On the Spectral Characterization of H-Shape Trees

Shengbiao Hu
Department of Mathematics, Qinghai Nationalities University, Xining, China
Email: shengbiaohu@aliyun.com

Received 6 March 2014; revised 7 April 2014; accepted 14 April 2014

Abstract
A graph G is said to be determined by its spectrum if any graph having the same spectrum as G is isomorphic to G. An H-shape is a tree with exactly two of its vertices having maximal degree 3. In this paper, a formula of counting the number of closed 6-walks is given on a graph, and some necessary conditions of a graph Γ cospectral to an H-shape are given.

Keywords
Spectra of Graphs, Cospectral Graphs, Spectra Radius, H-Shape Trees, Determined by Its Spectrum

1. Introduction
Let $G = (V, E)$ be a simple undirected graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set E. Let $A(G)$ be the adjacency matrix of G. Since $A(G)$ is a real symmetric matrix, its eigenvalues must be real, and may be ordered as $\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G)$. The sequence of n eigenvalues is called the spectrum of G, the largest eigenvalue $\lambda_1(G)$ is often called the spectral radius of G. The characteristic polynomial of $A(G)$ is called the characteristic polynomial of the graph G and is denoted by $\phi(G, \lambda)$.

Two graphs are cospectral if they share the same spectrum. A graph G is said to be determined by its spectrum (DS for short) if for any graph H, $\phi(H, \lambda) = \phi(G, \lambda)$ implies that H is isomorphic to G.

Determining what kinds of graphs are DS is an old problem, yet far from resolved, in the theory of graph spectra. Numerous examples of cospectral but non-isomorphic graphs are reported in literature [1]. However, there are few results known about DS graphs. For the background and some recent surveys of the known results about this problem and related topics, we refer the reader to [2]-[6] and references therein.

Because the kind of problems above are generally very hard to deal with, some more modest ones suggested by van Dam and Haemers [2], say, “Which trees are DS?”, this problem is also very hard to deal with, because we know a famous result of Schwenk [7], which says that almost all trees have non-isomorphic cospectral

A T-shape $T(l_1, l_2, l_3)$ is a tree with exactly one of its vertices having maximal degree 3 such that $T(l_1, l_2, l_3) - v = p_h \cup p_i \cup p_i$, where p_i is the path on $l_i (i = 1, 2, 3)$ vertices, and v is the vertex of degree 3.

More recently, Wang proved that T-shape tree $T(l_1, l_2, l_3)$ is DS; Wang and Xu [6] proved that T-shape tree $T(l_1, l_2, l_3), l_1 \leq l_2 \leq l_3 \leq 1$ with degree 3.

In this paper, we give a formula of counting the number of closed 6-walks on a graph, and give some necessary conditions of a graph Γ cospectral to an H-shape.

2. Some Lemmas

In the section, we will present some lemmas which are required in the proof of the main result.

Lemma 2.1 [8] The characteristic polynomial of a graph satisfies the following identities:

1) $\varphi(G, \lambda) = \varphi(G_1 \cup G_2, \lambda) \varphi(G_2, \lambda)$,

2) $\varphi(G, \lambda) = \varphi(G - e, \lambda) - \varphi(G - v_1v_2, \lambda)$ if $e = v_1v_2$ is a cut-edge of G.

where $G - e$ denotes the graph obtained from G by deleting the edge e and $G - v_1v_2$ denotes the graph obtained from G by deleting the vertices v_1, v_2 and the edges incident to it.

Lemma 2.2 [1] Let C_n, P_n denote the cycle and the path on n vertices respectively. Then

$$\varphi(C_n, \lambda) = \prod_{j=1}^{n} \left(\lambda - 2 \cos \frac{2\pi j}{n} \right) = 2 \cos \left(n \arccos \frac{\lambda}{2} \right) - 2$$

$$\varphi(P_n, \lambda) = \prod_{j=1}^{n} \left(\lambda - 2 \cos \frac{\pi j}{n+1} \right) = \frac{\sin \left((n+1) \arccos \frac{\lambda}{2} \right)}{\sin \left(\arccos \frac{\lambda}{2} \right)}$$

Let $\lambda = 2 \cos \theta$, set $t^{1/2} = e^{i\theta}$, we get $\lambda = t^{1/2} + t^{-1/2}$, it is can be write the characteristic polynomial of C_n, P_n in the following form [6]:

$$\varphi(C_n, t^{1/2} + t^{-1/2}) = t^{n/2} + t^{-n/2} - 2 = t^{n/2} \left(t^{1/2} - 1 \right)^2$$

$$\varphi(P_n, t^{1/2} + t^{-1/2}) = t^{n/2} \left(t^{1/2} - 1 \right)^2$$

Lemma 2.3 [4] [9] Let $\varphi(G, x) = \sum a_i x^{n-i}$ be the characteristic polynomial of graph G with n vertices, then the coefficient of x^{n-i} is

$$a_i = \sum_{\gamma} (-1)^{\text{comp}(\gamma)} 2^{\text{cyc}(\gamma)}$$

where $a_0 = 1$ and the sum is over all subgraphs γ of G consisting of disjoint edges and cycles, and having i vertices. If γ is such a subgraph then $\text{comp}(\gamma)$ is the number of components in it and $\text{cyc}(\gamma)$ is the number of cycles.

Lemma 2.4 [2] [10] Let G be a graph. For the adjacency matrix, the following can be obtained from the spectrum.

1) The number of vertices.
2) The number of edges.
3) Whether G is regular.
4) Whether G is regular with any fixed girth.
5) The number of closed walk of any length.
6) Whether G is bipartite.
3. Main Results

The total number of closed k-walks in a graph G, denoted by $w_k(G)$.

Lemma 3.1 ([6] p. 657) Let G be a graph with e edges, x_i vertices of degree i, and y 4-cycles. Then

$$
[w_k(G)] = 2e + 4\sum_{i=2}^{\infty} \binom{i}{2} x_i + 8y
$$

(4)

Lemma 3.2 Let Γ be a graph with n vertices. If Γ cospectral to an H-shape and $\Gamma \neq W_n$, then

1) Γ have the same degree sequences as the H-shape tree or Γ have the degree sequences $(3, 2, 2, \cdots, 2, 1, 0)$.

2) Γ contains no 4-cycles.

Proof. Let Γ be a graph with e edges, x_i vertices of degree i, and y 4-cycles. By lemma 2.4 we known that cospectral graphs have the same number of edges and closed 4-walks, respectively. Since Γ is cospectral to an H-shape tree, hence by (4) we have

$$
2e + 4\sum_{i=2}^{\infty} \binom{i}{2} x_i + 8y = 6n - 2
$$

namely

$$
\sum_{i=2}^{\infty} \binom{i}{2} x_i + 2y = n = \sum_{i=2}^{\infty} x_i
$$

(5)

Since

$$
\sum_{i=2}^{n} (i-1) x_i = \sum_{i=2}^{\infty} ix_i - \sum_{i=2}^{\infty} x_i = (2e - x_i) - \left(n - x_0 - x_i\right) = 2e - n + x_0 = n - 2 + x_0,
$$

(6)

from (5), we have

$$
\sum_{i=2}^{\infty} \binom{i-1}{2} x_i + 2y = n - \sum_{i=2}^{\infty} (i-1) = 2 - x_0
$$

(7)

the (7) imply to $y = 1$ or 0.

Case 1. $y = 1$. By (7) we get $x_0 = 0$ and $x_1 = x_2 = \cdots = 0$, by (5) we get $x_2 = n - 2$ and $x_4 = 2$, then $\Gamma = C_4 \cup P_{n-2}$.

We known that “the spectrum of graph W_n is the union of the spectra of the circuit C_4 and the path P_{n-4}” [1], that is

$$
\varphi(W_n, \lambda) = \varphi(C_4 \cup C_1 \cup P_{n-4}, \lambda)
$$

Case 2. $y = 0$. By (7) we have $x_0 \leq 2$.

If $x_0 = 0$, then $x_2 = 2, x_4 = x_5 = \cdots = 0$, by (5) we get $x_2 = n - 6$ and $x_4 = 4$. Thus Γ have the same degree sequences as the H-shape tree.

If $x_0 = 1$, then $x_2 = 1, x_3 = x_4 = \cdots = 0, x_2 = n - 3$ and $x_4 = 1$. The degree sequences of Γ is $(3, 2, 2, \cdots, 2, 1, 0)$.

If $x_0 = 2$, then $x_3 = x_4 = \cdots = 0, x_2 = n, |\Gamma| \geq n + 2$, a contradiction. □

Lemma 3.3 Let G be a graph with e edges, x_i vertices of degree i, and z 6-cycles. Then

$$
[w_k(G)] = 2e + 12\sum_{i=2}^{\infty} \binom{i}{2} x_i + 6p_4 + 12k_{1,3} + 12z
$$

(8)

where p_4 is the number of induced paths of length three and $k_{1,3}$ is the number of induced star $K_{1,3}$.

Proof. A close walk of length 6 can be produced from in the following five classes graphs, they are $P_3, P_4, P_5, K_{1,3}$ and C_6. For an edge and a 6-cycle, it is easy to see that the number of close 6-walks equals 2 and 12, respectively. For a P_3, the number of close 6-walks of a 1-degree vertex is 3 and the number of close 6-walks of the 2-degree vertex is 6, since the number of induced paths of length two is $\sum_{i=2}^{\infty} \binom{i}{2} x_i$, hence for all induced paths P_3, the number of close 6-walks is $12\sum_{i=2}^{\infty} \binom{i}{2} x_i$. For a P_4, since the number of close 6-walks of a 1-degree ver-
tex is 1 and the number of close 6-walks of a 2-degree vertex is 2, hence for all induced paths \(P_4 \), the number of close 6-walks of a 2-degree vertex is 6, thus for all induced stars \(K_{1,3} \), the number of close 6-walks is 12 \(k_{1,3} \).

Corollary 3.4 Let \(H = H (l_1, l_2, l_3, l_4, l_5) \), then

\[
[w_k (H)] = \begin{cases}
20n + 28 - 6k & \text{if } l_i \geq 1 \text{ and have } k \text{ elements are 1 in } \{l_2, l_3, l_4, l_5\} \\
20n + 34 - 6k & \text{if } l_i = 0 \text{ and have } k \text{ elements are 1 in } \{l_2, l_3, l_4, l_5\}
\end{cases}
\]

(9)

where \(0 \leq k \leq 4 \).

Proof.

Case 1. \(l_1 \geq 1 \).

1) If \(k = 0 \), that is \(l_i \geq 2 (i = 2, 3, 4, 5) \), then

\[
w_k (H) = 2(n - 1) + 12[(n - 6) + 3 \times 2] + 6[(l_2 + l_3 - 2) + (l_4 + l_5 - 2) + (l_1 - 1) + 8] + 12 \times 2 = 20n + 28
\]

where \((l_2 + l_3 - 2), (l_4 + l_5 - 2)\) and \((l_1 - 1)\) are the number of induced paths \(P_4 \) in \(P_{l_2+l_3+1}, P_{l_4+l_5+1} \) and \(P_{l_1+2} \), respectively. The \(8(=4+4) \) is the number of induced paths of through a 3-degree vertex \(u \) (or \(v \)). If \(P_4 \) is such a induced path, then \(u \) is an internal vertex in the \(P_4 \) and have at least a vertex in the \(l_2 \) (or \(l_3 \)).

2) If \(k \neq 0 \), then

\[
w_k (H) = 2(n - 1) + 12[(n - 6) + 3 \times 2] + 6[(l_2 + l_3 - 2) + (l_4 + l_5 - 2) + (l_1 - 1) + (8 - k)] + 12 \times 2 = 20n + 28 - 6k
\]

Case 2. \(l_1 = 0 \).

1) If \(k \neq 0 \), then

\[
w_k (H) = 20n + 34 - 6k
\]

2) If \(k = 0 \), similarly, we have \(w_0 (H) = 20n + 34 - 6k \).

Example 1. Let \(H_1 = H (0, 1, 1, 1, 1) \), by (9) we have \(w_6 (H_1) = 20 \times 6 + 34 - 6 = 130 \), if we give to a suitable label for the \(H_1 \), by a simple calculation we can get the diagonal matrix of \(A^6 (H_1) \), that is

\[
\text{diag} (A^6 (H_1)) = [11, 11, 43, 43, 11, 11]
\]

clearly, the sum of the elements in the diagonal matrix equals \(4 \times 11 + 2 \times 43 = 130 \).

Example 2. Let \(H_2 = H (2, 2, 2, 2, 2) \), by (9) we have \(w_6 (H_2) = 20 \times 12 + 28 = 268 \), similarly, if we give to a suitable label for the \(H_2 \), then we can get the diagonal matrix of \(A^6 (H_2) \), that is

\[
\text{diag} (A^6 (H_2)) = [6, 6, 6, 6, 22, 22, 22, 22, 29, 29, 49, 49]
\]

clearly, the sum of the elements in the diagonal matrix equals \(4 \times 6 + 4 \times 22 + 2 \times 29 + 2 \times 49 = 268 \).

Lemma 3.5 Let \(\Gamma \) be a graph with \(n \) vertices, \(e \) edges, \(x_i \) vertices of degree \(i \), and \(z \) 6-cycles. If \(\Gamma \) cospectral to \(H (l_1, l_2, l_3, l_4, l_5) \) and \(\Gamma \neq W_n \), then

\[
2 \sum_{i=2}^{5} \left(\binom{i-1}{2} x_i + p_4 + 2k_{1,3} + 2z = \begin{cases}
n + 9 - k - 2x_6 & \text{if } l_i \geq 1 \text{ and have } k \text{ elements are 1 in } \{l_2, l_3, l_4, l_5\} \\
n + 10 - 2x_6 & \text{if } l_i = 0 \text{ and have } k \text{ elements are 1 in } \{l_2, l_3, l_4, l_5\}
\end{cases}
\]

(10)

where \(k (0 \leq k \leq 4) \) is the number of elements of equals 1 in \(\{l_2, l_3, l_4, l_5\} \) and \(p_4 \) is the number of induced paths of length three and \(k_{1,3} \) is the number of induced star \(K_{1,3} \) in \(\Gamma \).

Proof. If \(l_i \geq 1 \), by Lemma 3.3 we have

\[
2e + 12 \sum_{i=1}^{5} \binom{i}{2} x_i + 6p_4 + 12k_{1,3} + 12z = 20n + 28 - 6k,
\]

\[
2 \sum_{i=2}^{5} \left(\binom{i}{2} x_i + p_4 + 2k_{1,3} + 2z = 3n + 5 - k \right),
\]

\[
2 \sum_{i=2}^{5} \left(\binom{i-1}{2} x_i + p_4 + 2k_{1,3} + 2z = 3n + 5 - 2 \sum_{i=2}^{5} (i-1)x_i = 3n + 5 - 2(n-2 + x_6) = n + 9 - k - 2x_6.
\]
Similarly, when \(l_i = 0 \) the (10) hold. □

Definition 1. Let \(U \) be a graph obtained from a cycle \(C_6 \) (g is even and \(6 \leq g \leq n_1 - 2 \)) and a path \(P_{n_{1-1}} \), such that identifying an end vertex in the path and any one vertex in the cycle, and uniting an isolated vertex \(K_1 \).

If a graph have the degree sequences \((3, 2, 2, \cdots, 2, 1, 0) \), then the graph is \(H \)-shaping some cycle.

Lemma 3.6 Let \(U' \) be a graph with degree sequences \((3, 2, 2, \cdots, 2, 1, 0) \). If \(U' \) cosppectral to an \(H \)-shape, then \(U' \) and \(H \) satisfying one of the following conditions.

1) There are one 6-cycle in \(U' \) and \(l_i \geq 1, l_2, l_3, l_4, l_5 \geq 2 \).
2) There are one 6-cycle in \(U' \) and \(l_i = 0 \), have an element is 1 in \(\{ l_2, l_3, l_4, l_5 \} \).
3) No 6-cycle in \(U' \) and \(l_i \geq 1 \), have two elements are 1 in \(\{ l_2, l_3, l_4, l_5 \} \).
4) No 6-cycle in \(U' \) and \(l_i = 0 \), have three elements are 1 in \(\{ l_2, l_3, l_4, l_5 \} \).

Proof. Without loss of generality, Let \(U' = U \cup C_{n_2} \), where \(n_2 \geq 6 \) is even and \(n_1 + n_2 = n \). Let \(U' \) have \(e \) edges, \(x_i \) vertices of degree \(i \), and \(z \) 6-cycles.

Case 1. \(l_i \geq 1 \). By Lemma 3.5 we have \(2 \times 1 + [g + (n_i - g - 3) + 4 + n_2] + 2 \times 1 + 2z = n + 9 - k - 2, 2z = 2 - k \), get \(k = 0, z = 1 \) or \(k = 2, z = 0 \).

Case 2. \(l_i = 0 \), we have \(2 \times 1 + [g + (n_i - g - 3) + 4 + n_2] + 2 \times 1 + 2z = n + 10 - k - 2, 2z = 3 - k \), get \(k = 1, z = 1 \) or \(k = 3, z = 0 \). □

Lemma 3.7 Let \(\lambda = t^{\lfloor z/2 \rfloor} + t^{\lfloor z/2 \rfloor} \), then

\[
\phi \left(H \left(l_1, l_2, l_3, l_4, l_5 \right), \lambda \right) = \frac{t^{\lfloor z/2 \rfloor}}{(t - 1)^3} \left[(t - 1)^2 \left(t^{l_{k+1}} - 1 \right) \left(t^{l_{k+2}} - 1 \right) \left(t^{l_{k+3}} - 1 \right) \left(t^{l_{k+4}} - 1 \right) - t(t - 1) \left(t^{l_{k+1}} - 1 \right) \left(t^{l_{k+2}} - 1 \right) \left(t^{l_{k+3}} - 1 \right) \left(t^{l_{k+4}} - 1 \right) \right] \]

(11)

Proof. By Lemma 2.1 (b) and Lemma 2.2 we have

\[
\phi \left(H \left(l_1, l_2, l_3, l_4, l_5 \right), \lambda \right) = \phi \left(P_{l_{k+1}}, \lambda \right) \phi \left(T \left(l_1, l_2, l_3 \right), \lambda \right) - \phi \left(P_{l_{k+1}}, \lambda \right) \phi \left(P_{l_{k+1}}, \lambda \right) \phi \left(T \left(l_1, l_2, l_3 \right), \lambda \right)
\]

(12)

If a graph has the same degree sequences as the \(H \)-shape, then \(\Gamma' \) is one of the following graphs \(G_1, G_2, G_3, G_4, G_5 \) in figure or it is an \(H \)-shape.

![Graphs G1, G2, G3, G4, G5](image)

Lemma 3.8 If \(\Gamma \) is cospectrally to an \(H \)-shape tree, then \(\Gamma \) contains no \(P_{n_1} \cup P_{n_2} \) \((n_1, n_2 < n)\) as two connected component.

Proof. Assume that \(\Gamma \) contains a \(P_{n} \) as a connected component, by (11) some \(l_i \) is equal, without loss of generality, let \(l_i = l_2 = l_4 = n_1 \), then
If Γ contains a P_n as a connected component, then $l_3 = l_4$ and $l_1 + l_2 + 1 = l_3$, a contradiction.

Thus, if a graph $\Gamma (\Gamma \neq W_n)$ is one of the following graphs G_3, G_4, G_5 (Fig.) uniting some even cycle, respectively, or it is an H-shape.

Lemma 3.9 If $H_i = H(m_1, m_2, m_3, m_4, m_5)$ and $H = H(l_1, l_2, l_3, l_4, l_5)$ are cospectral, then $H(m_1, m_2, m_3, m_4, m_5) \cong H(l_1, l_2, l_3, l_4, l_5)$.

Proof. By (11) we have

\[
\phi(H(l_1, l_2, l_3, l_4, l_5), \lambda) = \phi(H(m_1, m_2, m_3, m_4, m_5), \lambda) - \phi(H(l_1, l_2, l_3, l_4, l_5), \lambda) + \phi(H(l_1, l_2, l_3, l_4, l_5), \lambda) - \phi(H(l_1, l_2, l_3, l_4, l_5), \lambda)
\]

which completes the proof.

Thus, if Γ contains a P_n as a connected component, then $l_3 = l_4$ and $l_1 + l_2 + 1 = l_3$, a contradiction.

Lemma 3.9 If $H_i = H(m_1, m_2, m_3, m_4, m_5)$ and $H = H(l_1, l_2, l_3, l_4, l_5)$ are cospectral, then $H(m_1, m_2, m_3, m_4, m_5) \cong H(l_1, l_2, l_3, l_4, l_5)$.

Proof. By (11) we have

\[
\phi(H(l_1, l_2, l_3, l_4, l_5), t^{1/2} + t^{-1/2}) t^{n/2} (t-1)^3
\]

which completes the proof.

Theorem 3.10 Let G_5 be a graph in Figure, then G_5 and H-shape are not cospectral.

Proof. Let $G_5 - u - v = P_{m_1} \cup P_{m_2} \cup P_{m_3} \cup P_{m_4} \cup P_{m_5-1} = 1$ (where $m_1, m_2, m_3, m_4, m_5 \geq 4$), that is, $m_1 + m_2 + m_3 + m_4 + m_5 + 1 = n$. Denote the first component by G_{S_1} and the second component by G_{S_2}. By Lemma 2.1 and Lemma 2.3 we have
\[
\varphi(G_{5,1}, \lambda) = \varphi(C_m, \lambda) \varphi(P_{m_4}, \lambda) - \varphi(P_{m_4-1}, \lambda) \varphi(P_{m_4-1}, \lambda)
\]

\[
\varphi(G_{5,2}, t^{l/2} + t^{-l/2})
\]

\[
= \frac{t^{-m_2/2} (r_{m_2} - 1)^2}{(t-1)^2} \left[\left(\frac{t^{-m_2/2} (r_{m_2} + m_2 + 1)}{t-1} \right)^2 - \left(\frac{t^{-m_2/2} (r_{m_2} - 1)}{t-1} \right)^2 \right]
\]

By Lemma 2.1 (a) we have

\[
\varphi(G_{5,2}, t^{l/2} + t^{-l/2}) t^{m_2/2} (t-1)^5
\]

\[
= \frac{t^{-m_2/2} (r_{m_2} - 1)^2}{(t-1)^2} \left[\left(\frac{t^{-m_2/2} (r_{m_2} + m_2 + 1)}{t-1} \right)^2 - \left(\frac{t^{-m_2/2} (r_{m_2} - 1)}{t-1} \right)^2 \right]
\]

\[
= \psi_{G_5}(t)
\]

Comparing (14) and (15), since \(\psi_{G_5}(0) = -1 \) for any \(l_i (i = 1, 2, \cdots, 5) \) and \(\psi_{G_5}(0) = 1 \) for any \(m_i (i = 1, 2, \cdots, 5) \), hence \(\psi_{G_5}(t) \neq \psi_{G_5}(t) \). \(G_5 \) and \(H \)-shape are not cospectral.

Remark. If \(G_5 \) uniting some \(C_{n_i} \), without loss of generality, let \(G_{5,i} = G_5 \cup C_{n_{n_i}} \), where \(m_1 + m_2 + m_3 + m_4 + m_5 + 1 = n_1 \). Since \(\varphi(C_{n-n_1} t^{l/2} + t^{-l/2}) = t^{(n-n_1)/2} \left(\frac{l^{(n-n_1)/2} - 1}{t-1} \right)^2 \), we have \(\psi_{G_5}(t) = \psi_{G_5}(t) \left(\frac{l^{(n-n_1)/2} - 1}{t-1} \right)^2 \), \(\psi_{G_5}(0) = \psi_{G_5}(0) = 1 \), \(\psi_{G_5}(t) \neq \psi_{G_5}(t) \). Thus, \(G_5 \) and \(H \)-shape are not cospectral.

Theorem 3.11 Let \(H = H(l_1, l_2, l_3, l_4, l_5) \) \((l_i \geq 0, l_i \geq 1, i = 2, 3, 4, 5) \), if a graph \(\Gamma \) (\(\Gamma \neq W_n \)) cospectral to an \(H \)-shape, then either \(\Gamma \) is \(U \) (Definition 1) uniting some even cycles \(C_{n_i} (n_i \geq 6) \), denoted by \(U' \), and \(U' \), \(H \) satisfying one of the following conditions.

1) There are one 6-cycle in \(U' \) and \(l_i \geq 1, l_i \geq 1, i = 2, 3, 4, 5 \).
2) There are one 6-cycle in \(U' \) and \(l_i = 0, \) have 1 element is 1 in \(\{ l_2, l_3, l_4, l_5 \} \).
3) No 6-cycle in \(U' \) and \(l_i \geq 1, \) have 2 elements are 1 in \(\{ l_2, l_3, l_4, l_5 \} \).
4) No 6-cycle in \(U' \) and \(l_i = 0, \) have 3 elements are 1 in \(\{ l_2, l_3, l_4, l_5 \} \), or \(\Gamma \) is the graph \(G_3 \) and \(G_4 \) in Figure uniting some even cycles \(C_{n_i} (n_i \geq 6) \), respectively.

Proof. This result is contained from Lemma 3.2 up to Lemma 3.10.

Funding

This work is supported by the Natural Science Foundation of Qinghai Province (Grant No. 2011-Z-911).

References

