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Abstract 
 
We study a vacation queueing system with a single server simultaneously dealing with an M/G/1 and an 
M/D/1 queue. Two classes of units, priority and non-priority, arrive at the system in two independent Poisson 
streams. Under a non-preemptive priority rule, the server provides a general service to the priority units and a 
deterministic service to the non-priority units. We further assume that the server may take a vacation of ran-
dom length just after serving the last priority unit present in the system. We obtain steady state queue size 
distribution at a random epoch. Corresponding results for some special cases, including the known results of 
the M/G/1 and the M/D/1 queues, have been derived. 
 
Keywords: Non Preemptive Priority Queueing System, Modified Server Vacations, Combination of General 

Service and Deterministic Service, Steady State, Queue Size Distribution 

1. Introduction 
 
Several authors including Cobham [1], Phipps [2], 
Schrage [3], Jaiswal [4], Madan [5], Simon [6], Takagi 
[7], Choi and Chang [8] have studied priority queues. 
These authors and several others have studied single 
server or multi-server queues with two or more priority 
classes under preemptive or non-preemptive priority rules. 
All these authors essentially assume the same service 
time distribution for all classes of units with identical or 
different service rates. Madan and Abu-Dayyeh [9] deal 
with a single server queueing system with two classes of 
units, priority units and non-priority units. Under the 
non-preemptive queue discipline, they assume that the 
service time V of a priority unit has a general distribution 
and that of a non–priority unit is deterministic. Thus their 
model is a combination of the M/G/1 and M/D/1 queues 
and the server keeps switching over these two queues 
depending on the class of units present in the system. For 
separate references on M/G/1 and M/D/1 queues, the 
reader is referred to Bhat [10], Levy and Yechiali [11], 
Kleinrock [12], Cohen [13], Lee [14], Gross and Harris 
[5], Cox and Miller [16], Tijms [17], Yang and Li [18], 

Bunday [19] and Madan [20,21]. However, in the present 
paper, we generalize Madan and Abu-Dayyeh [9] paper 
by adding a significant assumption to their model that the 
server may take a vacation of random length but we as-
sume that no vacation is allowed if there is even a single 
priority unit present in the system. Thus the server may 
take an optional vacation of a random length just after 
completing the service of the last priority unit present in 
the system or else may just continue serving the 
non-priority units if present in the system. 

We use the supplementary variable technique by in-
troducing two supplementary variables, one for the 
elapsed service time of a priority unit and the other for 
the elapsed vacation time of the server. Thus, we gener-
alize the results of not only Madan and Abu-Dayyeh [9], 
but also some other known results of the M/G/1 and the 
M/D/1 queues as particular cases. 
 
2. Assumptions Underlying the  

Mathematical Model 
 
Priority and non-priority units arrive at the system in 
independent Poisson streams with respective mean arri-



K. C. MADAN 792
 

 

val rates 1  and 2  and form two queues, if the server 
is busy. The server must serve all the priority units pre-
sent in the system before taking up a non-priority unit for 
service. In other words, there is no priority unit present 
in the system at the time of starting service of a non- 
priority unit. Further, we assume that the server follows a 
non-preemptive priority rule, which means that if one or 
more priority units arrive during the service time of a 
non-priority unit, the current service of a non-priority 
unit is not stopped and a priority unit will be taken up for 
service only after the current service of a non-priority 
unit is complete. Units are served one by one, on a 
‘first-come, first-served’ basis within each class of units. 
We assume that the service time  of a priority unit is 
general with probability density function  and the 
distribution function . Let 

S


 b s

 B s x  dx be the condi-
tional probability of completion of service of a priority 
unit during the interval  ,x x d x  given that the 
elapsed service time of such a unit is x , so that 

   
 1

b x
x

B x
 


              (2.1) 

and, therefore, 

     
0

exp d .
s

b s s x x 
 

 
 
 



         (2.2) 

The service time of a non-priority unit is deterministic 
with constant duration  (>0). d

We further assume that as soon as the service of the 
last priority unit present in the system is completed, the 
server has the option to take a vacation of random length 
with probability , in which case the vacation starts 
immediately or else with probability   he may 
decide to continue serving the non-priorty units present 
in the system, if any. In the later case, if there is no 
non-priority unit present in the system, the server re-
mains idle in the system waiting for the new units to ar-
rive. The vacation period random variable V  is as-
sumed to follow a general probability law with probabil-
ity density function  and the distribution function 

p
1 p

 a v
 A v . Let  x  dx be the conditional probability of 

completion of server’s vacation during the interval 
 ,x x dx  given that the elapsed vacation time of the 
server is x , so that 

   
 1

a x
x

A x
 


              (2.3) 

and, therefore, 

     
0

exp d
s

a s s x x 
 

 
 


3. Definitions and Notations 
 





.        (2.4) 

We define 
  1
, ,m nP x t : probability that at time t there are m (≥0)  

priority units and n (≥0) non-priority units in the queue 
excluding one priority unit in service with elapsed ser-
vice time x. 

       1 1
, ,

0

, dm n m nP t P x t x


  : probability that at time t there  

are m (≥0) priority units and n (≥0) non-priority units in 
the queue excluding one priority unit in service without 
regard to the elapsed service time x of a priority unit. 

 , ,m nV x t : probability that at time t the server is on  

vacation with elapsed vacation time x and there are m 
(≥0) priority units and n (≥0) non-priority units in the 
queue. 

   , ,
0

, dm n m nV t V x t


  x : probability that at time t the  

server is on vacation and there are m (≥0) priority units 
and n (≥0) non-priority units in the queue, without regard 
to the elapsed repair time x. 

   2
0,nP t : probability that at time t there are no priority  

units in the system and n (≥0) non-priority units in the 
queue excluding one non-priority unit in service. 

Q(t): probability that at time t there is neither a priority 
unit nor a non-priority unit in the system and the server is 
idle but available in the system. 

i : probability that i (= 0, 1, 2, ···) priority units arrive 
during the constant service time d of a non-priority unit. 

r

jk : probability that j (= 0, 1, 2, ···) non-priority units 
arrive during the constant service time d of a non-priority 
unit. 

Then assuming that the steady state exists, let 

       1 1
, ,lim ,m n m n

t
P x t P x


 , 

         1 1
, ,

0

lim d ,m n m n m n
t

P t P x x P



  1

,   

  , ,lim ,m n m n
t

V x t V x


 

   2 2

, 

   , ,
0

lim d ;m n m n m n
t

V t V x x V



  ,  0, 0,lim n n

t
P t P


   

and  lim
t

Q t Q


  

denote the corresponding steady state probabilities. In 
addition, we define the following steady state probability 

enerating functions: g  
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1 ,m

,

1 ,m

,

2

1

  
               1 1 1 1

2 , 2 1 ,
0 0

, ;  ,n
m m n n m n

n m

P x z P x z P x z P x z
 

 

                           (3.1a) 

               1 1 1 1
1 2 , 1 2 2 1 1 2

0 0 0 0

, , , , ,m n m n
m n m n

m n m n

P x z z P x z z P x z z P x z z
   

   

                     (3.1b) 

         1 1 1
1 2 1 2 , 1 2

0 00

, , , d m n
m n

m n

P z z P x z z x P z z
  

 

                            (3.1c) 

       2 , 2 1 ,
0 0

, ;  ,n
m m n n m n

n m

V x z V x z V x z V x z
 

 

                          (3.1d) 

       1 2 , 1 2 2 1 1 2
0 0 0 0

, , , , ,m n m n
m n m n

m n m n

V x z z V x z z V x z z V x z z
   

   

                       (3.1e) 

   1 2 1 2 , 1 2
0 00

, , , d m n
m n

m n

V z z V x z z x V z z
  

 

                            (3.1f) 

     2
0 2 0, 2

0

,n
n

n

P z P z




                                      (3.1g) 

     1
0 2 0, 2

0

,n
n

n

P z P z




                                      (3.1h) 

      1 1
1 1 1 1 1

0 0

exp
exp 1 ,

!

i

i i
i

i i

d d
R z r z z d z

i

 


 

 

 
        
 

                  (3.1i) 

      2 2
2 2 2 2

0 0

exp
exp 1 ,

!

j

j j
j

j j

d d
K z k z z d z

j

 


 

 

 
      2   
 

                (3.1j) 

1 21,  1.z z   

 
4. Steady State Equations Governing the System 
 
Usual probability reasoning based on our mathematical model, leads to the following equations. 

                  1 1 1 1
, 1 2 , 1 1, 2 , 1

d
,  1, 1,

d m n m n m n m nP x x P x P x P x m n
x

                         (4.1) 

              1 1 1
,0 1 2 ,0 1 1,0

d
,  1, 0,

d m m mP x x P x P x m n
x

                              (4.2) 

              1 1 1
0, 1 2 0, 2 0, 1

d
,  0, 1,

d n n nP x x P x P x m n
x

                              (4.3) 

          1 1
0,0 1 2 0,0

d
0,  0, 0,

d
P x x P x m n

x
                                (4.4) 

          , 1 2 , 1 1, 2 , 1

d
,  1, 1,

d m n m n m n m nV x x V x V x V x m n
x

                       (4.5) 

        ,0 1 2 ,0 1 1,0

d
,  1, 0,

d m m mV x x V x V x m n
x

                        (4.6) 

        0, 1 2 0, 2 0, 1

d
,  0, 1,

d n n nV x x V x V x m n
x

                              (4.7) 
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      0,0 1 2 0,0

d
0,  0, 0,

d
V x x V x m n

x
                                (4.8) 

            2 1
0,0 0 0 0,0 0,0

0 0

1 dQ Q P r k p P x x V x x x
 

      d ,

d ,

, 1.

1, 1, 

1, 0,

0, 1,

0 .n

                     (4.9) 

                2 2 2 1
0,0 0,0 0 1 0,1 0 0 0,1 0,1

0 0

1 dP Q P r k P r k p P x x V x x x
 

                       (4.10) 

                
1

2 2 2 1
0, 0,0 0 1 0, 0 1 0, 1 0, 1

1 0 0

1 d d  
n

n n j n j n n
j

P Q P r k P r k p P x x V x x x n 
 

    


                   (4.11) 

The above equations are to be solved subject to the following boundary conditions: 

               1 1 2
, 1, 0, 1 1 1,

00 0

0 d d , 
n

m n m n j m n j m n m n
j

P P x x x P r k Qr k V x x x m n 
 

    


              (4.12) 

               1 1 2
,0 1,0 0,0 1 0 1 0 1,0

0 0

0 d d ,  m m m m mP P x x x P r k Qr k V x x x m n 
 

                   (4.13) 

               1 1 2
0, 1, 0, 1 1 1,

00 0

0 d d ,  
n

n n j n j n n
j

P P x x x P r k Qr k V x x x m n 
 




                 (4.14) 

               1 1 2
0,0 1,0 0,0 1 0 1 0 1,0

0 0

0 d d ,  P P x x x P r k Qr k V x x x m 
 

                     (4.15) 

       1
0, 0,

0

0  n nV p P x x x n


  d , 0

 

                                (4.16) 

 
5. Steady State Queue Size Distribution at a Random Epoch 
 

We perform the operations ;  and use Equation (3.1). Thus we obtain   2
1

4.1 4.2n

n

z




   2
1

4.3 4.4n

n

z






                  1 1 1 1
2 1 2 2 1 1 2 2 2 2

d
, , ,

d m m m mP x z x P x z P x z z P x z m
x

         , ,  1,          (4.17) 

             1 1
0 2 1 2 0 2 2 2 0 2

d
, ,

d
P x z x P x z z P x z

x
       1 , .



                 (4.18) 

Next, we perform , use (3.1) and simplify. Then we have,   1
1

4.17 4.18m

m

z






              1 1
1 2 1 1 2 2 1 2

d
, , 1 1 , , 0.

d
P x z z z z x P x z z

x
                    (4.19) 

Similarly, we perform the operations ;  and use Equation (3.1). Thus we obtain   2
1

4.5 4.6n

n

z




    2
1

4.7 4.8n

n

z






          2 1 2 2 1 1 2 2 2 2

d
, , ,

d m m m mV x z x V x z V x z z V x z m
x

         , ,  1,           (4.20) 

       0 2 1 2 0 2 2 2 0 2

d
, ,

d
V x z x V x z z V x z

x
       , .



                 (4.21) 

Next, we perform , use (3.1) and simplify. Then we have,   1
1

4.20 4.21m

m

z
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          1 2 1 1 2 2 1 2

d
, , 1 1 , , 0.

d
V x z z z z x V x z z

x
                             (4.22) 

Then we perform       1
2

1

4.9 4.10 4.11 n

n

z


2z 



  , use (3.1) and simplify. Thus we have 

                     2 1 (2)
2 0 2 0 2 0 2 0 2 0 2 0 2

0 0

1 , d ,z P z Qr K z p P x z x x P z r K z Q V x z x x 
 

       d ,

d .

1z







d

x

     (4.23) 

which again simplifies to 

                    2 1
2 0 2 0 2 0 2 0 2 0 2

0 0

1 , d ,z r K z P z p P x z x x Qr K z Q V x z x x 
 

               (4.24) 

Now, we shall consider the boundary conditions (4.12) through (4.16) and perform ; 

, use (3.1) and simplify. We then obtain 

   1
1 1

1

4.12 4.14m

m

z z








   1
1

1

4.13 4.15m

m

z








                       

       

1 1 1
1 1 1 0, 1 0,

0 0 0 0

2
1 0 0, 1 0

0 1

0, , d d , d d

                     ,   1,

n n n n n

n

j n j n
j n

z P z P x z x x P x x x V x z x x V x x x

R z r P k R z r Qk n

  
   




 

   

    

   

 
     (4.25) 

                             1 1 1 2
1 0 1 0 1 0,0 0 1 0,0 1 0 0,0 0

0 0 0 0

0, , d d , d d .z P z P x z x x P x x x V x z x x V x x x R z r P Q k   
   

        
(4.26) 

And yet again, we perform , use (3.1) and simplify. This operation yields   2
1

4.25 4.26n

n

z






                       

         

1 1 1
1 1 2 1 2 0 2 1 2 0 2

0 0 0 0

2
1 0 0 2 2

0, , , , d , d , , d ,

                           .

z P z z P x z z x x P x z x x V x z z x x V x z x x

R z r P z Q K z

  
   

   

  

   
   (4.27) 

Similarly, on performing  and using (3.1), we obtain   2
0

4.16 n

n

z





       1
0 2 0 2

0

0, , dV z p P x z x


  .                              (4.28) 

Now, we integrate (4.19) from 0 to x and obtain 

             1 1
1 2 1 2 1 1 2 2

0

, , 0, , exp 1 1 d
x

P x z z P z z z x z x t t  
 

      
 

 ,                (4.29) 

where  is given by (4.27).   1
1 20, ,P z z 

Similarly, on integrating, (4.22) gives 

         1 2 1 2 1 1 2 2
0

, , 0, , exp 1 1 d
x

V x z z V z z z x z x t t  
 

      
 

 .                  (4.30) 

However, by its definition,  and, therefore, (4.30) is re-written as   1 2 0 20, , 0,V z z V z 

         1 2 0 2 1 1 2 2
0

, , 0, exp 1 1 d .
x

V x z z V z z x z x t t  
 

      
 

                    (4.31) 
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where  is given by (4.28). 0 20,V z

Once again integrating (4.29) and (4.31) with respect to x by parts and using (2.2) and (2.4), we have 

       
   

   

*
1 1 2 21 1

1 2 1 2
1 1 2 2

1 1 1
, 0, ,

1 1

B z z
P z z P z z

z z

 
 

,
        

    
                      (4.32) 

   
   

   

*
1 1 2 2

1 2 0 2
1 1 2 2

1 1 1
, 0,

1 1

V z z
V z z V z

z z

 
 

,
        

    
                       (4.33) 

where  

         1 1 2 21 1*
1 1 2 2

0

1 1 e dz zB z z B  


           

         1 1 2 21 1*
1 1 2 2

0

1 1 e dz zV z z V  


           

x

x

 is the LST of the service time of a priority unit and  

 is the LST of the server’s vacation time respectively.  

Now, Equation (4.18) can be re-written as  

            1 1
0 2 1 2 2 0 2

d
, 1 ,

d
P x z z x P x z

x
       0.

d .

 

which, on integration, gives  

           1 1
0 2 0 2 1 2 2

0

, 0, exp 1
x

P x z P z x z x t t  
 

     
 

                     (4.34) 

and (4.21) yields 

       0 2 0 2 1 2 2
0

, 0, exp 1
x

V x z V z x z x t t   d .
 

     
 

                      (4.35) 

Next, we shall determine the integrals  of Equations (4.24), (4.27) and (4.28).  

     1
1 2

0

, , dP x z z x x


 ,  and       1
0 2

0

,P x z x x



Then we multiply Equations (4.29) and (4.34) by 
 x , integrate by parts with respect to x and use equa-

tion (2.2). Thus we obtain  

d

d   0 2
0

,V x z x x


  which appear in the right hand sides  

            1 1*
1 2 1 1 2 2 1 2

0

, , d 1 1 0, , ,P x z z x x B z z P z z  


      

1 ,

                (4.36) 

           1 *
0 2 1 2 2 0 2

0

, d 1 0,P x z x x B z P z  


                          (4.37) 

Similarly, we multiply Equations (4.31) and (4.35) by  x , integrate by parts with respect to x and obtain 

        *
1 2 1 1 2 2 0 2

0

, , d 1 1 0,V x z z x x V z z V z  


      

.

0,

                     (4.38) 

      *
0 2 1 2 2 0 2

0

, d 1 0,V x z x x V z V z  


                             (4.39) 

Using Equations (4.36) to (4.39) into Equations (4.24), (4.27) and (4.28), we obtain 

                  2 (1)
2 0 2 0 2 1 2 2 0 2 0 2 1 2 2 0 21 1 0, 1z r K z P z p B z P z Qr K z Q V z V z                     (4.40) 
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1
2,



                 
         

         

1 1
1 1 2 1 1 2 2 1 2 1 2 2 0

1 1 2 2 0 2 1 2 2 0 2

2
1 0 0 2 2

0, , 1 1 0, , 1 0

                          1 1 0, 1 0,

                          .

z P z z B z z P z z B z P z

V z z V z V z V z

R z r P z Q K z

   

   

 

 

            
            

  

        (4.41) 

      1
0 2 1 2 2 0 20, 1 0,V z pB z P z                                 (4.42) 

Next, we substitute the value of  0 20,V z  from 
Equation (4.42) into Equations (4.40) and (4.41), replace 

 1R z  by  and 1 1e d z 1  2K z  by from 
(3.1f) and (3.1g) and simplify. We obtain  

2 21e d z  

1 

1 z



                  2 2 2 21 2 1
2 0 0 2 1 2 2 1 2 2 0 2 0e 1 1 1 0, ed z d zz r P z p pV z B z P z Qr Q                           (4.43) 

       

               

                 11 11 2 2

1
1 1 2 2 1 2

1 1
1 2 2 0 2 1 2 2 1 1 2 2 0 2

1 1 2
1 2 2 1 2 2 0 2 0 0 2

1 1 0, ,

1 0, 1 1 1 0,

     1 1 0, e e .d d

z B z z P z z

B z P z pB z V z z P z

pB z V z P z r P z Q  

 

     

   



  

    

       

                   

             

 1

    (4.44) 

Now, substituting for  from Equation (4.44) into Equation (4.32), we have  1 20, ,P z z

   

   
   

         

    
   

         

 

1 1 2 2

*
1 1 2 2 1 2 1

0 0 2
1 1 2 21

1 2 *
1 1 1 2 2

*
11 1 2 2 *

1 2 2 0 2
1 1 2 2

*
1 1 1 2

1 1 1
e e

1 1
,

1 1

1 [ 1 1 ]
1 0,

1 1
                       

1

d z d zB z z
r P z Q

z z
P z z

z B z z

B z z
B z P z

z z

z B z

  
 

 

 
 

 

 

   
             

     

    
         

     
   

             

    
   

   

2

*
1 1 2 2 1* *

1 2 2 1 1 2 2 0 2
1 1 2 2

*
1 1 1 2 2

*
1 1 2 2

1 1 2 2

1

1 1 1
1 1 1 0

1 1
                        

1 1

1 1 1

1 1
                          

z

B z z
pB z V z z P z

z z

z B z z

B z z

z z

 
   

 

 

 
 

  

                       
     

     
  



       

,

    

1* *
1 2 2 1 2 2 0 2

*
1 1 1 2 2

1 1 0,

1 1

pB z V z P z

z B z z

   

 

 
            

 
     

 (4.45) 

We have yet to determine the 3 unknowns , 
 and Q appearing in the numerator of the right 

hand side of (4.45). For this purpose, we proceed as fol-
lows. 

   1
0 20,P z

   2
0 2P z

It can be easily shown that the denominator of the  

right hand side of (4.45) has one zero inside or on the 
unit circle 1 1z  . Let this zero be denoted as  . 
Therefore, the numerator of the right side of (4.45) must 
vanish for this zero giving 

             

         

       

1 2 21 1(2) *
0 0 2 1 2 2 0 2

1* *
1 2 2 1 2 2 0 2

1* *
1 2 2 1 2 2 0 2

e e 1

1 1 1 0,

1 1 0, 0.

d d zr P z Q B z P z

pB z V z P z

pB z V z P z

    

    

   

         

           

           

1 0,

2

            (4.46) 

Now, we solve Equations (4.43) and (4.46) for the two unknowns  and . Thus we obtain    1
0 0,P z    2

0 2P z

   
      

 

1 2 21 1
01

0

e e 1
,

d d zr z
P o z

D z

      


2 Q
                           (4.47) 
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1 2 2

2 2

1 1
1 2 2 0

1 2 2 1
1 1 2 2 1 2 2 02

0 2

1 1 e e  
1  

(1 1 1 1  1 e

d d z

d z

p pV z r
B z Q

pV z z pV z r
P z

D z

  



 
 

   

   



  

        
                           

(4.48) 

where D(z) in Equations (4.47) and (4.48) is the common denominator given by  

         
        

1

2 2

1
1 2 2 1 2 2 0

1
1 1 2 2 1 2 2 2 0

1 1 [ 1 e

             (1 p 1 1 1 e

d

d z

D z B z p pV z r

V z z pV z z r

 



   

   

  

  

               

                   

     (4.49) 

Then, we substitute for  and     1
0 0,P z 




2

from (4.47) and (4.48) into Equation (4.45) giving us 
. Finally, we shall use the normalizing condi-

tion  to determine the only re- 

   2
0 2P z

  1
1 2,P z z
  1,1     1 2

0 1 1P P Q 

maining unknown Q.  
Using L’ Hopital’s rule and proceeding as in Madan 

and Aby-Dayyeah (2003), we obtain 

      
          

1 2

1 2 1

1 ( 1

1 1

E S pE V d
Q

d E S pE V d E S pE V

 

  

    
      

                      (4.50) 

where E(S) is the mean service time of a priority unit and 
E(V) is the mean vacation time of the server.  

Having thus determined the value of Q, the probability  

that the server is idle, we have completely determined 
.    1

1 2,P z z
Further, system’s utilization factor is given by 

            
          

1 2 1

1 2 1

( 1 1 (
1

1 1

d E S pE V d E S pE V d
Q

d E S pE V d E S pE V

  


  

      
2

      
               (4.51) 

The stability condition, under which the steady state exists, emerges from (4.50 and (4.51)). This condition is given 
by  

            
          

1 2 1

1 2 1

( 1 1 (
0 1

1 1

d E S pE V d E S pE V d

d E S pE V d E S pE V

  

  

      
      

2
.


                (4.52) 

Note that (4.52) essentially implies that     1 1E S pE V    and 2 1d   should jointly hold for the steady state 
to exist. This is also intuitively true. 
 
6. Particular Cases 
 
Case 1: If there are no server vacations, then we let p = 0 in the above results (4.45) to (4.52) and obtain  
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1 1 1
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     2 21 z   

           (4.53) 

               1 2 21 2 1 1*
0 0 2 1 2 2 0 2e e 1d d zr P z Q B z P z              0,                 (4.54) 
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                (4.56) 

 
We further obtain Q the steady state probability that 

thw server is idle as 

   
    

1 2

1 2 1

1 1

1 1

E S d
Q

dE S d E S

 

  

   
    

      (4.57) 

where E(S) is the mean service time of a priority unit. 
The utilization factor of the system is given by 

      
    

1 2 1

1 2 1

1 1
1

1 1

dE S d E S d
Q

dE S d E S

  


  

     
    

2  (4.58) 

The stability condition, under which the steady state 
exists, emerges from (4.57 and (4.58). This condition is 
given by  

      
    

1 2 1 2

1 2 1

1 1
0

1 1

dE S d E S d

dE S d E S

   

  

   
    

1.   (4.59) 

All results in (4.53) to (4.59) agree with the results of 
Madan and Abu-Dayyeah [15]. 

We may point out that with suitable substitutions, the 
main results of this paper will reduce to many other par-
ticular cases including a combination of 1kM E  and 

1M D  queues, a combination of 1M M  and 1M D  
queues, the case when no priority units arrive at the sys-
tem and the case when no non-priority units arrive at the 
system. Further, with p = 0, the results of all the particu-
lar cases of this paper agree with the corresponding par-
ticular cases of Madan and Abu-Dayyeah [9]. 
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