \int_{s=0}^{s} e^{\mu x} \sum_{i=1}^{m} C_{i}(\theta) e^{k_{i}(\theta)\alpha}$$

$$\sum_{i=1}^{m} C_{i}(\theta) k_{i}\theta + \mu \sum_{i=1}^{m} C_{i}(\theta) = \frac{\lambda^{m}\mu}{(m-1)!} \int_{s=0}^{\infty} e^{-(\lambda + \theta)x} \times x^{m-1} \sum_{i=1}^{m} C_{i}(\theta) e^{k_{i}(\theta)x} dx$$

$$\vdots$$

$$\sum_{k=0}^{m-1} C_{m}^{k} \left[\mu \sum_{i=1}^{m} k^{m} C_{i}(\theta) + k^{m+1} \sum_{i=0}^{m} C_{i}(\theta) \right] = (-1)^{m} \lambda^{m} \mu \int_{x=0}^{\infty} e^{-(\lambda + \theta)x} \sum_{i=1}^{m} C_{i}(\theta) e^{k_{i}(\theta)x} dx$$

$$(7)$$

After simplification of the last system we will get

$$\sum_{i=1}^{m} C_{i}(\theta) = \frac{\lambda^{m}}{\left(\lambda + \mu + \theta\right)^{m}} + \frac{\lambda^{m}\mu}{(m-1)!} \sum_{i=1}^{m} \frac{C_{i}(\theta)}{\mu + k_{i}(\theta)} \frac{(m-1)!}{\left(\lambda + \theta - k_{i}(\theta)\right)^{m}} - \frac{(m-1)!}{\left(\lambda + \theta + \mu\right)^{m}}$$

$$\sum_{i=1}^{m} C_{i}\theta k_{i}\left(\theta + \mu\sum_{i=1}^{m} C_{i}(\theta)\right) = \frac{\lambda^{m}\mu}{(m-1)!} \sum_{i=1}^{m} \frac{(m-1)!}{\left(\lambda + \theta - k_{i}(\theta)\right)^{m}} C_{i}\theta$$

$$\vdots$$

$$\sum_{i=1}^{m} C_{m}^{k} \left[\mu\sum_{i=1}^{m} k^{m}C_{i}(\theta) + \sum_{i=1}^{m} k^{m+1}C_{i}(\theta)\right] = (-1)^{m} \lambda^{m} \mu\sum_{i=1}^{m} \frac{C_{i}\theta}{\left(\lambda + \theta - k_{i}(\theta)\right)^{m}}$$
(8)

or

$$\sum_{i=1}^{m} \left[1 - \lambda^{m} \mu \frac{(\lambda + \mu + \theta)^{m} - (\lambda + \theta - k_{i}(\theta))^{m}}{(\mu + k_{i}(\theta))(\lambda + \mu + \theta)^{m}(\lambda + \theta - k_{i}(\theta))^{m}} \right] C_{i}(\theta) = \frac{\lambda^{m}}{(\lambda + \mu + \theta)^{m}}$$

$$\sum_{i=1}^{m} \left[\mu + k_{i}(\theta) - \frac{\lambda^{m} \mu}{(\lambda + \theta - k_{i}(\theta))^{m}} \right] C_{i}(\theta) = 0$$

$$\sum_{k=0}^{m-1} C_{m}^{k} k^{m} \left[\mu + k_{i}(\theta) - \frac{\lambda^{m} \mu}{(\lambda + \theta - k_{i}(\theta))^{m}} \right] C_{i}(\theta) = 0$$
(9)

By exploitation of

$$\lambda^{m} \mu = (\mu + k_{i}(\theta) (\lambda + \theta - k_{i}(\theta))^{m}$$

Equation (9) becomes

$$\sum_{i=1}^{m} \left[1 - \frac{\left(\lambda + \mu + \theta\right)^{m} - \left(\lambda + \theta - k_{i}\left(\theta\right)\right)^{m}}{\left(\lambda + \mu + \theta\right)^{m}} \right] C_{i}\left(\theta\right) = \frac{\lambda^{m}}{\left(\lambda + \mu + \theta\right)^{m}}$$
$$\sum_{i=1}^{m} \left[\mu + k_{i}\left(\theta\right) - \left(\mu + k_{i}\left(\theta\right)\right) \right] C_{i}\left(\theta\right) = 0$$
$$\sum_{k=0}^{m-1} C_{m}^{k} k^{m} \left[\mu + k_{i}\left(\theta\right) - \left(\mu + k_{i}\left(\theta\right)\right) \right] C_{i}\left(\theta\right) = 0$$

or

Copyright © 2011 SciRes.

AM

$$\sum_{i=1}^{m} \left[\lambda + \theta - k_i(\theta) \right]^m C_i(\theta) = \lambda^m$$

$$\sum_{i=1}^{m} 0 \times C_i(\theta) = 0$$

$$\vdots$$

$$\sum_{i=1}^{m} 0 \times C_i(\theta) = 0$$
(10)

Thus, (9) is a linear dependence equation system, as

$$C_{2}(\theta) = C_{3}(\theta) = \dots = C_{m}(\theta) = 0$$
$$C_{1}(\theta) = \frac{\lambda^{m}}{\left[\lambda + \theta - k_{1}(\theta)\right]^{m}}$$

Then the general solution of integral Equation (3) will be as follows:

$$L(\theta|z) = C_1(\theta)e^{k_{1(\theta)z}} = \frac{\lambda^m}{\left[\lambda + \theta - k_1(\theta)\right]^m}e^{k_{1(\theta)z}}$$

This expression is the Laplace transform for relative distribution of τ_1^0 random variable. Then, we will need to find $L(\theta)$. In accordance with formula of total probability,

$$L(\theta) = \int_{z=0}^{\infty} L(\theta | z) dP \{ X(0) < z \}$$

and as the distribution of X(0) and $\zeta_1(\omega)$ random variables are same,

$$L(\theta) = \int_{z=0}^{\infty} C_1(\theta) e^{k_1(\theta)z} dP \{X(0) < z\}$$

= $C_1(\theta) \int_{z=0}^{\infty} e^{k_1(\theta)z} \frac{\lambda^m}{(m-1)!} z^{m-1} e^{-\lambda z} dz$
= $\frac{\lambda^m C_1(\theta)}{(m-1)!} \int_{z=0}^{\infty} e^{-[\lambda - k_1(\theta)]z} z^{m-1} dz$
= $\frac{\lambda^m}{[\lambda - k_1(\theta)]^m} C_1(\theta)$

Therefore,

$$L(\theta) = \frac{\lambda^m}{\left[\lambda - k_1(\theta)\right]^m} C_1(\theta)$$

This expression is the Laplace transform for non-relative distribution of τ_1^0 random variable.

Respectively, we will get the following characteristics

for $\lambda m > \mu$:

$$E\tau_{1}^{0} = -L'(0) = \frac{m(\lambda + \mu)}{\lambda(\lambda - m\mu)}$$

$$L'(0) = \frac{m^{3}\mu^{2}(3 - m)}{\lambda^{2}(\lambda - m\mu)^{2}} + 2\frac{m^{3}\mu}{\lambda(\lambda - \mu)(\lambda - m\mu)}$$

$$+ \frac{m(m + 1)\lambda}{((\lambda - m\mu)^{3}}$$

$$D\tau_{1}^{0} = L'(0) - (L'(0))^{2} = \frac{m^{3}\mu^{2}(3 - m)}{\lambda^{2}(\lambda - m\mu)^{2}}$$

$$+ 2\frac{m^{3}\mu}{\lambda(\lambda - \mu)(\lambda - m\mu)}$$

$$+ \frac{m(m + 1)\lambda}{(\lambda - m\mu)^{3}} - \frac{m^{2}(\lambda + m\mu)^{2}}{\lambda^{2}(\lambda - m\mu)^{2}}$$

$$E(\tau_{1}^{0}|z) = \frac{m(1 + z\mu)}{\lambda - m\mu}$$

$$D(\tau_{1}^{0}|z) = \frac{m}{(\lambda - m\mu)^{2}} + \frac{m((m + 1))(m + z\mu)\mu}{(\lambda - m\mu)^{3}}$$

4. Conclusions

In this article we have defined Laplace transforms for relative and non-relative distribution of the first passage of zero level of semi-markov random process with positive tendency and negative jump.

5. References

- A. A. Borovkov, "On the Asymptotic Behavior of the Distributions of First-Passage," *Mathematics and Statistics*, Vol. 75, No. 1, 2004, pp. 24-39. doi:10.1023/B:MATN.0000015019.37128.cb
- [2] V. I. Lotov, "On the Asymptotics of the Distributions in Two-Sided Boundary Problems for Random Walks Defined on a Markov Chain," *Siberian Advances in Mathematics*, Vol. 1, No. 3, 1991, pp. 26-51.
- [3] G. P. Klimov, "Stochastic Queuening Systems," Nauka, Moscow, 1966.
- [4] T. I. Nasirova and R. I. Sadikova, "Laplace Transformation of the Distribution of the Time of System Sojourns within a Band," *Automatic Control and Computer Sciences*, Vol. 43, No. 4, pp. 190-194. doi:10.3103/S014641160904004X