Pulse Vaccination Strategy in an Epidemic Model with Two Susceptible Subclasses and Time Delay

Youquan Luo, Shujing Gao, Shuixian Yan
Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, China
E-mail: gaojsmath@126.com
Received August 1, 2010; revised November 10, 2010; accepted November 15, 2010

Abstract

In this paper, an impulsive epidemic model with time delay is proposed, which susceptible population is divided into two groups: high risk susceptibles and non-high risk susceptibles. We introduce two thresholds R_1, R_2 and demonstrate that the disease will be extinct if $R_1 < 1$ and persistent if $R_2 > 1$. Our results show that larger pulse vaccination rates or a shorter the period of pulsing will lead to the eradication of the disease. The conclusions are confirmed by numerical simulations.

Keywords: High Risk Susceptible, Non-High Risk Susceptible, Pulse Vaccination, Extinction

1. Introduction

Infectious diseases have tremendous influence on human life. Every year, millions of people die of various infectious diseases. Controlling infectious diseases has been an increasingly complex issue in recent years [1]. Over the last fifty years, many scholars have paid great attention to construct mathematical models to describe the spread of infectious diseases. See the literatures [2-8], the books [9-11] and the references therein. In the classical epidemiological models, a population of total size N is divided into S (susceptible numbers), I (infective numbers), or S, I and R (recovered numbers) or S, E (exposed numbers), I and R, and corresponding epidemiological models such as SI, SIS, SIR, $SIRS$, $SIER$ and $SEIRS$ are constructed. All these models are extensions of the SIR model elaborated by Kermack and McKendrick in 1927 [12]. Anderson and May [5,9] discussed the spreading nature of biological viruses, parasites etc. leading to infectious diseases in human population through several epidemic models. Cooke and Driessche [8] investigated an $SEIRS$ model with the latent period and the immune period. The consideration of the latent period and the immune period gave rise to models with the incorporation of delays and integral equation formulations.

However, owing to the physical health status, age and other factors, susceptibles population show different infective to a infectious disease. In this paper, we divide the susceptible population into two groups: non-high risk susceptibles (S_1) and high risk susceptibles (S_2), such that individuals in each group have homogeneous susceptibility, but the susceptibilities of individuals from different groups are distinct. In this paper, we propose a new SIR epidemic model, which two noninteracting susceptible subclasses, the nonlinear incidence $\beta S^p I$, time delay and pulse vaccination are considered. The main purpose of this paper is to study the dynamical behavior of the model and establish sufficient conditions that the disease will be extinct or not.

The organization of this paper is as follows. In the next section, we construct a delayed and impulsive SIR epidemic model with two noninteracting susceptible subclasses. In Section 3, using the discrete dynamical system determined by the stroboscopic map, we establish sufficient conditions for the global attractivity of infection-free periodic solution. And the sufficient conditions for the permanence of the model are obtained in section 4. Finally, we present some numerical simulations to illustrate our results.

2. Model Formulation and Preliminaries

Gao etc. [13] proposed a delayed SIR epidemic model with pulse vaccination:
In model (1), the authors assumed that the birth rate \((\mu)\) is equal to the death rate, and use a bilinear incidence rate. Motivated by [13], in this paper, we assume that there are two cases noninteracting susceptible subclasses. We denote the density of the susceptible individuals that belong to different subclasses, the infected individuals, and the recovered individuals in the population by \(S_i, S_2, I\) and \(R\), respectively, that is, the total variable population \(N = S_1 + S_2 + I + R\). Moreover, if the nonlinear incidence \(\beta IS^p (p \geq 1)\), different constant recruitments and death rates are incorporated into model (1). Then the corresponding model is investigated:

\[
\begin{align*}
S'_i(t) &= \lambda_i - \beta_i S^p_i(t) I(t) - \mu_i S_i(t), \\
S'_2(t) &= \lambda_2 - \beta_2 S^p_2(t) I(t) - \mu_2 S_2(t), \\
I'(t) &= \beta_1 S^p_1(t) I(t) + \beta_2 S^p_2(t) I(t) - \beta e^{-\mu t} S^p(t) I(t) - \beta e^{-\mu t} S^p(t) I(t) - \sigma R(t), \\
R'(t) &= \beta e^{-\mu t} S^p(t) I(t) + \beta_2 e^{-\mu t} S^p_2(t) I(t) - \sigma R(t), \\
S_i(t^+) &= (1 - \theta_1) S_i(t), \\
S_2(t^+) &= (1 - \theta_2) S_2(t), \\
I(t^+) &= I(t), \\
R(t^+) &= R(t) + \theta S_i(t) + \theta S_2(t),
\end{align*}
\]

where \(\lambda_i, \mu_i, \beta_i, \beta, \mu, \sigma, \theta, \tau, \theta_1, \theta_2\) are the recruitment rate into the \(i\)-th susceptible class, respectively parameters \(\mu_1, \mu_2, d\) and \(\sigma\) are the death rates of the susceptible, infected and recovered individuals, and \(\beta, \beta_i, i = 1, 2\) are the contact rates, \(\tau\) is the infectious period. The term \(\beta e^{-\mu t} S^p(t) I(t) - \beta e^{-\mu t} S^p(t) I(t) - \sigma R(t)\) reflects the fact that an individual has recovered from the infective compartments and are still alive after infectious period \(\tau\). \(\theta_i, \theta, i = 1, 2\) are the vaccination rates, and \(T\) is the period of pulsing.

Adding all the equations in model (2), the total variable population size is given by the differential equation

\[
\begin{align*}
N'(t) &= \lambda_1 + \lambda_2 - \mu_1 S_1(t) - \mu_2 S_2(t) - dR(t) - \sigma R(t), \\
\end{align*}
\]

and we have

\[
N'(t) \leq \lambda_1 + \lambda_2 - hN(t),
\]

where \(h = \min \{\mu_1, \mu_2, d, \sigma\}\). It follows that

\[
\limsup_{t \to \infty} N(t) \leq \frac{\lambda_1 + \lambda_2}{h}.
\]

Note that the first three equations of system (2) do not depend on the forth equation. Thus, we restrict our attention to the following reduced system:

\[
\begin{align*}
S'_i(t) &= \lambda_i - \beta_i S^p_i(t) I(t) - \mu_i S_i(t), \\
S'_2(t) &= \lambda_2 - \beta_2 S^p_2(t) I(t) - \mu_2 S_2(t), \\
I'(t) &= \beta_1 S^p_1(t) I(t) + \beta_2 S^p_2(t) I(t) - \beta e^{-\mu t} S^p(t) I(t) - \beta e^{-\mu t} S^p(t) I(t) - \sigma R(t), \\
S_i(t^+) &= (1 - \theta_1) S_i(t), \\
S_2(t^+) &= (1 - \theta_2) S_2(t), \\
I(t^+) &= I(t), \\
R(t^+) &= R(t) + \theta S_i(t) + \theta S_2(t),
\end{align*}
\]

where \(\phi = (\phi_1, \phi_2, \phi_3) \in PC^\tau\), and \(PC^\tau\) is the space of all piecewise functions \(\phi: [-\tau, 0] \to R^\tau\) with points of discontinuity at \(-nT (n \in N)\) of the first kind and
which are continuous from the left, i.e., \(\phi(-nT - 0) = \phi(-nT) \), and \(R_i^i = \left\{(x_1, x_2, x_3) \in R^3 \mid x_i \geq 0, i = 1, 2, 3\right\} \).

Define a subset of \(R_i^i \)

\[
\Omega = \left\{ (S_1(t), S_2(t), I(t)) \in R^3 \mid 0 \leq S_1(t) + S_2(t) + I(t) \leq \frac{\lambda_1 + \lambda_2}{h} \right\}
\]

From biological considerations, we discuss system (3) in the closed set. It is easy to verify that \(\Omega \) is positively invariant with respect to system (3).

3. Global Attractivity of Disease-Free Periodic Solution

To prove our main results, we state some notations and lemmas which will be essential to our proofs.

Lemma 1 (see [6]) Consider the following impulsive differential equation

\[
\begin{align*}
 u'(t) &= a - bu(t), t \neq nT, \\
 u'(t^+) &= (1-\theta)u(t), t = nT,
\end{align*}
\]

where \(a > 0, b > 0, 0 < \theta < 1 \). Then above system exists a unique positive periodic solution given by

\[
u(t) = \frac{a}{b} + \left(\frac{a}{b} - \frac{a}{b} \right) e^{-b(t-nT)}, \quad \text{for} \ nT < t \leq (n+1)T,
\]

which is globally asymptotically stable, where

\[
\Pi = \frac{a(1-\theta)(1-e^{-bT})}{b(1-e^{-bT})}.
\]

Definition 1 (see [14]). Let \(V : R_i \times R_i^i \rightarrow R_+ \), then \(V \) is said to belong to class \(V_0 \) if

i) \(V \) is continuous in \((nT, (n+1)T] \times R_i^i \) and for each

\[
X \in R_i^i, \lim_{(t,x) \to (nT, X)} V(t,x) = V(nT^+, X)
\]

ii) \(V \) is locally Lipschitzian in \(X \).

Lemma 2 (see [14]). Let \(V \in V_0 \). Assume that

\[
\begin{align*}
 D^+ V(t,x) &\leq g(t, V(t,x)), \quad t \neq nT, \\
 V(t^+, x(t')) &\leq \varphi_\nu(V(t,x)), \quad t = nT,
\end{align*}
\]

where \(g : R_i \times R_+ \rightarrow R_+ \) is continuous in \((nT, (n+1)T] \times R_+ \)

\[
\text{and for} \quad u \in R_+, \quad n \in N, \quad \lim_{(t,x) \to (nT^+, u)} V(t,y) = V(nT^+, u)
\]

exists, \(\varphi_\nu : R_i \rightarrow R_+ \) is non-decreasing. Let \(r(t) \) be the maximal solution of the scalar impulsive differential equation

\[
\begin{align*}
 u'(t) &= g(t, u(t)), \quad t \neq nT, \\
 u'(t^+) &= \varphi_\nu(u(t)), \quad t = nT,
\end{align*}
\]

existing on \([0, \infty] \). Then above system exists a unique positive periodic solution given by

\[
\begin{align*}
 S_1'(t) &= \lambda_i - \mu_i S_1(t), \quad t \neq nT, \\
 S_2'(t) &= (1-\theta)S_1(t), \quad t = nT.
\end{align*}
\]

According to Lemma 1, we know that the periodic solution of the system

\[
S_1'(t) = \frac{\lambda_i}{\mu_i} \left(1 - \frac{\theta e^{-\mu_i(t-nT)}}{1-(1-\theta)e^{-\mu_iT}} \right)
\]

for \(nT < t \leq (n+1)T, \quad (i = 1, 2) \)

is globally asymptotically stable. Therefore system (3) has a unique disease-free periodic solution

\[
(S_1', S_2', 0).
\]

Denote

\[
R_i = \frac{\beta_1}{d} \left(\frac{\lambda_i}{\mu_i} \left(1 - \frac{e^{-\mu_iT}}{1-(1-\theta)e^{-\mu_iT}} \right) \right)^p + \frac{\beta_i}{d} \left(\frac{\lambda_i}{\mu_i} \left(1 - \frac{e^{-\mu_iT}}{1-(1-\theta)e^{-\mu_iT}} \right) \right)^p < d.
\]

Theorem 1 If \(R_i < 1 \), then the disease-free periodic solution \((S_1', S_2', 0) \) of system (3) is globally attractive.

Proof. Since \(R_i < 1 \), we can choose \(\varepsilon > 0 \) sufficiently small such that

\[
\beta_1 \left(\frac{\lambda_i}{\mu_i} \left(1 - \frac{e^{-\mu_iT}}{1-(1-\theta)e^{-\mu_iT}} \right) \right)^p + \beta_1 \left(\frac{\lambda_i}{\mu_i} \left(1 - \frac{e^{-\mu_iT}}{1-(1-\theta)e^{-\mu_iT}} \right) \right)^p < d.
\]

From the first equation and the second equation of system (3), we have \(S_i'(t) < \lambda_i - \mu_i S_i(t), \quad (i = 1, 2) \). Then we consider the following impulsive comparison system
According to Lemma 1, we obtain the periodic solution of system (7)

\[
\begin{aligned}
 u_i^*(t) &= \frac{\lambda_i}{\mu_i} \left(1 - \frac{\theta e^{-\mu_i t}}{1 - (1 - \theta)e^{-\mu_i T}} \right), \\
 v_i^*(t) &= \frac{\lambda_i}{\beta_i S_i^p - \epsilon + \mu_i} \left[1 - \frac{\theta e^{-\mu_i t}}{1 - (1 - \theta)e^{-\mu_i T}} \right] \lambda_i
\end{aligned}
\]

for \(nT < t \leq (n+1)T \), \(i = 1, 2 \),

which is globally asymptotically stable. By the comparison theorem [14], we have that there exists \(n_i \in \mathbb{Z}_+ \) such that for \(nT < t \leq (n+1)T \), \(n > n_i \),

\[
S_i(t) < u_i^*(t) + \epsilon = S_i^*, \quad (i = 1, 2).
\]

Furthermore, from the third equation of system (3), we get

\[
v_i^*(t) = \frac{\lambda_i}{\beta_i S_i^p - \epsilon + \mu_i} \left[1 - \frac{\theta e^{-\mu_i t}}{1 - (1 - \theta)e^{-\mu_i T}} \right] \lambda_i
\]

which is globally asymptotically stable. In view of the comparison theorem [14], there exists an integer \(n_2 > n_1 \)

\[
S_i(t) > v_i^*(t) + \epsilon \geq \frac{\lambda_i}{\beta_i S_i^p - \epsilon + \mu_i} \left[1 - \frac{\theta e^{-\mu_i t}}{1 - (1 - \theta)e^{-\mu_i T}} \right] \lambda_i + \epsilon, \quad (i = 1, 2)
\]

Since \(\epsilon \) and \(\epsilon_1 \) are sufficiently small, from (8) and (10), we know that

\[
\lim_{t \to \infty} S_i(t) = S_i^*(t), \quad (i = 1, 2).
\]

Hence, disease-free periodic solution \(\left(S_1^*(t), S_2^*(t), 0\right) \) of system (3) is globally attractive. The proof is completed.

Next, we give some accounts of the Theorem 1 for a well biological meaning.

\[
\frac{\partial R_i}{\partial T} = p \frac{\beta_i \lambda_i}{\mu_i^p (1 - (1 - \theta)e^{-\mu_i T})^{p+1}} \theta_i \mu_i e^{-\mu_i t} + \frac{p \beta_i \lambda_i}{\mu_i^p (1 - (1 - \theta)e^{-\mu_i T})^{p+1}} \theta_i \mu_i e^{-\mu_i t} > 0.
\]

Theorem 1 determines the global attractivity of the disease-free periodic solution of system (3) in \(\Omega \) for the case \(R_i < 1 \). Its epidemiology implies that the disease will die out. From (11) and (12), we can see that larger pulse vaccination rates or a shorter period of immune vaccination will make for the disease eradication.

4. Permanence

In this section, we state the disease is endemic if the infectious population persists above a certain positive level for sufficiently large time. The endemicity of the disease can be well captured and studied through the notion of uniform persistence.

Definition 2. System (3) is said to be uniformly persistent if there exist positive constants \(M_i \geq m_i > 0 \) \((i = 1, 2, 3) \) (both are independent of the initial values), such that every solution \(\left(S_i(t), S_2(t), I(t)\right) \) with positive initial conditions of system (3) satisfies

\[
m_1 \leq S_i(t) \leq M_1, \quad m_2 \leq S_2(t) \leq M_2, \quad m_3 \leq I(t) \leq M_3,
\]
Denote
\[R_2 = \frac{\beta_1 \left(\frac{\lambda_2}{\mu_2} \right) \left(1 - e^{-\mu_2 t} \right)^p \left(1 - e^{-\mu_2 t} \right)^p}{\left(1 - (1 - \theta_2) e^{-\mu_2 t} \right)^p} \]

Theorem 2. If \(R_2 > 1 \), then system (3) is uniformly persistent.

\[S_i(t) \leq \frac{\lambda_i + \lambda_2}{h}, \quad S_2(t) \leq \frac{\lambda_i + \lambda_2}{h}, \quad I(t) \leq \frac{\lambda_i + \lambda_2}{h}, \quad \forall \quad t > 0. \]

We are left to prove there exist positive constants \(m_1, m_2, m_3 \) such that \(S_i(t) \geq m_i, S_2(t) \geq m_2, I(t) \geq m_3 \), for all sufficiently large \(t \).

Firstly, from the first and second equations of system (3), we have

\[S_i'(t) \geq \frac{\lambda_i}{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p + \mu_i} S_i(t), \quad (i = 1, 2). \]

Considering the following comparison equations

\[S_i(t) \geq u_i(t) \geq u_i^*(t) - \tilde{\epsilon} \geq \frac{\lambda_i}{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p + \mu_i} \left(1 - \frac{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p + \mu_i}{1 - (1 - \theta_i) e^{-\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p}} \right) - \tilde{\epsilon} = m_i. \]

Now, we shall prove there exist a \(m_i > 0 \) such that \(I(t) \geq m_i \) for all sufficiently large \(t \). For convenience, we prove it through the following two steps:

Step 1. Since \(R_2 > 1 \), there exist sufficiently small \(\eta_i = \frac{\lambda_i}{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p m_i^* + \mu_i} \left(1 - \frac{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p m_i^* + \mu_i}{1 - (1 - \theta_i) e^{-\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p}} \right) - \tilde{\epsilon}, \quad (i = 1, 2). \]

For \(m_i^* \), we can claim that there exists a \(t_0 > 0 \) such that \(I(t_0) \geq m_i^* \). Otherwise, \(I(t) < m_i^* \) for all \(t > t_0 \). It follows from the first and second equations of (3) that

\[S_i'(t) \geq \frac{\lambda_i}{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p + \mu_i} S_i(t), \quad (i = 1, 2). \]

Considering the following impulsive comparison systems

\[S_i(t) \geq v_i(t) \geq v_i^*(t) - \tilde{\epsilon} \geq \frac{\lambda_i}{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p m_i^* + \mu_i} \left(1 - \frac{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p m_i^* + \mu_i}{1 - (1 - \theta_i) e^{-\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p}} \right) - \tilde{\epsilon} = \eta_i. \]

For \(m_i^* \), we can claim that there exists a \(t_1 > 0 \) such that \(I(t_1) \geq m_i^* \). Otherwise, \(I(t) < m_i^* \) for all \(t > t_1 \). It follows from the first and second equations of (3) that

\[S_i'(t) \geq \frac{\lambda_i}{\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p + \mu_i} S_i(t), \quad (i = 1, 2). \]

Proof. Let \((S_i(t), S_2(t), I(t)) \) be any solution of (3) with initial conditions (4), then it is easy to see that

\[u_i'(t) = \lambda_i - \left(\beta_i \left(\frac{\lambda_i + \lambda_2}{h} \right)^p + \mu_i \right) u_i(t), \quad t \neq nT, \]

\[u_i(t') = (1 - \theta_i) u_i(t), \quad t = nT, \]

According to Lemma 1 and the comparison theorem, we know that for any sufficiently small \(\tilde{\epsilon} > 0 \), there exists a \(t_0 \) such that for \(t > t_0 \),

\[\beta \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \quad (13) \]

where

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]

\[\beta_i \eta_i^p \left(1 - e^{-\beta_i t} \right) + \beta_2 \eta_i^p \left(1 - e^{-\beta_i t} \right) > d, \]
According to Theorem 2, we have \(I(t) > m^*_i \) for all \(t > t_1 \), then our result is proved. Second, if \(I(t) < m^*_i \) for some \(t > t_1 \), we can choose constants \(\rho > 0 \) and \(T_0 > \max\{t_2, t_1 + \tau\} \) (\(T_0 \) is sufficiently large) such that \(I(t) \leq m^*_i \), \(I(T_0 + \rho) = m^*_i \), and \(S_i(t) > \eta_1, S_2(t) > \eta_2 \) for \(t \in [T_0 + \rho, T_0 + \rho + \beta] \).

Thus, there exists a \(g(0 < g < \tau) \) such that for \(t \in [T_0 + \rho, T_0 + \rho + \beta] \),

\[
I(t) \geq m^*_i \frac{\rho}{2}.
\]

In this case, we shall discuss three possible cases in terms of the sizes of \(g, \rho \) and \(\tau \).

Case 1. If \(\rho \leq g < \tau \), then it is obvious that \(I(t) \geq m^*_i \frac{\rho}{2} \), for \(t \in [T_0 + \rho, T_0 + \rho + \beta] \).

Case 2. If \(g < \rho \leq \tau \), then from the third equation of (3), we can deduce

\[
I(t) = \int_{t-T}^{t} \left(\beta S^i_r (\xi) + \beta S^r_s (\xi) \right) I(\xi) e^{-\delta(t-\xi)} d\xi , \tag{16}
\]

From (14), (15) and (16), we have

\[
I(t) > \int_{t-T}^{t} \left(\beta S^i_r (\xi) + \beta S^r_s (\xi) \right) I(\xi) e^{-\delta(t-\xi)} d\xi > \left(\beta \eta^*_i + \beta \eta^*_s \right) m^*_i \frac{1-e^{-\delta t}}{\delta} > m^*_i ,
\]

which is contradictory to \(I(T) = m^*_i \). Hence, the claim holds true.

According to the arbitrary of \(T_0 \), we can obtain that \(I(t) > m^*_i \) holds for all \(t > T_0 \). The proof is completed.

5. Numerical Simulations

In this section, we give some numerical simulations to illustrate the effects of different probability on population. In system (3), \(\lambda_1 = 0.25, \ \lambda_2 = 0.2, \ \beta_1 = 0.03, \ \beta_2 = 0.1, \ \mu_1 = 0.03, \ \mu_2 = 0.05, \ p = 2, \ d = 0.1, \ \tau = 2, \ T = 3 \). Time series are drawn in Figure 1(a) and Figure 1(b) with initial values \(\phi_1(t) = 2 + 0.5 \sin t, \ \phi_2(t) = 2 + 0.8 \cos t, \ \phi_3(t) = 1 + 0.5 \sin t, \ t \in [-2, 0] \) for 30 pulsing cycles. If we take \(\theta_1 = 0.45, \ \theta_2 = 0.90 \), then \(R_s = 0.9956 \). By Theorem 1, we know that the disease will disappear (see Figure 1(a)). If we let \(\theta_1 = 0.10, \ \theta_2 = 0.20 \), then \(R_s = 1.4685 \). According to Theorem 2, we know that the disease will be permanent (see Figure 1(b)).
C o p y r i g h t © 2 0 1 1 S c i R e s.

6. Acknowledgements

The research of Shujing Gao has been supported by The Natural Science Foundation of China (10971037) and The National Key Technologies R & D Program of China (2008BAI68B01).

7. References

