Common Fixed Points of Single and Multivalued Maps in Fuzzy Metric Spaces

Palaniappan Vijayaraju¹, Zahurullah Mohamed Ibrahim Sajath²

¹Department of Mathematics, Anna University, Chennai, India
²Department of Information Technology, Higher College of Technology, Muscat, Sultanate of Oman

E-mail: vijay@annauniv.edu, misajath@yahoo.com

Received February 24, 2011; revised March 25, 2011; accepted March 29, 2011

Abstract

In this paper we introduce the notion of common property (EA) in fuzzy metric spaces. Further we prove some common fixed points theorems for hybrid pair of single and multivalued maps under hybrid contractive conditions. Our results extend previous ones in fuzzy metric spaces.

Keywords: Fuzzy Metric Space, Common Fixed Point, Coincidence Point

1. Introduction

In 1965 Zadeh [1] introduced the theory of fuzzy sets. Many authors introduced the notion of fuzzy metric space in different ways. George and Veeramani [2] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [3] and defined Hausdorff topology in fuzzy metric space. Several authors [4-11] studied and developed the concept in different directions and proved fixed point theorems in fuzzy metric spaces.

In 1986 Jungck [12] introduced the concept of compatible mappings and utilized it to improve and generalize the commutativity conditions employed in common fixed point theorems. This induced interest in non-compatible mappings initiated by Pant [13]. Recently Aamri and Moutawakil [14] and Liu et al. [15] respectively defined the property (E.A) and the common property (E.A) as a generalization of non-compatibility and proved some common fixed point theorems in metric spaces. The aim of this paper is to define the common property (E.A) in the settings of fuzzy metric space and utilize the same to obtain some common fixed point theorems in fuzzy metric spaces.

We begin with some definitions and preliminary concepts.

2. Preliminaries

Definition 2.1. [16] A binary operation *: [0,1] x [0,1] → [0,1] is called a continuous t-norm if [0,1],* is an abelian topological monoid with unit 1 such that

a*b ≤ c*d whenever a ≤ c and b ≤ d for all a,b,c,d ∈ [0,1].

Examples of t-norm are a*b = ab and a*b = min{a,b}.

Definition 2.2. [3]. A triplet (X,M,*) is said to be a fuzzy metric space if (X,M) is an arbitrary set, * is a continuous -norm, and M is a fuzzy set on X × X satisfying the following conditions: for all x,y,z ∈ X and all s,t > 0

1) M(x,y,t) = 0 for all t > 0 if and only if x = y;
2) M(x,y,t) = 1 for all t > 0 if and only if x = y;
3) M(x,y,t) = M(y,x,t);
4) M(x,y,t)*M(y,z,s) ≤ M(x,z,t+s);
5) M(x,y,t): [0,∞) → [0,1] is left continuous;
6) lim_{t→∞}M(x,y,t) = 1.

M is called fuzzy metric on X. The functions M(x,y,t) denote the degree of nearness between x and y with respect to t respectively.

Definition 2.3. Let (X,M,*) be a fuzzy metric space. A sequence {x_n} in X is called Cauchy sequence if and only if lim_{n→∞}M(x_{n+p},x_n, t) = 1 for each p > 0, t > 0.

A sequence {x_n} in X is converging to x in X if and only if lim_{n→∞}M(x_n,x,t) = 1.

A fuzzy metric space (X,M,*) is said to be complete if and only if every Cauchy sequence in X is convergent in X.

Definition 2.4. [8] Let CB(X) denote the set of all nonempty closed bounded subsets of X. Then for every A,B,C ∈ CB(X) and t > 0,
$M_{\alpha} (A,B,t) = \min \left\{ \min_{a \in A} M^V (a,B,t), \min_{b \in B} M^V (A,b,t) \right\}$

where $M^V (C,y,t) = \max \{ M(z,y,t) : z \in C \}$.

**Remark 2.5.** Obviously $M_{\alpha} (A,B,t) \leq M^V (A,B,t)$ whenever $a \in A$ and $M_{\alpha} (A,B,t) = 1$ if and only if $A = B$.

**Definition 2.6.** [6] Two mappings $f$ and $g$ are compatible if and only if $\lim_{n \to \infty} M(fg(x_n),gf(x_n),t) = 1$ for all $t > 0$, whenever $\{x_n\}$ is a sequence in $X$ such that $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = x \in X$.

**Lemma 2.7.** Let $f, g$ be two compatible mappings on $X$. If $f(x) = g(x)$ for some $x \in X$, then $fg(x) = gf(x)$.

**Definition 2.8.** [10,11] Maps $f, g : X \to X$ are said to satisfy the property (EA) if there exists a sequence $\{x_n\} \subset X$ such that $\lim_{n \to \infty} Fx_n = \lim_{n \to \infty} Gx_n = t \in X$.

**Definition 2.9.** [11] A point $x \in X$ is a coincidence point (fixed point) of $f$ and $T$ if $f(x) = T(x) = f(x) = x$.

**Definition 2.10.** [11] A point $x \in X$ is a coincidence point of $f : X \to X$ and $T : X \to CB(X)$ if $f(x) \in T(x)$. We denote the set of all coincidence points of $f$ and $T$ by $C(f,T)$.

**Definition 2.11.** [16] Maps $f : X \to X$ and $T : X \to CB(X)$ are weakly compatible if they commute at their coincidence points, that is, if $fT = TF$.

**Theorem 3.3.** Let $f, g$ be two self maps of the fuzzy metric space $(X, M^V, *)$ and let $F, G$ be two maps from $X$ into $CB(X)$ such that

$M_{\alpha} (Fx_n, Gy_n) > \min \left\{ \min_{v \in C(f,F)} \frac{M^V (fx_n, gy_n)}{2}, \frac{M^V (fx_n, gy_n)}{2} \right\}$

If $fx$ and $gx$ are closed in $X$, then
1) $(f,F)$ and $(g,G)$ satisfy the common property (EA);
2) for all $x \neq y$ in $X$,

$\lim_{n \to \infty} Fx_n = A, \lim_{n \to \infty} Gy_n = B, \lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = t \in A \cap B$.

**Proof.** Since $(f,F)$ and $(g,G)$ satisfy the common property (EA), there exist two sequences $\{x_n\}$ and $\{y_n\}$ in $X$, $u \in X$ and $A, B \in CB(X)$ such that $\lim_{n \to \infty} Fx_n = A$ and $\lim_{n \to \infty} Gy_n = B$.

$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = u \in A \cap B$.

By virtue of $(f(x)$ and $g(x)$ being closed, we have $u = fv$ and $u = gw$ for some $v, w \in X$. Now we shall show that $fv \in Fv$ and $gw \in Gw$. The condition (2) implies that

$M_{\alpha} (Fx_n, Gy_n) > \min \left\{ \min_{v \in C(f,F)} \frac{M^V (fx_n, gw_n)}{2}, \frac{M^V (fx_n, gw_n)}{2} \right\}$

Copyright © 2011 SciRes.
Taking the limit as \( n \to \infty \), we get
\[
M_v(A,Gw,t) \geq \min \left\{ \frac{M^v(fv, gw, t) + M^v(gw, Gw, t)}{2} \right\}
\]
Since \( u = fv = gw \), we obtain
\[
M_v(A,Gw,t) \geq \min \left\{ \frac{M^v(u, A, t) + M^v(u, Gw, t)}{2} \right\}
\]
That is, \( M_v(A,Gw,t) \geq \frac{1+M^v(u, Gw, t)}{2} \), since \( u \in A \).

Combining the inequalities (3) and (4) we get
\[
1+M^v(u, Gw, t) \leq 2M^v(A,Gw,t) \leq 2M^v(u,Gw,t)
\]
This implies \( 1+M^v(u, Gw, t) \geq 1 \Rightarrow M^v(u, Gw, t) = 1 \)
Hence \( u = gw \in Gw \)

On the other hand by condition (2), we have
\[
M_v(Fv,Gy,t) > \min \left\{ \frac{M^v(Fv, Gv, t) + M^v(Gv, Gy, t)}{2} \right\}
\]
Taking limit as \( n \to \infty \), we get
\[
M_v(Fv,B,t) \geq \min \left\{ \frac{M^v(Fv, B, t) + M^v(gw, Fv, t)}{2} \right\}
\]
That is,
\[
M_v(Fv,B,t) \geq \min \left\{ \frac{M^v(Fv, B, t) + M^v(gw, Fv, t)}{2} \right\}
\]

Similarly, we obtain
\[
M^v(Fv,Fy,t) = 1 \text{, which implies that } Fv \in Fv \text{. Thus } f \text{ and } F \text{ have a coincidence point } v, g \text{ and } G \text{ have a coincidence point } w \text{. This ends the proof of (a) and (b).}
\]

By virtue of condition (c), we get \( ffv \in Ffv \). Thus \( u = fu \in Fu \). This proves (c). Similarly (d) can be proved. Then (e) follows immediately.

**Corollary 3.4.** Let \( f \) be a self-map of fuzzy metric space \((X,M,*)\) and let \( F \) be a map from \( X \) into \( CB(X) \) such that

1) \((f,F)\) satisfies the property \((EA)\);  
2) for all \( x \neq y \) in \( X \),

**Corollary 3.5.** Let \( f \) be a self-map of the fuzzy metric space \((X,M,*)\) and let \( F \) and \( G \) be two maps from \( X \) into \( CB(X) \) such that

1) \((f,F)\) and \((f,G)\) satisfy the common property \((EA)\);  
2) for all \( x \neq y \) in \( X \),
If \( fX \) is closed subset of \( X \), then
1) \( f, G \) and \( F \) have a coincidence point;
2) \( f, G \) and \( F \) have a common fixed point provided that \( f \) is both \( F \) weakly commuting and \( G \) weakly commuting at \( v \) and \( ffv = fv \), for \( v \in C(f,F) \).

**Proof.** Let \( f = g \), then the result follows.

\[
M_v(Fx,Gy,t) > \min \left\{ M(fx,gy,t), \frac{M^\alpha(fx,Fx,t) + M^\alpha(gy,Gy,t)}{2}, \frac{M^\alpha(fx,Gy,t) + M^\alpha(gy,Fx,t)}{2} \right\}
\]

If \( fX \) and \( gX \) are closed subsets of \( X \), then
1) \( f \) and \( F \) have a coincidence point;
2) \( g \) and \( G \) have a coincidence point;
3) \( f \) and \( F \) have a common fixed point provided that \( f \) is \( F \) weakly commuting at \( v \) and \( ffv = fv \) for \( v \in C(f,F) \);
4) \( g \) and \( G \) have a common fixed point provided that \( g \) is \( G \) weakly commuting at \( v \) and \( ggv = gv \) for \( v \in C(g,G) \);
5) \( f,F,g \) and \( G \) have a common fixed point provided that both (c) and (d) are true.

\[
M_v(Fx,Gy,t) > \min \left\{ M(fx,gy,t), M^\alpha(fx,Fx,t), M^\alpha(gy,Gy,t), M^\alpha(fx,Gy,t), M^\alpha(gy,Fx,t) \right\}
\]

If \( fX \) and \( gX \) are closed in \( X \), then
1) \( f \) and \( F \) have a coincidence point;
2) \( g \) and \( G \) have a coincidence point;
3) \( f \) and \( F \) have a common fixed point provided that \( f \) is \( F \) weakly commuting at \( v \) and \( ffv = fv \) for \( v \in C(f,F) \);
4) \( g \) and \( G \) have a common fixed point provided that \( g \) is \( G \) weakly commuting at \( v \) and \( ggv = gv \) for \( v \in C(g,G) \);
5) \( f,F,g \) and \( G \) have a common fixed point provided that both (c) and (d) are true.

\[
M_v(Fx,Gw,t) > \min \left\{ M(fx,gy,t), M^\alpha(fx,Fx,t), M^\alpha(gw,Gw,t), M^\alpha(gw,Gw,t), M^\alpha(gy,Fx,t) \right\}
\]

Taking limit as \( n \rightarrow \infty \), we obtain

\[
M_v(A,Gw,t) > \min \left\{ M(fv,gy,t), M^\alpha(fv,Fv,t), M^\alpha(gw,Gw,t), M^\alpha(fv,Gw,t), M^\alpha(gw,A,t) \right\}
\]

Since \( fv = gw \in A \cap B \), we get

\[
M^\alpha(fv,gy,t) = M(fv,A,t) = M^\alpha(gw,A,t) = 1.
\]

Therefore

\[
M_v(A,Gw,t) > \min \left\{ M^\alpha(fv,Gw,t), M^\alpha(fv,Gw,t), M^\alpha(gw,A,t) \right\}
\]

That is \( M_v(A,Gw,t) > M^\alpha(fv,Gw,t) \).

This contradicts 2.5 and hence \( M_v(A,Gw,t) = 1 \). This implies that \( A = Gw \). Therefore \( fv = gw \in Gw \).

On the other hand by condition (2) again, we have

\[
M_v(Fv,Gv_n,t) > \min \left\{ M(fv,Gv_n,t), M^\alpha(fv,Fv,t), M^\alpha(gw,Gv_n,t), M^\alpha(fv,Gv_n,t), M^\alpha(gv_n,Fv,t) \right\}
\]
Similarly, taking limit as \( n \to \infty \), we obtain
\[
M_v (Fv, B, t) = 1
\]
Thus, we get \( Fv = B \).
Since \( f_v = gw \in B \), \( f_v \in Fv \).
Thus \( f \) and \( F \) have a coincidence point \( v \), \( g \) and \( G \) have a coincidence point \( w \). This ends the proof of part (a) and part (b). The rest of proof is similar to the argument of theorem 2.3.

4. References


