Minimum Covering Randić Energy of a Graph

M. R. Rajesh Kanna¹,², R. Jagadeesh³

¹Department of Mathematics, Government First Grade College, Puttur, India
²Department of Mathematics, Maharani’s Science College for Women, Mysore, India
³Research and Development Centre, Bharathiar University, Coimbatore, India

Email: mr.rajeshkanna@gmail.com, jagadeeshr1978@gmail.com

Received: October 12, 2016
Accepted: December 2, 2016
Published: December 5, 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Randić energy was first defined in the paper [1]. Using minimum covering set, we have introduced the minimum covering Randić energy \(RE_c(G) \) of a graph \(G \) in this paper. This paper contains computation of minimum covering Randić energies for some standard graphs like star graph, complete graph, thorn graph of complete graph, crown graph, complete bipartite graph, cocktail graph and friendship graphs. At the end of this paper, upper and lower bounds for minimum covering Randić energy are also presented.

Keywords

Minimum Covering Set, Minimum Covering Randić Matrix, Minimum Covering Randić Eigenvalues, Minimum Covering Randić Energy

1. Introduction

Study on energy of graphs goes back to the year 1978, when I. Gutman [2] defined this while working with energies of conjugated hydrocarbon containing carbon atoms. All graphs considered in this paper are assumed to be simple without loops and multiple edges. Let \(A = (a_{ij}) \) be the adjacency matrix of the graph \(G \) with its eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) assumed in decreasing order. Since \(A \) is real symmetric, the eigenvalues of \(G \) are real numbers whose sum equal to zero. The sum of the absolute eigenvalues values of \(G \) is called the energy \(E(G) \) of \(G \), i.e.,

\[
E(G) = \sum_{i=1}^{n} |\lambda_i|.
\]

Theories on the mathematical concepts of graph energy can be seen in the reviews[3], papers [4] [5] [6] and the references cited there in. For various upper and lower bounds for energy of a graph can be found in papers[7] [8] and it was observed that graph energy has chemical applications in the molecular orbital theory of conjugated mo-
1.1. Randić Energy

It was in the year 1975, Milan Randić invented a molecular structure descriptor called Randić index which is defined as

\[R(G) = \sum_{e \in E(G)} \frac{1}{\sqrt{d_id_j}} \]

Motivated by this, S.B. Bozkurt et al. [1] defined Randić matrix and Randić energy as follows. Let \(G \) be a graph of order \(n \) with vertex set \(V = \{v_1, v_2, \ldots, v_n\} \) and edge set \(E \). Randić matrix of \(G \) is a \(n \times n \) symmetric matrix defined by

\[r_{ij} = \frac{1}{\sqrt{d_id_j}} \text{ if } v_i v_j \in E(G) \]

The characteristic equation of \(R(G) \) is defined by \(f_n(G, \rho) = \det(\rho I - R(G)) = 0 \). The roots of this equation are called Randić eigenvalues of \(G \). Since \(R(G) \) is real and symmetric, its eigenvalues are real numbers and we label them in decreasing order \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \). Randić energy of \(G \) is defined as

\[RE(G) = \sum_{i=1}^{n} |\lambda_i| \]

Further studies on Randić energy can be seen in the papers [12] [13] [14] and the references cited there in.

1.2. Minimum Covering Energy

In the year 2012 C Adiga et al. [15] introduced minimum covering energy of a graph, which depends on its particular minimum cover. A subset \(C \) of vertex set \(V \) is called a covering set of \(G \) if every edge of \(G \) is incident to at least one vertex of \(C \). Any covering set with minimum cardinality is called a minimum covering set. If \(C \) is a minimum covering set of a graph \(G \) then the minimum covering matrix of \(G \) is the \(n \times n \) matrix defined by \(A_c(G) := (a_{ij}) \), where

\[a_{ij} = \begin{cases} 1 & \text{if } v_i v_j \in E(G) \\ \frac{1}{\sqrt{d_id_j}} & \text{if } i = j \text{ and } v_i \in C \\ 0 & \text{otherwise} \end{cases} \]

The minimum covering eigenvalues of the graph \(G \) are roots of the characteristic equation \(f_n(G, \lambda) = \det(\lambda I - A_c(G)) = 0 \), obtained from the matrix \(A_c(G) \). Since \(A_c(G) \) is real and symmetric, its eigenvalues are real numbers and we label them in the order \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \). The minimum covering energy of \(G \) is defined as

\[EC(G) = \sum_{i=1}^{n} |\lambda_i| \]

1.3. Minimum Covering Randić Energy

Results on Randić energy and minimum covering energy of graph \(G \) motivates us to define minimum covering Randić energy. Consider a graph \(G \) with vertex set
If \(C \) is a minimum covering set of a graph \(G \) then the minimum covering Randić matrix of \(G \) is the \(n \times n \) matrix defined by \(R_C(G) = (r_{ij}) \), where

\[
 r_{ij} = \begin{cases}
 \frac{1}{\sqrt{d_i d_j}} & \text{if } v_i v_j \in E(G) \\
 1 & \text{if } i = j \quad \text{and } v_i \in C^* \\
 0 & \text{otherwise}
\end{cases}
\]

The characteristic polynomial of \(R_C(G) \) is defined by

\[
 f_{R_C}(\rho) = \det(\rho I - R_C(G)).
\]

The minimum covering Randić eigenvalues of the graph \(G \) are the eigenvalues of \(R_C(G) \). Since \(R_C(G) \) is real and symmetric matrix so its eigenvalues are real numbers. We label the eigenvalues in order \(\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n \). The minimum covering Randić energy of \(G \) is defined as

\[
 RE_C(G) = \sum_{i=1}^{n} |\rho_i|.
\]

Example 1:

i) \(C_1 = \{v_1, v_2, v_3\} \) ii) \(C_2 = \{v_2, v_4, v_5\} \) are the possible minimum covering sets for the Figure 1 as shown below.

\[
 R_{C_1}(G) = \begin{pmatrix}
 1 & \frac{1}{3} & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{15}} & 0 \\
 \frac{1}{3} & 1 & \frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{15}} & 0 \\
 0 & \frac{1}{\sqrt{6}} & 0 & 0 & \frac{1}{\sqrt{10}} & 0 \\
 \frac{1}{\sqrt{6}} & 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 \\
 \frac{1}{\sqrt{15}} & \frac{1}{\sqrt{15}} & \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 1 & \frac{1}{\sqrt{5}} \\
 0 & 0 & 0 & \frac{1}{\sqrt{5}} & 0 & 0
\end{pmatrix}
\]

Minimum covering Randić eigenvalues are

\(\rho_1 \approx -0.3143, \rho_2 \approx -0.1937, \rho_3 \approx -0.0646, \rho_4 \approx 0.8604, \rho_5 \approx 0.9108, \rho_6 \approx 1.8014 \)

Minimum covering Randić energy, \(RE_{C_1}(G) \approx 4.1453 \).
ii) \(R_{c_{2}}(G) = \begin{pmatrix}
0 & \frac{1}{3} & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{15}} & 0 \\
\frac{1}{3} & 1 & \frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{15}} & 0 \\
0 & \frac{1}{\sqrt{6}} & 0 & 0 & \frac{1}{\sqrt{15}} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{10}} & 0 \\
\frac{1}{\sqrt{15}} & \frac{1}{\sqrt{15}} & \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 1 & \frac{1}{\sqrt{5}} \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{5}} & 0
\end{pmatrix} \)

Minimum covering Randić eigenvalues are
\(\rho_1 \approx -0.3515, \rho_2 \approx -0.1788, \rho_3 \approx -0.0611, \rho_4 \approx 0.7699, \rho_5 \approx 1.0767, \rho_6 \approx 1.7488 \).

Minimum covering Randić energy, \(RE_{c_{2}}(G) \approx 4.1828 \).

Therefore minimum covering Randić energy depends on the covering set.

2. Main Results and Discussion

2.1. Minimum Covering Randić Energy of Some Standard Graphs

Theorem 2.1 For \(n \geq 2 \), the minimum covering Randić energy, \(R_c(G) \) of complete graph \(K_n \) is
\[(n-2)^2 + \frac{\sqrt{4n^2-8n+5}}{n-1}. \]

Proof. Let \(K_n \) be a complete graph with vertex set \(V = \{v_1, v_2, \ldots, v_n\} \). The minimum covering set for \(K_n \) is \(C = \{v_1, v_2, \ldots, v_{n-1}\} \). Then

\[
R_c(K_n) = \begin{pmatrix}
1 & \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{1}{n-1} & \frac{1}{n-1} & 1 \\
\frac{1}{n-1} & 1 & \frac{1}{n-1} & \cdots & \frac{1}{n-1} & \frac{1}{n-1} & 1 \\
\frac{1}{n-1} & \frac{1}{n-1} & 1 & \cdots & \frac{1}{n-1} & \frac{1}{n-1} & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\frac{1}{n-1} & \frac{1}{n-1} & \frac{1}{n-1} & \cdots & 1 & \frac{1}{n-1} & 1 \\
\frac{1}{n-1} & \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{1}{n-1} & 1 & 1 \\
\frac{1}{n-1} & \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{1}{n-1} & \frac{1}{n-1} & 0
\end{pmatrix}_{n \times n}
\]

Characteristic polynomial is
\[
(-1)^n \left[(n-1) \rho - (n-2) \right]^{n-2} \left[(n-1) \rho^2 - (2n-3) \rho - 1 \right] = 0
\]

Minimum covering Randić Spec
Minimum covering Randić energy,

\[RE_C(K_n) = \frac{n-2}{n-1}(n-2) + \frac{(2n-3)+\sqrt{4n^2-8n+5}}{2(n-1)} \]

\[= \frac{(n-2)^2 + \sqrt{4n^2-8n+5}}{2(n-1)} \]

Definition 2.1 Thorn graph of \(K_n \) is denoted by \((K_n)^{+1} \) and it is obtained by attaching one edge to each vertex of \(K_n \).

Theorem 2.2 For \(n \geq 2 \), the minimum covering Randić energy, \(R_c(G) \) of thorn graph \((K_n)^{+1} \) is

\[\frac{(n^2-2)+\sqrt{4n^2+1}}{n} \]

Proof. \((K_n)^{+1}\) is a thorn graph of complete graph \(K_n \) with vertex set \(V = \{v_1, v_2, \ldots, v_n, v'_1, v'_2, \ldots, v'_n\} \). The minimum covering set for thorn graph \((K_n)^{+1}\) is \(C = \{v_1, v_2, v_3, \ldots, v_n\} \). Then

\[
\begin{array}{cccccccccc}
& v_1 & v_2 & v_3 & \cdots & v_n & v'_1 & v'_2 & v'_3 & \cdots & v'_n \\
\hline
v_1 & 1 & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & 1 & 0 & 0 & 0 & 0 \\
v_2 & 1 & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & 0 & 1 & 0 & \cdots & 0 \\
v_3 & 1 & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & 0 & 0 & \frac{1}{\sqrt{n}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
v_n & 1 & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & 0 & 0 & 0 & \cdots & 1 \\
\hline
v'_1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
v'_2 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
v'_3 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
v'_n & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & 0 \\
\end{array}
\]

Characteristic polynomial is

\[[\rho - 1]^{n-1} (n\rho + 1)^{n-2} \left[n\rho^2 - (2n-1)\rho - 1 \right] \]
Characteristic equation is \[(\rho - 1)^{n-1}[n\rho + 1]^{n-2}\{n\rho^2 - (2n-1)\rho - 1\} = 0 \]

Minimum covering Randić Spec

\[
\begin{pmatrix}
(\rho - 1)^{n-1} \left(\frac{1}{n} \right) \\
\frac{1}{n-2} \\
\frac{2n}{2n-1}
\end{pmatrix}
\]

Minimum covering Randić energy is,

\[
RE_c\left((\rho - 1)^{n-1} \right) = (n-1) + \frac{1}{n} \left(\frac{2n}{2n-1} \right) + \left(\frac{2n-1}{2n} \right) - \frac{1}{n} \left(\frac{2n-1}{2n} \right)
\]

\[
= (n-1) + \frac{2n}{2n-1} + \frac{2n-1}{2n} - \frac{2n-1}{2n}
\]

\[
= (n-1) + \frac{2n}{2n-1} + \frac{2n}{2n-1} = \frac{n^2 - 2}{n} + \frac{4n^2 + 1}{n}
\]

Definition 2.2 Cocktail party graph is denoted by \(K_{n+2} \), is a graph having the vertex set \(V = \bigcup_{i=1}^{n} \{ u_i, v_i \} \) and the edge set \(E = \{ u_i u_j, v_i v_j : i \neq j \} \bigcup \{ u_i v_j, v_j u_i : 1 \leq i < j \leq n \} \).

Theorem 2.3 The minimum covering Randić energy, \(R_c(G) \) of cocktail party graph \(K_{n+2} \) is

\[
\left(2n^2 - 6n + 5 \right) + \frac{4n^2 - 8n + 5}{n-1}
\]

Proof. Consider cocktail party graph \(K_{n+2} \) with vertex set \(V = \bigcup_{i=1}^{n} \{ u_i, v_i \} \). The minimum covering set of cocktail party graph \(K_{n+2} \) is \(C = \bigcup_{i=1}^{n+2} \{ u_i, v_i \} \).

\[
R_c\left(K_{n+2} \right) =
\begin{pmatrix}
u_1 & u_2 & u_3 & \cdots & u_n & v_1 & v_2 & v_3 & \cdots & v_n \\
u_1 & 1 & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 0 & 1 & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
u_2 & 1 & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 & 0 & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
u_3 & 1 & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 & 1 & 0 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
\vdots & \vdots \\
u_n & 1 & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 0 & 1 & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
v_1 & 0 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
v_2 & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & \frac{1}{2n-2} & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
v_3 & \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \cdots & \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
\vdots & \vdots \\
v_n & \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 1 \\
\end{pmatrix}
\]

Characteristic polynomial is,
Characteristic equation is,

\[\rho (\rho - 1)^{n-1} \left[(n-1) \rho - (n-2) \right]^{n-2} \left[(n-1) \rho^2 - (2n-3) \rho - 1 \right] = 0. \]

Minimum covering Randić Spec

\[(K_{n,2}) = \begin{pmatrix} 1 & n-2 & 2(n-3) + \sqrt{4n^2 - 8n + 5} \\ n-1 & n-2 & 2(n-1) \\ 1 & 1 & 2(n-3) - \sqrt{4n^2 - 8n + 5} \end{pmatrix} \]

Minimum covering Randić energy,

\[
RE_C (K_{n,2}) = \| (n-1) + \frac{n-2}{n-1} (n-2) + \\
\left[\frac{(2n-3) + \sqrt{4n^2 - 8n + 5}}{2(n-1)} \right] (1) + \left[\frac{(2n-3) - \sqrt{4n^2 - 8n + 5}}{2(n-1)} \right] (1) \\
= (n-1) + \frac{(n-2)^2}{n-1} + \frac{(2n-3) + \sqrt{4n^2 - 8n + 5}}{2(n-1)} + \frac{(2n-3) - \sqrt{4n^2 - 8n + 5}}{2(n-1)} \\
= (n-1) + \frac{(n-2)^2}{n-1} + \frac{\sqrt{4n^2 - 8n + 5}}{n-1} \\
= \frac{(n-1)^2 + (n-2)^2 + \sqrt{4n^2 - 8n + 5}}{n-1} \\
= \frac{(2n^2 - 6n + 5) + \sqrt{4n^2 - 8n + 5}}{n-1}. \]

Theorem 2.4 For \(n \geq 2 \), minimum covering Randić energy, \(R_C (G) \) of star graph \(K_{1,n-1} \) is equal to \(\sqrt{5} \).

Proof. Let \(K_{1,n-1} \) be a star graph with vertex set \(V = \{v_0, v_1, v_2, \ldots, v_{n-1}\} \). Then its Minimum covering set is \(C = \{v_0\} \).

\[
R_C (K_{1,n-1}) = \begin{pmatrix} 1 & \frac{1}{\sqrt{n-1}} & \frac{1}{\sqrt{n-1}} & \frac{1}{\sqrt{n-1}} & \cdots & \frac{1}{\sqrt{n-1}} \\ \frac{1}{\sqrt{n-1}} & 0 & 0 & 0 & \cdots & 0 \\ \frac{1}{\sqrt{n-1}} & 0 & 0 & 0 & \cdots & 0 \\ \frac{1}{\sqrt{n-1}} & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{n-1}} & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}_{n \times n} \]

Characteristic equation is \((-1)^n \rho^{n-2} \left[\rho^2 - \rho - 1 \right] = 0. \)
Minimum covering Randić Spec

\[
(K_{1,n-1}) = \begin{pmatrix}
0 & \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\
n-2 & 1 & 1
\end{pmatrix}
\]

Minimum covering Randić energy,

\[
RE_c(K_{1,n-1}) = \|\|(n-2) + \frac{1+\sqrt{5}}{2}(1) + \frac{1-\sqrt{5}}{2}(1) = 0 + \frac{1+\sqrt{5}}{2} + \frac{\sqrt{5}-1}{2} = \sqrt{5}.
\]

Definition 2.3 Crown graph \(S_0^0 \) for an integer \(n \geq 2 \) is the graph with vertex set \(\{u_1, u_2, \cdots, u_n, v_1, v_2, \cdots, v_n\} \) and edge set \(\{u_i v_j : 1 \leq i, j \leq n, i \neq j\} \).

Theorem 2.5 For \(n \geq 2 \), minimum covering Randić energy, \(R_c(G) \) of the crown graph \(S_0^0 \) is equal to \(\sqrt{5} + \sqrt{n^2 - 2n + 5} \).

Proof. For the crown graph \(S_0^0 \) with vertex set \(V = \{u_1, u_2, \cdots, u_n, v_1, v_2, \cdots, v_n\} \), minimum covering set of crown graph \(S_0^0 \) is \(C = \{u_1, u_2, \cdots, u_n\} \). Then

\[
R_c(S_0^0) = \begin{pmatrix}
u_1 & u_2 & u_3 & \cdots & u_n \\
u_1 & 1 & 0 & 0 & \cdots & 0 \\
u_2 & 0 & 1 & 0 & \cdots & 0 \\
u_3 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
u_n & 0 & 0 & 0 & \cdots & 1
\end{pmatrix}
\begin{pmatrix}v_1 \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
\vdots \\
1/\left(n-1\right)
\end{pmatrix}
\begin{pmatrix}v_2 \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
\vdots \\
1/\left(n-1\right)
\end{pmatrix}
\begin{pmatrix}v_3 \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
\vdots \\
1/\left(n-1\right)
\end{pmatrix}
\begin{pmatrix}\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}v_n \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
1/\left(n-1\right) \\
\vdots \\
1/\left(n-1\right)
\end{pmatrix}
\begin{pmatrix}0 \\
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}0 \\
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{pmatrix}
\]

Characteristic polynomial is

\[
\left(\rho^2 - \rho - 1\right)\left[\left((n-1)^2\right)^{\rho^2 - (n-1)^2} \rho - 1\right]^{n-1} / (n-1)^{2(n-1)}.
\]

Characteristic equation is

\[
\left(\rho^2 - \rho - 1\right)\left[\left((n-1)^2\right)^{\rho^2 - (n-1)^2} \rho - 1\right]^{n-1} = 0.
\]

Minimum covering Randić Spec
Minimum covering Randić energy,

\[RE_C(S^0_n) = \frac{1 + \sqrt{5}}{2} \binom{(n-1)+(\sqrt{n^2 - 2n + 5})}{2(n-1)} + \frac{1 - \sqrt{5}}{2} \binom{(n-1) - (\sqrt{n^2 - 2n + 5})}{2(n-1)} \]

\[= \frac{\sqrt{5} + 1}{2} + \frac{\sqrt{5} - 1}{2} \binom{(n-1)+(\sqrt{n^2 - 2n + 5})}{2(n-1)} + \binom{(n-1) - (\sqrt{n^2 - 2n + 5})}{2(n-1)} \]

\[= \sqrt{5} + \sqrt{n^2 - 2n + 5}. \]

Theorem 2.6 The minimum covering Randić energy, \(R_C(G) \) of the complete bipartite graph \(R_C(K_{m,n}) \) is equal to \(m + \sqrt{5} - 1 \).

Proof. For the complete bipartite graph \(K_{m,n} (m \leq n) \) with vertex set \(V = \{u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n\} \), minimum covering set is \(C = \{u_1, u_2, \ldots, u_m\} \). Then

\[
\begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}} \\
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}} \\
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}} \\
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}} \\
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \frac{1}{\sqrt{mn}} & \ldots & \frac{1}{\sqrt{mn}}
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{pmatrix}
\]

Characteristic equation is

\[(-1)^{n-1} \rho^{m-1} (\rho - 1)^{m-1} \left[\rho^2 - \rho - 1 \right] = 0 \]

Minimum covering Randić Spec

\[
\begin{pmatrix}
0 & 1 & \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} \\
\frac{1}{n-1} & \frac{1}{m-1} & 1 & 1
\end{pmatrix}
\]

Minimum covering Randić energy,
\[RE_c(K_{n,n}) = |\phi((n-1) + |\phi((m-1) + \left| \frac{1+\sqrt{5}}{2} \right| (1) + \left| \frac{1-\sqrt{5}}{2} \right| (1) \right| = (m-1) + \frac{1+\sqrt{5}}{2} + \frac{\sqrt{5}-1}{2} = m + \sqrt{5} - 1. \]

Definition 2.4 Friendship graph is the graph obtained by taking \(n \) copies of the cycle graph \(C_3 \) with a vertex in common. It is denoted by \(F^n \). Friendship graph \(F^n \) contains \(2n+1 \) vertices and \(3n \) edges.

Theorem 2.7 The minimum covering Randić energy, \(R_c(G) \) of friendship graph \(F^n \) is equal to \(\frac{1+\sqrt{7} - 2\sqrt{2}}{+2\sqrt{2}} \).

Proof. For a friendship graph \(F^n \) with vertex set \(V = \{v_0, v_1, v_2, \cdots, v_n, v_{n+1}, v_{n+2}, \cdots, v_{2n}\} \), minimum covering set is \(C = \{v_0, v_1, v_2, \cdots, v_{n-1}\} \). Then

\[R_c(F^n) = \left(\begin{array}{cccccccc} v_0 & v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & \cdots & v_{2n} \\ v_0 & 1 & 1 & \frac{1}{\sqrt{4n}} & \frac{1}{\sqrt{4n}} & \frac{1}{\sqrt{4n}} & \frac{1}{\sqrt{4n}} & \cdots & \frac{1}{\sqrt{4n}} \\ v_1 & \frac{1}{\sqrt{4n}} & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ v_2 & \frac{1}{\sqrt{4n}} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ v_3 & \frac{1}{\sqrt{4n}} & 0 & 0 & 1 & \frac{1}{2} & 0 & 0 & 0 \\ v_4 & \frac{1}{\sqrt{4n}} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ v_5 & \frac{1}{\sqrt{4n}} & 0 & 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ v_6 & \frac{1}{\sqrt{4n}} & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ v_7 & \frac{1}{\sqrt{4n}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ \vdots & \vdots \\ v_{2n} & \frac{1}{\sqrt{4n}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{array} \right) \]

\((2n+1)(2n+1) \)

Characteristic equation is

\[\frac{(2\rho-1)(2\rho^2-3\rho-1)(4\rho^2-4\rho-1)^{n-1}}{4^n} = 0. \]

Minimum covering Randić Spec

\[RE_c(F^n) = \left(\begin{array}{cccc} \frac{1}{2} & \frac{3+\sqrt{17}}{4} & \frac{3-\sqrt{17}}{4} & \frac{1+\sqrt{2}}{2} & \frac{1-\sqrt{2}}{2} \\ 1 & 1 & 1 & n-1 & n-1 \end{array} \right) \]
Minimum covering Randić energy,

\[
RE_c \left(F_n^* \right) = \frac{1}{2} \left(1 + \left(\frac{3 + \sqrt{17}}{4} \right) + \left(\frac{3 - \sqrt{17}}{4} \right) \right) (n-1) + \frac{1}{2} \left(1 + \frac{\sqrt{2}}{2} \right) (n-1)
\]

\[
= \frac{1}{2} \left(3 + \sqrt{17} \right) + \frac{1}{2} \left(3 - \sqrt{17} \right) + \frac{1}{2} \left(2 \right) (n-1) + \frac{1}{2} \left(2 \right) (n-1)
\]

\[
= \frac{1}{2} \left(1 + \sqrt{17} - 2 \right) + 2 \sqrt{2} n.
\]

2.2. Properties of Minimum Covering Randić Eigenvalues

Theorem 2.8 Let \(G \) be a graph with vertex set \(V = \{v_1, v_2, \cdots, v_n\} \), edge set \(E \) and

\(D = \{u_1, u_2, \cdots, u_k\} \) be a minimum covering set. If \(\rho_1, \rho_2, \cdots, \rho_n \) are the eigenvalues of minimum covering Randić matrix \(R_c (G) \) then

(i) \[\sum_{i=1}^{n} \rho_i = |C| \]

(ii) \[\sum_{i=1}^{n} \rho_i^2 \leq 2 \sum_{i<j} \frac{1}{d_i d_j} \cdot \]

Proof. i) We know that the sum of the eigenvalues of \(R_c (G) \) is the trace of \(R_c (G) \)

\[
\therefore \sum_{i=1}^{n} \rho_i = \sum_{i=1}^{n} r_i = |C|.
\]

ii) Similarly the sum of squares of the eigenvalues of \(R_c (G) \) is trace of \(\left[R_c (G) \right]^2 \)

\[
\therefore \sum_{i=1}^{n} \rho_i^2 = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} r_{ij} \right)^2 = \sum_{i=1}^{n} (r_i)^2 + 2 \sum_{i<j} \left(\frac{1}{\sqrt{d_i d_j}} \right)^2
\]

\[
= |C| + 2 \sum_{i<j} \frac{1}{d_i d_j} = |C| + 2M, \text{ where } M = \sum_{i<j} \frac{1}{d_i d_j}.
\]

2.3. Bounds for Minimum Covering Randić Energy

Mclelland’s [8] gave upper and lower bounds for ordinary energy of a graph. Similar bounds for \(RE_c (G) \) are given in the following theorem.

Theorem 2.9 Let \(G \) be a simple graph with \(n \) vertices and \(m \) edges. If \(C \) is the minimum covering set and \(P = \det R_c (G) \) then

\[
\sqrt{C + 2 \sum_{i<j} \frac{1}{d_i d_j} + n(n-1)P^2} \leq RE_c (G) \leq \sqrt{\left(C + 2 \sum_{i<j} \frac{1}{d_i d_j} \right)^2}.
\]

Proof.

Canchy Schwarz inequality is \(\left(\sum_{i=1}^{n} a_i b_i \right)^2 \leq \left(\sum_{i=1}^{n} a_i^2 \right) \left(\sum_{i=1}^{n} b_i^2 \right) \)

If \(a_i = 1, b_i = |\rho_i| \) then

\[
\left(\sum_{i=1}^{n} |\rho_i| \right)^2 \leq \left(\sum_{i=1}^{n} 1 \right) \left(\sum_{i=1}^{n} |\rho_i|^2 \right).
\]
\[
\left[RE_c(G) \right]^2 \leq n \left(|C| + 2 \sum_{i<j} \frac{1}{d_i d_j} \right) \quad \text{[From theorem 2.8]}
\]

\[
\Rightarrow RE_c(G) \leq \sqrt{n \left(|C| + 2 \sum_{i<j} \frac{1}{d_i d_j} \right)}.
\]

Since arithmetic mean is greater than or equal to geometric mean we have

\[
\frac{1}{n(n-1)} \sum_{i<j} |\rho_i||\rho_j| \geq \left[\prod_{i<j} |\rho_i| |\rho_j| \right]^{n(n-1)} = \left[\prod_{i<j} |\rho_i|^{n(n-1)} \right]^{\frac{1}{n(n-1)}} = \left[\prod_{i<j} |\rho_i| \right]^{2/n(n-1)} = \left| \prod_{i<j} |\rho_i| \right|^{2/n(n-1)} = |\text{det } R_c(G)|^2 = P_n^2
\]

\[
\therefore \sum_{i<j} |\rho_i||\rho_j| \geq n(n-1)P_n^2. \tag{2.1}
\]

Now consider,

\[
\left[RE_c(G) \right]^2 = \left(\sum_{i<j} |\rho_i||\rho_j| \right)^2 = \sum_{i<j} |\rho_i|^2 + 2 \sum_{i<j} |\rho_i||\rho_j| \geq |C| + 2 \sum_{i<j} \frac{1}{d_i d_j} + n(n-1)P_n^2. \quad \text{[From (2.1)]}
\]

i.e.,

\[
RE_c(G) \geq \sqrt{|C| + 2 \sum_{i<j} \frac{1}{d_i d_j} + n(n-1)P_n^2}.
\]

Theorem 2.10 If \(\rho_1(G) \) is the largest minimum covering Randić eigenvalue of \(R_c(G) \), then

\[\rho_1(G) \geq \frac{|C| + R(G)}{n}. \]

Proof. For any nonzero vector \(X \), we have by [16],

\[\rho_1(A) = \max_{X \neq 0} \left\{ \frac{X'AX}{X'X} \right\} \]

\[\therefore \rho_1(G) \geq \frac{J'AJ}{J'J} = \frac{|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}}{n} = \frac{|C| + R(G)}{n} \text{ where } J \text{ is a unit column matrix.} \]

Just like Koolen and Moulton’s [17] upper bound for energy of a graph, an upper bound for \(RE_c(G) \) is given in the following theorem.

Theorem 2.11 If \(G \) is a graph with \(n \) vertices and \(m \) edges and

\[|C| + 2 \sum_{i<j} \frac{1}{d_i d_j} \geq n \text{ then } \]

\[RE_c(G) \leq \frac{|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}}{n} + \left(n-1 \right) \left| \frac{|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}}{n} - \left(\frac{|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}}{n} \right)^2 \right|. \]

Proof.
Cauchy-Schwartz inequality is \(\left[\sum_{i=2}^{n} a_i b_i \right]^2 \leq \left(\sum_{i=2}^{n} a_i^2 \right) \left(\sum_{i=2}^{n} b_i^2 \right) \).

Put \(a_i = 1, b_i = |\rho| \) then \(\left(\sum_{i=2}^{n} |\rho| \right)^2 = \sum_{i=2}^{n} |\rho|^2 \)

\[\Rightarrow \left[RE_G (G) - \rho_i \right]^2 \leq (n-1) \left(|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}} - \rho_i^2 \right) \]

\[\Rightarrow RE_G (G) \leq \rho_i + \sqrt{(n-1) \left(|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}} - \rho_i^2 \right)} \]

Let
\[f(x) = x + \sqrt{(n-1) \left(|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}} - x^2 \right)} \]

For decreasing function \(f'(x) \leq 0 \Rightarrow 1 - \frac{x(n-1)}{\sqrt{(n-1) \left(|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}} - x^2 \right)}} \leq 0 \]

\[\Rightarrow x \geq \sqrt{\frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n}} \]

Since \(\left(|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}} \right) \geq n \), we have \(\sqrt{\frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n}} \leq \frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n} \leq \rho_i \)

\[\therefore f(\rho_i) \leq f \left(\frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n} \right) \]

i.e., \(RE_G (G) \leq f(\rho_i) \leq f \left(\frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n} \right) \)

i.e., \(RE_G (G) \leq f \left(\frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n} \right) \)

i.e., \(RE_G (G) \leq \frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n} + \sqrt{(n-1) \left(|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}} - \left(\frac{|C| + 2 \sum_{i<j} \frac{1}{d_{i,j}}}{n} \right)^2 \right)} \).
Milovanović [18] bounds for minimum covering Randić energy of a graph are given in the following theorem.

Theorem 2.12 Let G be a graph with n vertices and m edges. Let $|\rho_1| \geq |\rho_2| \geq \cdots \geq |\rho_n|$ be a non-increasing order of minimum covering Randić eigenvalues of $R_c(G)$ and C is minimum covering set then

$$RE_c(G) \geq \sqrt{n\left(|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}\right) - \alpha(n)(|\rho_1| - |\rho_n|)^2}$$

where $\alpha(n) = \left[\frac{n}{2} \left(1 - \frac{1}{n} \left[\frac{n}{2} \right] \right) \right]$ and $[x]$ denotes the integral part of a real number.

Proof. For real numbers a_1, a_2, \cdots, a_n, A and b_1, b_2, \cdots, b_n, B with $a \leq a_i \leq A$ and $b \leq b_i \leq B \forall i = 1, 2, \cdots, n$ the following inequality is proved in [19].

$$|n \sum_{i=1}^{n} a_i - n \sum_{i=1}^{n} b_i| \leq \alpha(n)(A-a)(B-b)$$

where $\alpha(n) = \left[\frac{n}{2} \left(1 - \frac{1}{n} \left[\frac{n}{2} \right] \right) \right]$ and equality holds if and only if $a_i = a_2 = \cdots = a_n$ and $b_1 = b_2 = \cdots = b_n$.

If $a_i = |\rho_1|$, $b_i = |\rho_1|$, $a = b = |\rho_1|$ and $A = B = |\rho_1|$ then

$$n \sum_{i=1}^{n} |\rho_i|^2 - \left(\sum_{i=1}^{n} |\rho_i| \right)^2 \leq \alpha(n)(|\rho_1| - |\rho_n|)^2$$

But $\sum_{i=1}^{n} |\rho_i|^2 = |C| + 2 \sum_{i<j} \frac{1}{d_i d_j}$ and $RE_c(G) \leq \sqrt{n\left(|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}\right) - \alpha(n)(|\rho_1| - |\rho_n|)^2}$ then the above inequality becomes

$$n\left(|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}\right) - (RE_c(G))^2 \leq \alpha(n)(|\rho_1| - |\rho_n|)^2$$

i.e., $RE_c(G) \geq \sqrt{n\left(|C| + 2 \sum_{i<j} \frac{1}{d_i d_j}\right) - \alpha(n)(|\rho_1| - |\rho_n|)^2}$.

Theorem 2.13 Let G be a graph with n vertices and m edges. Let $|\rho_1| \geq |\rho_2| \geq \cdots \geq |\rho_n| > 0$ be a non-increasing order of minimum covering eigenvalues of $R_c(G)$ then $RE_c(G) \geq \frac{|C| + 2 \sum_{i<j} \frac{1}{d_i d_j} + n|\rho_1||\rho_n|}{(|\rho_1| + |\rho_n|)}$.

Proof. Let $a_i \neq 0, b_i, r$ and R be real numbers satisfying $ra_i \leq b_i \leq Ra_i$, then the following inequality is proved in [20].

$$\sum_{i=1}^{n} b_i^2 + rR \sum_{i=1}^{n} a_i \leq (r + R) \sum_{i=1}^{n} a_i b_i$$

Put $b_i = |\rho_i|$, $a_1 = 1$, $r = |\rho_n|$ and $R = |\rho_1|$ then

$$\sum_{i=1}^{n} |\rho_i|^2 + |\rho_1||\rho_n| \sum_{i=1}^{n} (|\rho_1| + |\rho_n|) \sum_{i=1}^{n} |\rho_i|$$

i.e., $|C| + 2 \sum_{i<j} \frac{1}{d_i d_j} + |\rho_1||\rho_n| n \leq (|\rho_1| + |\rho_n|)RE_c(G)$.
130

\[RE_c(G) \geq \frac{|C| + 2\sum_{i<j} \frac{1}{d_i d_j} + n|\rho_1||\rho_n|}{(|\rho_1| + |\rho_n|)}. \]

The question of when does the graph energy becomes a rational number was answered by Bapat and S. pati in their paper [21]. Similar result for minimum covering Randić energy is obtained in the following theorem.

Theorem 2.14 Let \(G \) be a graph with a minimum covering set \(C \). If the minimum covering Randić energy \(RE_c(G) \) is a rational number, then \(RE_c(G) \equiv |C| \pmod{2}. \)

Proof. Proof is similar to theorem 3.7 of [15].

3. Conclusion

It was proved in this paper that the minimum covering Randić energy of a graph \(G \) depends on the covering set that we take for consideration. Upper and lower bounds for minimum covering Randić energy are established. A generalized expression for minimum covering Randić energies for star graph, complete graph, thorn graph of complete graph, crown graph, complete bipartite graph, cocktail party graph and friendship graphs are also computed.

Acknowledgements

The authors are thankful to anonymous referees for their valuable comments and useful suggestions.

Authors Contributions

Both the authors worked together for the preparation of the manuscript and both of us take the full responsibility for the content of the paper. However second author typed the paper and both of us read and approved the final manuscript.

Conflict of Interests

The authors hereby declares that there are no issues regarding the publication of this paper.

References

[5] Cvetković, D. and Gutman, I., Eds. (2011) Selected Topics on Applications of Graph Spec-
tra. Mathematical Institute Belgrade.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.

A wide selection of journals (inclusive of 9 subjects, more than 200 journals)

Providing 24-hour high-quality service

User-friendly online submission system

Fair and swift peer-review system

Efficient typesetting and proofreading procedure

Display of the result of downloads and visits, as well as the number of cited articles

Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

Or contact alamt@scirp.org