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Abstract 
This paper proposes a new method to reduce the dimensionality of input and 
output spaces in DEA models. The method is based on Yanai’s Generalized 
Coefficient of Determination and on the concept of pseudo-rank of a matrix. 
In addition, the paper suggests a rule to determine the cardinality of the sub-
set of selected variables in a way to gain the maximal discretionary power and 
to suffer a minimal informational loss. 
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1. Introduction 

The DEA (Data Envelopment Analysis) model is a nonparametric method for 
estimating production frontiers. The DEA involves the solution of a set of linear 
programming (LP) problems to determine a production frontier against which 
the technical efficiency of the Decision Making Units (DMU) will be calculated. 
The basic DEA model was originally proposed by [1], and that model is nowa-
days known as “the CCR model”. 

The basic CCR model proposal aims to maximize the ratio between a 
weighted sum of outputs and a weighted sum of inputs. The weights of these 
sums are chosen according to the feasibility conditions and assuming a hypothe-
sis of constant returns to scale. Charnes, Cooper and Rhodes have previously 
transformed the fractional CCR model into a linear model whose dual is com-
monly referred to in the literature as the DEA (the details of this procedure can 
be find in [2] ch. 1 and 2) model. 

The CCR model and its variants have been increasingly applied following the 
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original description by [1]. Since then, researchers worldwide have used the 
model as a tool to assess technical efficiency. The DEA model has become the 
method widely chosen for this type of study, especially in the absence of an ex-
plicit production function to define the relationship between inputs and outputs. 
It is worth to say that if there is evidence that the inputs and outputs can be 
linked through a function, then the stochastic frontier model can be used as an 
alternative to the DEA. Please refer to the work of [3] on models of stochastic 
frontier production models. 

One of the most frequent problems associated with the CCR model is the lack 
of discrimination among DMUs when the number of inputs and outputs is ra-
ther large in relation to the number of DMUs. A large number of variables rela-
tive to the number of observations may entail a large number of efficient DMUs 
in the sample, thus reducing the model’s ranking capability. This represents a 
characteristic of the CCR model: the lower the number of DMUs, the less active 
the restrictions imposed on the maximum efficiency multipliers. In fact, accord-
ing to [4] DEA models are subject to the curse of dimensionality. 

Several alternatives have been proposed to increase the ranking capacity of the 
CCR model (see, eg, [5] [6] [7] [8]), including the super-efficiency (e.g., [9]) and 
cross-efficiency evaluation methods ([10] [11] [12]). Other methods that use ad-
ditional information (usually characterized by adding restrictions) include the  
cone-ratio and assurance-region approaches1. 

In the present work, we propose a simple and objective method to address a 
situation in which the original inputs and outputs have been correctly selected 
but the low number of observations has translated into low discrimination pow-
er. This approach is intended to reduce the dimensions of the inputs and outputs 
spaces and therefore does not require additional information. Additionally, this 
method does not require post-estimation procedures (as in the case of the su-
per-efficiency and cross-efficiency approaches). Our proposed approach relies 
on multivariate statistical techniques, namely, Principle Components Analysis 
and the use of a correlation matrix. Again, it should be emphasized that this ap-
proach is not intended for the selection of inputs or outputs. Instead, it is a sup-
port tool used to increase the discriminatory power without a significant loss of 
information, i.e., the discriminatory power is increased regardless of knowledge 
of which variables are essential for the model. The method is a tour de force of 
the linear algebra when applied to find similarity between subspaces by explor-
ing the special structure of the space of positive semidefinite matrices. 

Following this introduction, the remainder of the work is structured as follows: 
Section 2 briefly reviews multivariate variable selection in the DEA models, Sec-
tion 3 introduces the proposed methodology, Section 4 discusses applications of 
the proposed method to the CCR model, and finally, Section 5 presents conclu-
sions and suggestions for future research. 

2. Selection/Summarization of Variables in the DEA Model 

One of the issues relating to the CCR model is that of the dimensions of inputs 

 

 

1See [13] for a survey. 
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and outputs. A consequence of using a large number of variables relative to the 
number of observations is the loss of discrimination power due to the generation 
of a large number of efficient DMU’s. There is no consensus on the optimal 
number of inputs and outputs to be used. However, [2] suggest the following 
rule: J:J > max{M × N, 3(M + N)}, where M and N correspond to the number of 
outputs and inputs respectively. 

One of the most common ways of selecting variables in DEA is the use of cor-
relation matrices for inputs and outputs. When two variables (inputs or outputs) 
are highly correlated, one is discarded, usually on the basis of ad hoc criteria. 
However, eliminating one or the other variable could have a dramatic impact on  
estimated efficiency2.  

In recent years, the application of multivariate statistical methods, especially 
Principal Components Analysis (PCA), has appeared as a satisfactory alternative 
for variable reduction3. The formulation of a DEA model in which inputs and 
outputs are summarized as principal components is the focus of the work of [14] 
and [15]. One limitation of using PCs instead of inputs and outputs is that these 
“new” variables may take a negative value, and therefore must be transformed 
for PCA. That transformation, however, may impact results. One way of over-
coming the problem is to use the additive model of DEA (see [16]) that is inva-
riant to translation of inputs and outputs. In [17] the author has also shown that 
an input-oriented BCC model (after [18]) is invariant to output translation.  

There is also a practical difficulty. Even if the problem of negative PCs is re-
solved, the question remains of how to interpret the results in terms of the pro-
jection of inputs and outputs (that is, predicting quantities). The fact is that the 
only satisfactory way of accomplishing this is back transformation to original 
variables-which might require a considerable computational effort. Some au-
thors select variables based upon their contribution to PCs. Specifically, the va-
riables with the largest absolute linear combination coefficient are selected. Be-
cause it is common for the first few components to explain most data variance, 
the result is a considerably reduced subset of variables. 

In [19] the authors employ the method of partial covariance analysis to iden-
tify the correlation between variables as well as the contribution of each variable 
to these correlations. With this technique, the authors demonstrate that the re-
moval of variables with little contribution to the correlations does not signifi-
cantly change the results. 

The method we propose is based on the work of [20] and [21] and combines 
PCA with elements of the [19] method. It consists of generating a correlation 
matrix between two data sets-the orthogonal projection of data onto the sub-
space generated by a subset of PCs and the orthogonal projection of data onto 
the subspace generated by a subset of original variables. This matrix measure of 
the closeness of the two subspaces is known as Yanai’s Generalized Coefficient of 

 

 

2In [23] the authors presents an example that illustrate that point very well. 
3In fact the use of PCA for summarizes a data set is broadly applied in several areas range from im-
age processing ([24]) to meteorology ([25]). 
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Determination (GCD) (proposed in [22]). The resulting subset of PCs (which 
usually includes PCs that explain eighty to ninety percent of data variance) cor-
responds to the original variables that maximize the GCD. 

The number of PCs is determined prior to the generation of the correlation 
matrix, estimating the pseudo-rank for the matrix, as proposed by [20] based on 
the specific geometric structure of the cone of positive semidefinite matrices. 

In the following section, a brief discussion of the geometrical structure of the 
cone of positive semi-definite matrices and of PC analysis is presented and the 
GCD is subsequently defined.  

3. The Pseudo-Rank of a Matrix and Yanai’s Generalized  
Coefficient of Determination 

This section briefly describes basic concepts described in detail in the work of 
[20] [21] [26]. 

Assuming pC  to be the cone of positive semidefinite matrices with dimen-
sion p p×  provided with the Frobenius inner product , : p pF C C⋅ ⋅ × →ℜ  
such that  

( ),  for any , pFA B tr A B A B C′= ∈                  (1) 

The norm induced by (1) will be denoted by 
F

. For any matrix pV C∈ , 
the set 

( ) { }; , 0pRay V A C A Vλ λ= ∈ = ≥  

is called the ray associated with V. The ray associated with the identity matrix of 
dimension p is called the central ray of pC . 

With the definitions above, it is possible to find the angle between the rays 
associated with any two matrices A and B. This angle is given by the arc whose 
cosine is 

( )
,

cos , F

F F

A B
A B

A B
=                       (2) 

In [19], the author demonstrates that pC  has a layered structure, with con-
taining several cones fitted inside the other, just like showed in Figure 1. 

Based on this observation, the author argues that the region close to the cen-
tral ray contains only matrices of full rank, or at least with rank 1p −  (which 
can occur at the boundary of such regions). The farther away from the central 
ray, the lower the rank of matrices. 

However, matrices of full rank are also found outside of the core. Because they 
have may have eigenvalues close to zero, they behave as low-rank matrices. The 
question then is how far (into the core of the cone) does one have to move to 
avoid such matrices? The answer to this question lies in the concept of the 
pseudo-rank of a matrix. According to [20], the pseudo-rank of a pV C∈  ma-
trix is the smallest integer *k p≤  such that 

( )
*

cos , p
kV I
p

≤                         (3) 
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Figure 1. Cone of positive semidefinite matrices. 

 
The author shows that this value is given by 

( )
( )

2
*

2

tr V
k

tr V

 
 =
  

                         (4) 

where z    is the nearest to z greater integer. Letting V the covariance/correla- 
tion matrix of a data matrix A, with p variables and n observations, or 1V n A A− ′= . 
In this case the pseudo-rank of V corresponds to the number of components to 
be used as representative of all accumulated variance associated with A. 

Yanai’s Generalized Coefficient of Determination  

Let A represent a data matrix with dimension (n × p), where p indicates the 
number of variables and n the number of observations for each variable. In this 
context, A may refer to a matrix of discretionary/nondiscretionary outputs/in- 
puts. It is important to keep in mind that in DEA models, the number of obser-
vations indicates the number of columns in the pertinent matrices. Thus, for the 
implementation of the proposed method, matrix A should be considered the 
transposed output/input matrix. 

Given the covariance matrix/correlation of data 1S n A A− ′= , let Λ  and P be 
the diagonal matrix of eigenvalues (arranged in decreasing order) and the matrix 
of normalized eigenvectors of S respectively. The PCs are the columns of the 
matrix (n × p) given by C AP= . Using the spectral decomposition of S, it is 
easy to show that the covariance matrix of C is exactly Λ, so that the variables in 
C are uncorrelated. For this reason the AP transformation is sometimes called 
data “decorrelation”. 
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Consider K to be a subset of indices associated with k p≤  PCs arranged in 
decreasing order of eigenvalues (in general the first k’s). Similarly, let Q be de-
fined as a subset of indexes associated with the q p≤  original variables. The 
sets K and Q are the subspaces generated by vectors with indices K and Q re-
spectively. The following matrices are then defined:  
• KA  is the submatrix of A in which columns with indexes in K are main-

tained; 
• 1

K K KS n A A− ′=  is the covariance matrix associated with KA ; 
• KΛ  is the matrix of the eigenvalues associated with KS ; 
• KP  is the matrix of eigenvectors associated with eigenvalues in KΛ ; 

Let us assume KP  to be the matrix of orthogonal projection on the subspace 
K such that 

1 1
K KP n AS A− − ′=  

where 1
KS −  is the Moore-Penrose generalized inverse of KS . Similarly, QP  is 

the matrix of orthogonal projection on the subspace Q defined as 
1 1

Q Q Q QP n AI S I A− − ′=  

where QI  is the identity matrix of the submatrix obtained by selecting the q 
columns with indices in Q and 1

Q Q QS n I A AI− ′= . 
Given the definitions above, Yanai’s GCD between subspaces Q and K is de-

fined as: 

( )
,

, Q K F

Q K FF

P P
GCD Q K

P P
=                     (5) 

Supposing that { }*1, 2, ,K k= 
 remains fixed, where *k  is the pseudo- 

rank of the covariance matrix, in this case the selection of variables exhibiting 
the greatest contribution to the principal components selected in K is the set of 
indices Q  such that 

( )arg max ,
Q

Q GCD Q K=  

4. Reduced CCR Model4 

A practical example of the proposed method is provided in this section. For that, 
the CCR model will be presented with the original variables (hereafter called the 
“general model” and denoted by CCRg), and with the subset of selected variables 
(“reduced model,” denoted by CCRr). For the sake of simplicity, only prod-
uct-oriented models will be discussed below. 

Let us suppose that there are J DMUs under study, each using a vector 
N
+∈ℜx  of inputs to produce a vector M

+∈ℜy  of outputs with a technology 
defined by 

( ){ }, ; , , 0
gCCRT λ λ λ= ≥ ≤ ≥x y x X y Y  

where ( )N J×X , ( )M J×Y  and ( )1Jλ ×  are input and output matrices and the vector 

 

 

4The use of the CCR model is an example. The method can actually be applied to any DEA model. 
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of intensities respectively. 
Given a DMU j, its technical efficiency in the model CCRg, denoted by g

jET , 
is estimated by solving the following linear programming problem (the minimi-
zation of slacks is omitted for simplicity) 

( )

,
max

subject to

,
g

g
j

j j CCR

ET

T

θ λ
θ

θ


= 
 ∈ x y

                     (6) 

Let us now suppose that a set of variables was selected following the procedure 
presented in Section 3. For simplicity’s sake, let us assume that only outputs 
were selected. Let us denote by q

jy  the vector product of a DMU 1, 2, ,j J=  , 
with selection of q N<  outputs, and let us denote by qY  the respective re-
duced output matrix. The technology in the CCRr model is defined as 

( ){ }, ; , , 0
g

q q q
CCRT λ λ λ= ≥ ≤ ≥x y x X y Y . 

Given a DMU j, its technical efficiency in the model CCRr, denoted by r
jET , 

is estimated by solving the following linear programming problem 

( )

,
max

subject to

,
r

r
j

q
j j CCR

ET

T

θ λ
θ

θ


= 
 ∈ x y

                     (7) 

The reduced model is obtained in three stages, as summarized in the Figure 2 
below: 

One issue not covered by the procedure presented above is that of defining the 
cardinality of the subset of selected variables. One suggestion would be to com-
bine the gain in discrimination with some measure that would reveal loss of in-
formation. The gain in discrimination would be obtained by the difference be-
tween the percentage of efficient DMUs in the general model and in the reduced 
model. The complexity of this issue relates to what measure of informational loss  

 

 
Figure 2. Steps for obtaining the reduced model. 

 First Stage 
Selection of the number of principal components through the pseudo-rank 

covariance (or correlation) matrix of original data 

Second Stage 
Having selected the number of PCs in the first stage, the variables of the subset of 

cardinality k that maximizes GCD are selected  

Third Stage 
The subset of variables of cardinality k is used to obtain technical efficiency 

estimates through a (reduced) DEA model 
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should be used. One possibility is to use the Kolmogorov-Smirnov statistic, 
which quantifies the difference between distributions. In this context, this statis-
tic is given by 

( ) ( ) ( )sup q
x

KS q F x F x= −  

where F  and qF  are the empirical cumulative distribution functions of tech-
nical efficiency estimated by the general and reduced models (the latter with a 
subset q of selected variables) respectively. 

Let *K  and *
qK  be the number of efficient DMUs in the general and re-

duced models respectively; let ( )* *
q qK K Kδ = −  such that qδ  represents, in 

proportional terms, the gain in discrimination power of the reduced model in 
relation to the general model. Then the optimal cardinality would be given by 

*q  such that 

( ) ( )* 2arg max ; 1.36q

q
q KS q

KS q K
δ  ∈ ≤ 

  
             (8) 

in which ( ) 1.36 2KS q K≤  is included so that optimal cardinality will de-
pend on acceptance of the null hypothesis of the Kolmogorov-Smirnov test. The 
amount 1.36 2 K  represents the nullity condition of the Kolmogorov-Smir- 
nov test with a significance level of 0.05, such that if ( ) 1.36 2KS q K>  the 
null hypothesis of equality between the distributions is rejected. It should be 
noted that 1.36 2 K  is generally valid for 8K ≥ , otherwise it is necessary to 
consult tabulated values.5 

If there are multiple solutions to (8) the lowest maximizer *q  is selected, so 
that 

( ) ( )*

ˆ

2ˆmin arg max ; 1.36q

q q
q q KS q

KS q K
δ    = ∈ ≤  

    
         (9) 

An Application to Real Data 

This example employs real-world data previously described by [28], who ex-
amined the technical efficiency of the public health care system in Brazil. The 
database uses one input (x), represented by the annual per capita expenditure on 
health of the three levels of government, and 12 outputs (yi, 1, ,12i =  ), 
representing health indicators available in the Ministry of Health’s Information 
System DATASUS.6 For the present example, to reduce the power of discrimina-
tion, only 12 of the 27 states studied by [28] were selected. The data and some of 
the descriptive statistics are shown in Table 1 (Appendix Table A1 provides a 
description of the variables used in the example). 

In this example, the Kolmogorov-Smirnov null hypothesis is accepted with a 
significance level of 0.05 for a value up to 0.5552, such that the condition to se-
lect the cardinality of the subset of selected outputs becomes 

 

 

5See [27] for details. 
6See site www2.datasus.gov.br. 
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Table 1. Data of example. 

State x y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 

RO 387.5 68.2 73.8 70.9 80 0.8 1.7 111.2 106.9 107.5 108.3 47.6 70 

AC 556.6 68.6 73.8 71.1 71 0.8 2 86.5 83.64 110.5 90.14 40.3 67.4 

AM 513.4 68.4 74.4 71.3 78 0.9 1.5 106.3 93.88 131.1 92.36 57.1 72.8 

RR 674.5 67.2 72.1 69.6 83 1.1 1.6 93.13 88.62 114.1 89.85 71.9 79.3 

PA 263.8 68.8 74.7 71.7 76 0.8 1.6 116.6 112.3 144.5 119.8 55 76.9 

AP 512.5 66.2 74.1 70.1 79 0.8 1.5 94.12 96.3 126.7 98.17 28.2 90.5 

TO 503.8 68.8 73.3 71 78 1.1 1.8 99.57 107.2 110.1 107.4 21 69.9 

MA 285.3 63.4 71.3 67.2 69 0.6 2.4 108.2 106.6 135.6 111.9 50.1 59 

PI 315.8 65.6 71.7 68.6 73 0.8 2.5 101.9 102.1 106 104.6 61.7 49.6 

CE 291.4 65.7 74.4 69.9 74 0.9 1.9 108.3 108.3 113.3 112.3 40.8 71.3 

RN 405 66.3 74.1 70.1 69 1.2 2.3 98.87 95.45 108.2 94.61 45.1 82.3 

PB 335.1 65.2 72.2 68.6 68 1.1 2.7 105.7 103.6 117.8 104 48.5 74.7 

Max 674.5 68.8 74.7 71.7 83 1.2 2.7 116.6 112.3 144.5 119.8 71.9 90.5 

Min 263.8 63.4 71.3 67.2 68 0.6 1.5 86.5 83.64 106 89.85 21 49.6 

Mean 420.4 66.9 73.3 70 75 0.9 2 102.5 100.4 118.8 102.8 47.3 72 

SE 130.1 1.73 1.18 1.33 4.8 0.2 0.4 8.529 8.772 12.64 9.732 13.9 10.6 

Source: [28]. 

 

( ) ( )*

ˆ
ˆmin arg max ; 0.5552q

q q
q q KS q

KS q
δ    = ∈ ≤  

    
 

Table 2 shows the results obtained by applying the proposed variable selection 
method to the output matrix. Variables were selected into subsets with cardinal-
ity from 1 to 10. Using the pseudo-rank of the output covariance matrix (Equa-
tion (4)), the first four PCs were used. These for PCs accounted for approx-
imately 84% of the total variability of the sample. 

Note that in this example,  
( ) ( ){ } { }arg max ; 0.5552 4,5,6,7,8,9,10q

q
KS q KS qδ ≤ =  and therefore * 4q = . 

The last part of the example appears in Figure 2, which shows the estimated 
densities for the general and reduced models with cardinality from 1 to 8. The 
procedure to estimate the densities uses the Gaussian kernel. The bandwidth was 
selected minimizing the mean integrated square error (see [29] for details). 

The results shown in Figure 3 suggest that in the presence of four selected va-
riables, the inclusion of an additional variable does not have a significant impact 
on the comparison between the general model and the reduced model. This ob-
servation confirms the conclusions obtained by applying the method of subset 
cardinality selection suggested by equation (9). 

5. Conclusions and Further Research  

This paper proposes a method for reducing the dimension of input/output ma-
trices used to estimate production frontiers through the CCR model (or its va-  
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Figure 3. Estimated densities for TE in geberal and reduced models. 

 
riants). The method is based on Yanai’s Generalized Coefficient of Determina-
tion (GCD) and on the concept of pseudo-rank of a matrix. Additionally, a rule  
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Table 2. Results for general and reduced modelsa. 

State GM RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 

RO 0.71 0.62 0.65 0.67 0.69 0.69 0.71 0.71 0.71 0.71 0.71 

AC 0.51 0.42 0.42 0.47 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

AM 0.59 0.49 0.49 0.51 0.57 0.59 0.59 0.59 0.59 0.59 0.59 

RR 0.53 0.40 0.40 0.40 0.48 0.53 0.53 0.53 0.53 0.53 0.53 

PA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AP 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

TO 0.64 0.48 0.48 0.52 0.63 0.63 0.64 0.64 0.64 0.64 0.64 

MA 1.00 0.71 0.86 0.87 0.87 0.87 0.88 0.88 0.87 0.87 0.87 

PI 1.00 0.54 0.73 0.80 0.85 0.94 0.94 0.94 0.94 0.94 0.94 

CE 1.00 0.84 0.84 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RN 0.88 0.70 0.70 0.70 0.88 0.88 0.88 0.88 0.88 0.88 0.88 

PB 1.00 0.76 0.76 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

δq - 0.33 0.33 0.33 0.17 0.17 0.17 0.17 0.17 0.17 0.17 

KS(q) - 0.42 0.42 0.42 0.17 0.17 0.17 0.17 0.17 0.17 0.17 

δq/KS(q) - 0.80 0.80 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Source: Author’s estimates. aThe initials GM and RMq refer to general and reduced models with cardinality 
q, respectively. 

 
is suggested to support the choice of cardinality of the subset of selected va-
riables. This rule seeks to combine maximum gain in discriminatory power with 
minimal loss of information. 

Through an example that employs real-world data, it was found that the 
pseudo-rank of the output correlation matrix indicates that the first four PCs 
should be maintained. The GCD for output subsets with cardinality from 1 to 10 
was then calculated. The cardinality rule indicated the subset with four of the 12 
original outputs. Finally, the estimation of densities of the general and reduced 
models suggested that the cardinality decision rule can support decisions con-
cerning the number of variables required in the model to obtain maximum dis-
crimination with minimal loss of information. 

Further research is suggested on the cardinality decision rule taking into con-
sideration various measures of loss of information. Also warranted are studies 
comparing the proposed method with other methods of summarization and se-
lection. 
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Appendix 

Table A1. Results for general and reduced models. 

Output Description 

y1 Male life expectancy 

y2 Female life expectancy 

y3 Combined life expectancy 

y4 Survival rate (%) 

y5 Physicians per 1000 Inhabitants 

y6 Hospital beds per 1000 inhabitants 

y7 Coverage MMR (%) 

y8 Tetravalent vaccine coverage (%) 

y9 BCG vaccination coverage (%) 

Y10 Polio vaccine coverage (%) 

Y11 Sanitation coverage (%) 

Y12 Garbage collection coverage (%) 

Source: [28]. 
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