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Abstract 
 
This paper presents the study of convective heat transfer characteristics of an incompressible dusty fluid past 
a vertical stretching sheet. The governing partial differential equations are reduced to nonlinear ordinary dif-
ferential equations by using similarity transformation. The transformed equations are solved numerically by 
applying Runge Kutta Fehlberg fourth-fifth order method (RKF45 Method). Here obtained non-dimensional 
velocity and temperature profiles has been carried out to study the effect of different physical parameters 
such as fluid-particle interaction parameter, Grashof number, Prandtl number, Eckert number. Comparison of 
the obtained numerical results is made with previously published results. 
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1. Introduction 
 
The behavior of boundary layer flow due to a moving 
flat surface immersed in a quiescent fluid was first stu-
died by Sakiadis [1], who investigated it theoretically by 
both exact and approximate methods. Crane [2] presented 
a closed form exponential solution for the planar viscous 
flow of linear stretching case. Later this problem has been 
extended to various aspects by considering non-Newton- 
ian fluids, more general stretching velocity, magnetohy-
drodynamic (MHD) effect, porous sheet, porous media 
and heat or mass transfer. Andreson et al. [3] extended 
the work of crane [2] to non-Newtonian power law fluid 
over a linear stretching sheet. Chakrabarti and Gupta [4] 
have discussed the hydromagnetic flow and heat transfer 
over a stretching sheet. Grubka and Bobba [5] analyzed 
heat transfer studies by considering the power law varia-
tion of surface temperature. Cortell [6] studied the mag-
netohydrodynamics flow of a power-law fluid over a 
stretching sheet. Chen [7] analyzed mixed convection of 
a power law fluid past a stretching surface in the pres-
ence of thermal radiation and magnetic field.  

Power law model has some limitations as, it does not 
exhibit any elastic properties such as normal stress diffe- 
rences in shear flow. In certain polymer processing appli-  

cations, flow of a viscoelastic fluid over a stretching sheet 
is important. For that reason Cortell [8] studied the effe- 
cts of viscous dissipation and work done by deformation 
on the MHD flow and heat transfer of a viscoelastic fluid 
over a stretching sheet. Abel et al. ([9,10]) extended the 
work and studied the viscoelastic MHD flow and heat 
transfer over a stretching sheet with viscous and ohmic 
dissipation, non-uniform heat source and radiation. Tsai 
et al. [11] studied an unsteady flow over a stretching sur- 
face with non-uniform heat source. Ishak et al. [12] ob-
tained the solution to unsteady laminar boundary layer 
over a continuously stretching permeable surface.  

These investigations deal with the flow and heat trans- 
fer induced by a horizontal stretching sheet, but there ari- 
se some situations where the stretching sheet moves ver-
tically in the cooling liquid. Under such circumstances the 
fluid flow and the heat transfer characteristics are deter-
mined by two mechanisms, namely the motion of stret-
ching sheet and the buoyant force. The thermal buoyancy 
resulting from heating/cooling of a vertically moving str- 
etching sheet has a large impact on the flow and heat 
transfer characteristics. Effects of thermal buoyancy on 
the flow and heat transfer under various physical situa-
tions have been reported by many investigators (see [13- 
16]).  

To study the two-phase flows, in which solid spherical 
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particles are distributed in a fluid are of interest in a wide 
range of technical problems, such as flow through packed 
beds, sedimentation, environmental pollution, centrifugal 
separation of particles, and blood rheology. The study of 
the boundary layer of fluid-particle suspension flow is 
important in determining the particle accumulation and 
impingement of the particle on the surface. In view of 
these applications, Chakrabarti [17] analyzed the boun-
dary layer in a dusty gas. Datta and Mishra [18] have in- 
vestigated boundary layer flow of a dusty fluid over a 
semi-infinite flat plate. Further, researches in these fields 
have been studied by many investigators such as Evgeny 
and Sergei [19], XIE Ming-liang et al. [20], Palani et al. 
[21], Agranat [22] and Vajravelu et al. [23]. Abdul Aziz 
[24] obtained the numerical solution for laminar thermal 
boundary over a flat plate with a convective surface 
boundary condition using the symbolic algebra software 
Maple. 

Motivated by the above investigations, we present in 
this paper the boundary layer flow and heat transfer of a 
dusty fluid over a stretching vertical surface. The govern- 
ing partial differential equations are transformed into or- 
dinary differential equations using similarity transforma-
tion, before they are solved numerically by Runge Kutta 
Fehlberg fourth-fifth order method. Comparison of the 
results are to be in excellent agreement those reported by 
Grubka and Abel. The RKF45 algorithm in Maple has 
been well tested for its accuracy and robustness. The 
analysis of obtained results showed that the fluid particle 
interaction parameter, Grashof number, Prandtl number 
and Eckert number have significant influence on the flow 
and heat transfer. 
 
2. Flow Analysis of the Problem 
 
Consider a steady two dimensional laminar boundary 
layer flow of an incompressible viscous dusty fluid over 
a vertical stretching sheet. The flow is generated by the 
action of two equal and opposite forces along the x-axis 
and y-axis being normal to the flow. The sheet being 
stretched with the velocity  wU x  along the x-axis, 
keeping the origin fixed in the fluid of ambient tempera-
ture T. Both the fluid and the dust particle clouds are 
suppose to be static at the beginning. The dust particles 
are assumed to be spherical in shape and uniform in size 
and number density of the dust particle is taken as a con-
stant throughout the flow. 

The momentum equations of the two dimensional 
boundary layer flow in usual notation are [23]: 
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where  ,u v  and  ,p pu v  are the velocity compo-
nents of the fluid and dust particle phases along x and y 
directions respectively. u ,   and N are the co-effi- 
cient of viscosity of the fluid, density of the fluid, num-
ber density of the particle phase, K is the stokes’ resis-
tance (drag co-efficient), T and T  are the fluid tem-
perature within the boundary layer and in the free stream 
respectively. g is the acceleration due to gravity, *  is 
the volumetric coefficient of thermal expansion, m is the 
mass of the dust particle respectively. In deriving these 
equations, the drag force is considered for the iteration 
between the fluid and particle phases. 

The boundary conditions are 

  ,  0 at 0,

0,  0,  ,   as .
w

p p
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where  wU x cx  is a stretching sheet velocity, 0c   
is stretching rate,   is the density ratio. To convert the 
governing equations into a set of similarity equations, we 
introduce the following transformation as mentioned 
below, 
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which identically satisfies (2.1), and substituting (2.7) 
into (2.2) to (2.5), we obtain the following non-linear 
ordinary differential equations: 
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where a prime denotes differentiation with respect to   
and *l mN  , m k   is the relaxation time of the 
particle phase, 1 c   is the fluid particle interaction 
parameter,  * 2

wGr g T T c x    is the Grashof num- 
ber and r N   is the relative density. 

The boundary conditions defined as in (2.6) will take 
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the form, 

   0,  0 at 0f f           (2.12) 
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If 0   and 0Gr   the analytical solution of (2.8) 
with boundary condition (2.12) can be written in the 
form: 

  1f e     

 
3. Heat Transfer Analysis 
 
The dusty boundary layer heat transport equations in the 
presence of non-uniform internal heat generation/ab- 
sorption for two dimensional flows are given by [25]: 
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where T  and PT  is the temperature of the fluid and 
temperature of the dust particle, Pc  and mc  are the 
specific heat of fluid and dust particles, T  is the ther-
mal equilibrium time and is time required by the dust 
cloud to adjust its temperature to the fluid, v  is the 
relaxation time of the of dust particle i.e., the time re-
quired by the a dust particle to adjust its velocity relative 
to the fluid, *k  is the thermal conductivity. 

In order to solve the (3.1) and (3.2), we consider non 
dimensional temperature boundary condition as follows  
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Using (3.4) into (3.1) to (3.2), we obtain the following 
non-linear ordinary differential equations 
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4. Results and Discussion 
 
The system of coupled ordinary differential Equations 
(2.8) to (2.12) and (3.5) to (3.7) has been solved numeri-
cally using Runge-Kutta-Fehlberg fourth-fifth order me- 
thod. To solve these equations we adopted symbolic al-
gebra software Maple which was given by Aziz [24]. 
Maple uses the well known Runge-Kutta-Fehlberg fourty- 
fifth order (RFK45) method to generate the numerical 
solution of a boundary value problem. The boundary 
conditions     were replaced by those at 5   in 
accordance with standard practice in the boundary layer 
analysis. Numerical computation of these solutions have 
been carried out to study the effect of various physical 
parameters such as fluid particle interaction parameter 
 , Grashof number Gr , Prandtl number Pr  and 
Eckert number Ec  are shown graphically. 

In order to verify the accuracy of our present study, 
the values for wall temperature  0  gradient for vari-
ous values of Prandtl number are given in Table 1, 
which shows the excellent agreement with those reported 
by Grubka and Bobba [5] and Abel and Mahesha [10]. 
Further, the Table 2 shows the results of thermal charac-
teristics at the wall for different values of influenced 
physical parameters. 

Figure 1 shows the effect of Grashof number  Gr  
on the velocity profile. From this plot it is observed that 
the effect of increasing values of Grashof number is to 
increases the velocity distribution in the flow region. 
Physically 0Gr   means heating of the fluid or cooling 
of the boundary surface, 0Gr   means cooling of the 
fluid or heating of the boundary surface and 0Gr   
corresponds to the absence of free convection current. 

From the Figure 2 shows the effect of fluid particle  
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Figure 1. Effect of Gr  on the velocity profiles for    
0.5N , 2.0Ec  , 1.0Pr   and 0.2  . 

 

 

Figure 2. Effect of   on the velocity profiles for Gr  
0.5N , 2.0Ec  , 1.0Pr   and 0.2  . 

 
interaction parameter    on velocity components of 
the fluid velocity  f   and particle velocity  F   
i.e., if   increases we can find the decrease in the fluid 
phase velocity and increase in the dust phase velocity. 
Also it reveals that for the large values of   i.e., the 
relaxation time of the dust particle decreases then the 
velocities of both fluid and dust particles will be the 
same. 

Figure 3 which illustrate the effect of Prandtl number 
 Pr  on the temperature profiles. We infer from this 
figure that the temperature decreases with an increase in 
the Prandtl number, which implies viscous boundary 
layer is thicker than the thermal boundary layer. From 
these plots it is evident that large values of Prandtl num-
ber result in thinning of the thermal boundary layer. In 
this case temperature asymptotically approaches to zero 

in free stream region. This is in contrast to the effects of 
other parameters, except Gr  and   on heat transfer. 

Figures 4 is plotted for the temperature profiles for 
different values of  Ec . We observe that the effect of 
increasing values of Eckert number is to enhance the 
temperature at a point which is true for both the fluid 
phase as well as dust phase temperatures. Physically it 
means that the heat energy is stored in the fluid due to 
the frictional heating. 

Figure 5 depict the effect of Grashof number  Gr  
versus  . It is evident from these plots that increasing 
value of Gr  results in thinning of the thermal boundary 
layer associated with an increase in the wall temperature 
gradient and hence produces an increase in the heat 
transfer rate. 

Figure 6, which is a graphical representation of the 
temperature profiles for different values of   versus  

 

Figure 3. Effect of Pr  on the temperature profiles for 
0.5  N , 2.0Ec  , 0.5Gr  and 0.2  . 

 

 

Figure 4. Effect of Ec  on the temperature profiles for 
0.5  N , 0.5Gr , 1.0Pr   and 0.2  . 
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Figure 5. Effect of Gr  on the temperature profiles for 
0.5  N , 2.0Ec  , 1.0Pr   and 0.2  . 

 

 

Figure 6. Effect of   on the temperature profiles for 
0.5 Gr N , 2.0Ec  , 1.0Pr   and 0.2  . 

 
Table 1. Comparison of the results for the dimensionless 
temperature gradient     in the case of 0  , 0N  
and 0Gr . 

Pr 
Grubka and 
Bobba [5] 

Abel and Mahesha 
[10] 

Present Study 

 0   

0.72 1.0885 1.0885 1.0886 

1.0 1.3333 1.3333 1.3333 

10.0 4.7969 4.7968 4.7968 

 
 . We infer from these figures that temperature of the 
fluid and dust particle decreases with increase in   res- 
pectively. From all the graphs we can observed that fluid 
phase temperature is higher than the dust phase tempera-
ture and also it indicates that the fluid particles tempera- 

Table 2. Values of wall temperature gradient     for 
different values of the parameters  , Gr , Pr  and Ec . 

  Ec  Pr  Gr   0   

0.2 2.0 1.0 0.5 −0.07441 

0.5    −1.11703 

1.0    −1.39241 

0.5 0.0 1.0 0.5 −1.70879 

 1.0   −1.41767 

 2.0   −1.11703 

0.5 2.0 1.0 0.5 −1.11703 

  2.0  −1.56421 

  3.0  1.89316 

0.5 2.0 1.0 0.0 −1.12770 

   0.5 −1.11703 

   1.0 −1.09157 

 
ture is parallel to the dust particles temperature. We have 
used throughout our thermal analysis the values of 

0.5T v    and  0.2,  0.5, 1p mc c c    . 
 
5. Conclusions 
 
The two-dimensional boundary layer flow and heat  
transfer of a dusty fluid due to a vertical stretching sheet 
has been investigated. The governing partial differential 
equation is converted into ordinary differential equations 
by using similarity transformations. The effect of several 
parameters controlling the velocity and temperature pro-
files are shown graphically and discussed briefly. The in- 
fluence of the parameter ,  ,  Gr Ec  and Pr  on di- 
mensionless velocity and temperature profiles were exa- 
mined.  

Some of the important findings of our analysis ob-
tained by the graphical representation are listed below. 
 The effect of Gr  is to increase the momentum 

boundary layer thickness and to decrease the ther-
mal boundary layer thickness. 

 Ec  has significant effect on the boundary layer 
growth. 

 The boundary layers are highly influenced by the 
Prandtl number. The effect of Pr  is to decreases 
the thermal boundary layer thickness. 

 The rate of heat transfer  0   decreases with in-
creasing the Pr  and  . While it increases with 
increasing the Ec . 

If 0Gr   we can find the results of the horizontal 
stretching sheet. 
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Nomenclature 
 
A   constant 
c   stretching rate 

mc   specific heat of dust phase 

pc   specific heat of fluid 
Ec   Eckert number 
Gr   Grashof number 
K   stokes resistance 

*k   thermal conductivity 
l   characteristic length 
N   number density of the dust phase 
Pr   Prandtl number 
T   temperature of the fluid 

pT   temperature of the dust phase 

wT   temperature at the wall 
T   temperature at large distance from the wall 

 wU x  stretching sheet velocity 
,u v   velocity components of the fluid along x  and      

         y  directions 

,p pu v  velocity components of the dust particle along    
        x  and y  directions 
x   coordinate along the stretching sheet 
y   distance normal to the stretching sheet 

Greek symbols 
   coefficient of the viscosity of the fluid 
   density of the fluid 
   density ratio 
   relaxation time of the dust phase 
   fluid particle interaction parameter 

r   relative density 

T   thermal equilibrium time 

v   relaxation time of the dust phase 
   fluid phase temperature 

p   dust phase temperature 
   dimensionless space variable 
Subscripts 
w   properties at the plate 
   free stream condition

 


